Portugal, Italy, Ireland, Greece, and Spain were widely considered the Eurozone's weakest economies during the Great Recession and subsequent Eurozone debt crisis. These countries were grouped together due to the similarities in their economic crises, with much of them driven by house price bubbles which had inflated over the early 2000s, before bursting in 2007 due to the Global Financial Crisis. Entry into the Euro currency by 2002 had meant that banks could lend to house buyers in these countries at greatly reduced rates of interest.
This reduction in the cost of financing contributed to creating housing bubbles, which were further boosted by pro-cyclical housing policies among many of the countries' governments. In spite of these economies experiencing similar economic problems during the crisis, Italy and Portugal did not experience housing bubbles in the same way in which Greece, Ireland, and Spain did. In the latter countries, their real housing prices (which are adjusted for inflation) peaked in 2007, before quickly declining during the recession. In particular, house prices in Ireland dropped by over 40 percent from their peak in 2007 to 2011.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper studies the role of the Federal Reserve's policy in the recent boom and bust of the housing market, and in the ensuing recession. By estimating a structural dynamic factor model on a panel of 109 US quarterly variables from 1982 to 2010, we find that, although the Federal Reserve's policy between 2002 and 2004 was slightly expansionary, its contribution to the recent housing cycle was negligible. We also show that a more restrictive policy would have smoothed the cycle but not prevented the recession. We thus find no role for the Federal Reserve in causing the recession.
In a 2019 analysis, Riverside, California was the most at risk of a housing downturn in a recession out of the 50 largest metro areas in the United States. The Californian metro area received an overall score of 72.8 percent, which was compiled after factors such as home price volatility and average home loan-to-value ratio were examined.
In 2024, Miami was the housing market most at risk, with a real estate bubble index score of 1.79. Tokyo and Zurich followed close behind with 1.67 and 1.51, respectively. Any market with an index score of 1.5 or higher was deemed to be a bubble risk zone.
https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q1 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
We analyze whether mid-level managers in securitized finance were aware of a large-scale housing bubble and a looming crisis in 2004-2006 using their personal home transaction data. We find that the average person in our sample neither timed the market nor were cautious in their home transactions, and did not exhibit awareness of problems in overall housing markets. Certain groups of securitization agents were particularly aggressive in increasing their exposure to housing during this period, suggesting the need to expand the incentives-based view of the crisis to incorporate a role for beliefs.
This paper studies the impact of unemployment insurance (UI) on the housing market. Exploiting heterogeneity in UI generosity across US states and over time, we find that UI helps the unemployed avoid mortgage default. We estimate that UI expansions during the Great Recession prevented more than 1.3 million foreclosures and insulated home values from labor market shocks. The results suggest that policies that make mortgages more affordable can reduce foreclosures even when borrowers are severely underwater. An optimal UI policy during housing downturns would weigh, among other benefits and costs, the deadweight losses avoided from preventing mortgage defaults.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Moderate rising of house prices are beneficial to the economic development. However, over high house prices worsen the economic distortions and thus hinder the development of the real economy. We use the stochastic frontier models to calculate the fundamental value in the housing in Chinese large and medium cities, and then obtain indexes which could measure the house prices’ deviations from the fundamental value. With the macroeconomic data in the city-level, this paper empirically investigates the effects of the house prices’ deviations on macro-economic variables like consumption, investment and output. The study reveals that the housing bubble exists in most Chinese cities, and first-tier cities fare the worst. House prices over the fundamental value, which could increase the scale of real estate investment, bring adverse impacts on GDP, as it causes declining civilian consumption and discourages real economy’s investment and production. The encouragement and the discouragement on macroeconomy caused by house prices’ deviation from its basic value take turns to play a key role in the process of China’ eco-nomic growth. In the early stage of China’s economic growth, the encouragement effect predominates. As urbanization and industrialization gradually upgrade to a higher level, the discouragement effect takes charge.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for New Privately Owned Housing Starts in the United States, Total One-Family Units (HOUST1FQ) from Q1 1974 to Q1 2025 about housing starts, privately owned, 1-unit structures, family, new, housing, and USA.
The year-end value of the S&P Case Shiller National Home Price Index amounted to 321.45 in 2024. The index value was equal to 100 as of January 2000, so if the index value is equal to 130 in a given year, for example, it means that the house prices increased by 30 percent since 2000. S&P/Case Shiller U.S. home indices – additional informationThe S&P Case Shiller National Home Price Index is calculated on a monthly basis and is based on the prices of single-family homes in nine U.S. Census divisions: New England, Middle Atlantic, East North Central, West North Central, South Atlantic, East South Central, West South Central, Mountain and Pacific. The index is the leading indicator of the American housing market and one of the indicators of the state of the broader economy. The index illustrates the trend of home prices and can be helpful during house purchase decisions. When house prices are rising, a house buyer might want to speed up the house purchase decision as the transaction costs can be much higher in the future. The S&P Case Shiller National Home Price Index has been on the rise since 2011.The S&P Case Shiller National Home Price Index is one of the indices included in the S&P/Case-Shiller Home Price Index Series. Other indices are the S&P/Case Shiller 20-City Composite Home Price Index, the S&P/Case Shiller 10-City Composite Home Price Index and twenty city composite indices.
The Federal National Mortgage Association, commonly known as Fannie Mae, was created by the U.S. congress in 1938, in order to maintain liquidity and stability in the domestic mortgage market. The company is a government-sponsored enterprise (GSE), meaning that while it was a publicly traded company for most of its history, it was still supported by the federal government. While there is no legally binding guarantee of shares in GSEs or their securities, it is generally acknowledged that the U.S. government is highly unlikely to let these enterprises fail. Due to these implicit guarantees, GSEs are able to access financing at a reduced cost of interest. Fannie Mae's main activity is the purchasing of mortgage loans from their originators (banks, mortgage brokers etc.) and packaging them into mortgage-backed securities (MBS) in order to ease the access of U.S. homebuyers to housing credit. The early 2000s U.S. mortgage finance boom During the early 2000s, Fannie Mae was swept up in the U.S. housing boom which eventually led to the financial crisis of 2007-2008. The association's stated goal of increasing access of lower income families to housing finance coalesced with the interests of private mortgage lenders and Wall Street investment banks, who had become heavily reliant on the housing market to drive profits. Private lenders had begun to offer riskier mortgage loans in the early 2000s due to low interest rates in the wake of the "Dot Com" crash and their need to maintain profits through increasing the volume of loans on their books. The securitized products created by these private lenders did not maintain the standards which had traditionally been upheld by GSEs. Due to their market share being eaten into by private firms, however, the GSEs involved in the mortgage markets began to also lower their standards, resulting in a 'race to the bottom'. The fall of Fannie Mae The lowering of lending standards was a key factor in creating the housing bubble, as mortgages were now being offered to borrowers with little or no ability to repay the loans. Combined with fraudulent practices from credit ratings agencies, who rated the junk securities created from these mortgage loans as being of the highest standard, this led directly to the financial panic that erupted on Wall Street beginning in 2007. As the U.S. economy slowed down in 2006, mortgage delinquency rates began to spike. Fannie Mae's losses in the mortgage security market in 2006 and 2007, along with the losses of the related GSE 'Freddie Mac', had caused its share value to plummet, stoking fears that it may collapse. On September 7th 2008, Fannie Mae was taken into government conservatorship along with Freddie Mac, with their stocks being delisted from stock exchanges in 2010. This act was seen as an unprecedented direct intervention into the economy by the U.S. government, and a symbol of how far the U.S. housing market had fallen.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This paper utilizes quarterly panel data for 20 OECD countries over the period 1975:Q1-2014:Q2 to explore the importance of house prices and credit in affecting the likelihood of a financial crisis. Estimating a set of multivariate logit models, we find that booms in credit to both households and non-financial enterprises are important to account for when evaluating the stability of the financial system. In addition, we find that global housing market developments have predictive power for domestic financial stability. Finally, econometric measures of bubble-like behavior in housing and credit markets enter with positive and highly significant coefficients. Specifically, we find that the probability of a crisis increases markedly when bubble-like behavior in house prices coincides with high household leverage.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Reno, NV (MSA) (ATNHPIUS39900Q) from Q2 1978 to Q1 2025 about Reno, NV, appraisers, HPI, housing, price index, indexes, price, and USA.
China's housing prices have been growing nearly twice as fast as national income over the past decade, despite a high vacancy rate and a high rate of return to capital. This paper interprets China's housing boom as a rational bubble emerging naturally from its economic transition. The bubble arises because high capital returns driven by resource reallocation are not sustainable in the long run. Rational expectations of a strong future demand for alternative stores of value can thus induce currently productive agents to speculate in the housing market. Our model can quantitatively account for China's paradoxical housing boom.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Using aggregate quarterly data for the period 1975:Q1-2010:Q4, I find that the US housing market changed from a stable regime with prices determined by fundamentals, to a highly unstable regime at the beginning of the previous decade. My results indicate that these imbalances could have been detected with the aid of real-time econometric modeling. With reference to Stiglitz's general conception of a bubble, I use the econometric results to construct two bubble indicators, which clearly demonstrate the transition to an unstable regime in the early 2000s. The indicators are shown to Granger cause a set of coincident indicators and financial (in)stability measures. Finally, it is shown that the increased subprime exposure during the 2000s can explain the econometric breakdown, i.e.?the housing bubble may be attributed to the increased borrowing to a more risky segment of the market.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Impacts of housing price’s deviation from the basic price on real economic investment.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Output responses to changes in house prices’ deviation from the fundamental prices.
The Global Financial Crisis of 2008-09 was a period of severe macroeconomic instability for the United States and the global economy more generally. The crisis was precipitated by the collapse of a number of financial institutions who were deeply involved in the U.S. mortgage market and associated credit markets. Beginning in the Summer of 2007, a number of banks began to report issues with increasing mortgage delinquencies and the problem of not being able to accurately price derivatives contracts which were based on bundles of these U.S. residential mortgages. By the end of 2008, U.S. financial institutions had begun to fail due to their exposure to the housing market, leading to one of the deepest recessions in the history of the United States and to extensive government bailouts of the financial sector.
Subprime and the collapse of the U.S. mortgage market
The early 2000s had seen explosive growth in the U.S. mortgage market, as credit became cheaper due to the Federal Reserve's decision to lower interest rates in the aftermath of the 2001 'Dot Com' Crash, as well as because of the increasing globalization of financial flows which directed funds into U.S. financial markets. Lower mortgage rates gave incentive to financial institutions to begin lending to riskier borrowers, using so-called 'subprime' loans. These were loans to borrowers with poor credit scores, who would not have met the requirements for a conventional mortgage loan. In order to hedge against the risk of these riskier loans, financial institutions began to use complex financial instruments known as derivatives, which bundled mortgage loans together and allowed the risk of default to be sold on to willing investors. This practice was supposed to remove the risk from these loans, by effectively allowing credit institutions to buy insurance against delinquencies. Due to the fraudulent practices of credit ratings agencies, however, the price of these contacts did not reflect the real risk of the loans involved. As the reality of the inability of the borrowers to repay began to kick in during 2007, the financial markets which traded these derivatives came under increasing stress and eventually led to a 'sudden stop' in trading and credit intermediation during 2008.
Market Panic and The Great Recession
As borrowers failed to make repayments, this had a knock-on effect among financial institutions who were highly leveraged with financial instruments based on the mortgage market. Lehman Brothers, one of the world's largest investment banks, failed on September 15th 2008, causing widespread panic in financial markets. Due to the fear of an unprecedented collapse in the financial sector which would have untold consequences for the wider economy, the U.S. government and central bank, The Fed, intervened the following day to bailout the United States' largest insurance company, AIG, and to backstop financial markets. The crisis prompted a deep recession, known colloquially as The Great Recession, drawing parallels between this period and The Great Depression. The collapse of credit intermediation in the economy lead to further issues in the real economy, as business were increasingly unable to pay back loans and were forced to lay off staff, driving unemployment to a high of almost 10 percent in 2010. While there has been criticism of the U.S. government's actions to bailout the financial institutions involved, the actions of the government and the Fed are seen by many as having prevented the crisis from spiraling into a depression of the magnitude of The Great Depression.
In the first quarter of 2019, more than half of office real estate lenders who were asked about the vulnerability of the coworking model to an economic downturn felt that the coworking model is less vulnerable than traditional office real estate (61 percent). In contrast, more than half of traditional office landlords (54 percent) believe that it makes no difference. An economic downturn, also known as a recession, can be defined as a slowdown in economic activity over a sustained period of time.
Portugal, Italy, Ireland, Greece, and Spain were widely considered the Eurozone's weakest economies during the Great Recession and subsequent Eurozone debt crisis. These countries were grouped together due to the similarities in their economic crises, with much of them driven by house price bubbles which had inflated over the early 2000s, before bursting in 2007 due to the Global Financial Crisis. Entry into the Euro currency by 2002 had meant that banks could lend to house buyers in these countries at greatly reduced rates of interest.
This reduction in the cost of financing contributed to creating housing bubbles, which were further boosted by pro-cyclical housing policies among many of the countries' governments. In spite of these economies experiencing similar economic problems during the crisis, Italy and Portugal did not experience housing bubbles in the same way in which Greece, Ireland, and Spain did. In the latter countries, their real housing prices (which are adjusted for inflation) peaked in 2007, before quickly declining during the recession. In particular, house prices in Ireland dropped by over 40 percent from their peak in 2007 to 2011.