4 datasets found
  1. a

    POPULATION By Town and State 1990-2010 NBEP2017 (excel)

    • hub.arcgis.com
    • narragansett-bay-estuary-program-nbep.hub.arcgis.com
    Updated Jan 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NBEP_GIS (2020). POPULATION By Town and State 1990-2010 NBEP2017 (excel) [Dataset]. https://hub.arcgis.com/datasets/5fbb987153c742a7a6a1f274b5569496
    Explore at:
    Dataset updated
    Jan 29, 2020
    Dataset authored and provided by
    NBEP_GIS
    Description

    This excel contains results from the 2017 State of Narragansett Bay and Its Watershed Technical Report (nbep.org), Chapter 4: "Population." The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 1990, 2000, and 2010 10m cell population density rasters were produced using Rhode Island state land use data, Massachusetts state land use, Connecticut NLCD land use data, and U.S. Census data. To generate a population estimate (number of persons) for any given area within the boundaries of this raster, NBEP used the the Zonal Statistics as Table tool to sum the 10m cell density values within a given zone dataset (e.g., watershed polygon layer). Results presented include population estimates (1990, 2000, 2010) as well as calculation of percent change (1990-2000;2000-2010;1990-2010).

  2. D

    ARCHIVED: COVID-19 Cases by Population Characteristics Over Time

    • data.sfgov.org
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Sep 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). ARCHIVED: COVID-19 Cases by Population Characteristics Over Time [Dataset]. https://data.sfgov.org/Health-and-Social-Services/ARCHIVED-COVID-19-Cases-by-Population-Characterist/j7i3-u9ke
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Sep 11, 2023
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.

    B. HOW THE DATASET IS CREATED Data on the population characteristics of COVID-19 cases are from:  * Case interviews  * Laboratories  * Medical providers    These multiple streams of data are merged, deduplicated, and undergo data verification processes.  

    Race/ethnicity * We include all race/ethnicity categories that are collected for COVID-19 cases. * The population estimates for the "Other" or “Multi-racial” groups should be considered with caution. The Census definition is likely not exactly aligned with how the City collects this data. For that reason, we do not recommend calculating population rates for these groups.

    Gender * The City collects information on gender identity using these guidelines.

    Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives.  * This dataset includes data for COVID-19 cases reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.

    Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to the California Department of Public Health, Virtual Assistant information gathering beginning December 2021. The Virtual Assistant is only sent to adults who are 18+ years old. https://www.sfdph.org/dph/files/PoliciesProcedures/COM9_SexualOrientationGuidelines.pdf">Learn more about our data collection guidelines pertaining to sexual orientation.

    Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.

    Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.

    Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.

    Transmission Type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.

    C. UPDATE PROCESS This dataset has been archived and will no longer update as of 9/11/2023.

    D. HOW TO USE THIS DATASET Population estimates are only available for age groups and race/ethnicity categories. San Francisco population estimates for race/ethnicity and age groups can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS).

    This dataset includes many different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of cases on each date.

    New cases are the count of cases within that characteristic group where the positive tests were collected on that specific specimen collection date. Cumulative cases are the running total of all San Francisco cases in that characteristic group up to the specimen collection date listed.

    This data may not be immediately available for recently reported cases. Data updates as more information becomes available.

    To explore data on the total number of cases, use the ARCHIVED: COVID-19 Cases Over Time dataset.

    E. CHANGE LOG

    • 9/11/2023 - data on COVID-19 cases by population characteristics over time are no longer being updated. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
    • 6/6/2023 - data on cases by transmission type have been removed. See section ARCHIVED DATA for more detail.
    • 5/16/2023 - data on cases by sexual orientation, comorbidities, homelessness, and single room occupancy have been removed. See section ARCHIVED DATA for more detail.
    • 4/6/2023 - the State implemented system updates to improve the integrity of historical data.
    • 2/21/2023 - system updates to improve reliability and accuracy of cases data were implemented.
    • 1/31/2023 - updated “population_estimate” column to reflect the 2020 Census Bureau American Community Survey (ACS) San Francisco Population estimates.
    • 1/5/2023 - data on SNF cases removed. See section ARCHIVED DATA for more detail.
    • 3/23/2022 - ‘Native American’ changed to ‘American Indian or Alaska Native’ to align with the census.
    • 1/22/2022 - system updates to improve timeliness and accuracy of cases and deaths data were implemented.
    • 7/15/2022 - reinfections added to cases dataset. See section SUMMARY for more information on how reinfections are identified.

  3. g

    ARCHIVED: COVID-19 Cases by Geography Over Time | gimi9.com

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ARCHIVED: COVID-19 Cases by Geography Over Time | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_covid-19-cases-by-geography-and-date/
    Explore at:
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    A. SUMMARY This dataset contains COVID-19 positive confirmed cases aggregated by several different geographic areas and by day. COVID-19 cases are mapped to the residence of the individual and shown on the date the positive test was collected. In addition, 2016-2020 American Community Survey (ACS) population estimates are included to calculate the cumulative rate per 10,000 residents. Dataset covers cases going back to 3/2/2020 when testing began. This data may not be immediately available for recently reported cases and data will change to reflect as information becomes available. Data updated daily. Geographic areas summarized are: 1. Analysis Neighborhoods 2. Census Tracts 3. Census Zip Code Tabulation Areas B. HOW THE DATASET IS CREATED Addresses from the COVID-19 case data are geocoded by the San Francisco Department of Public Health (SFDPH). Those addresses are spatially joined to the geographic areas. Counts are generated based on the number of address points that match each geographic area for a given date. The 2016-2020 American Community Survey (ACS) population estimates provided by the Census are used to create a cumulative rate which is equal to ([cumulative count up to that date] / [acs_population]) * 10000) representing the number of total cases per 10,000 residents (as of the specified date). COVID-19 case data undergo quality assurance and other data verification processes and are continually updated to maximize completeness and accuracy of information. This means data may change for previous days as information is updated. C. UPDATE PROCESS Geographic analysis is scripted by SFDPH staff and synced to this dataset daily at 05:00 Pacific Time. D. HOW TO USE THIS DATASET San Francisco population estimates for geographic regions can be found in a view based on the San Francisco Population and Demographic Census dataset. These population estimates are from the 2016-2020 5-year American Community Survey (ACS). This dataset can be used to track the spread of COVID-19 throughout the city, in a variety of geographic areas. Note that the new cases column in the data represents the number of new cases confirmed in a certain area on the specified day, while the cumulative cases column is the cumulative total of cases in a certain area as of the specified date. Privacy rules in effect To protect privacy, certain rules are in effect: 1. Any area with a cumulative case count less than 10 are dropped for all days the cumulative count was less than 10. These will be null values. 2. Once an area has a cumulative case count of 10 or greater, that area will have a new row of case data every day following. 3. Cases are dropped altogether for areas where acs_population privacy guidelines Rate suppression in effect where counts lower than 20 Rates are not calculated unless the cumulative case count is greater than or equal to 20. Rates are generally unstable at small numbers, so we avoid calculating them directly. We advise you to apply the same approach as this is best practice in epidemiology. A note on Census ZIP Code Tabulation Areas (ZCTAs) ZIP Code Tabulation Areas are spec

  4. w

    NCHS - Teen Birth Rates for Age Group 15-19 in the United States by County

    • data.wu.ac.at
    • healthdata.gov
    • +5more
    application/unknown
    Updated Jun 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Health & Human Services (2018). NCHS - Teen Birth Rates for Age Group 15-19 in the United States by County [Dataset]. https://data.wu.ac.at/schema/data_gov/NjJhY2RkYWUtNjA4MS00ZjI0LWIzYWQtYjY5ODc3YzBhOGQ5
    Explore at:
    application/unknownAvailable download formats
    Dataset updated
    Jun 4, 2018
    Dataset provided by
    U.S. Department of Health & Human Services
    Area covered
    United States
    Description

    This data set contains estimated teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) by county and year.

    DEFINITIONS

    Estimated teen birth rate: Model-based estimates of teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) for a specific county and year. Estimated county teen birth rates were obtained using the methods described elsewhere (1,2,3,4). These annual county-level teen birth estimates “borrow strength” across counties and years to generate accurate estimates where data are sparse due to small population size (1,2,3,4). The inferential method uses information—including the estimated teen birth rates from neighboring counties across years and the associated explanatory variables—to provide a stable estimate of the county teen birth rate.
    Median teen birth rate: The middle value of the estimated teen birth rates for the age group 15–19 for counties in a state.
    Bayesian credible intervals: A range of values within which there is a 95% probability that the actual teen birth rate will fall, based on the observed teen births data and the model.

    NOTES

    Data on the number of live births for women aged 15–19 years were extracted from the National Center for Health Statistics’ (NCHS) National Vital Statistics System birth data files for 2003–2015 (5).

    Population estimates were extracted from the files containing intercensal and postcensal bridged-race population estimates provided by NCHS. For each year, the July population estimates were used, with the exception of the year of the decennial census, 2010, for which the April estimates were used.

    Hierarchical Bayesian space–time models were used to generate hierarchical Bayesian estimates of county teen birth rates for each year during 2003–2015 (1,2,3,4).

    The Bayesian analogue of the frequentist confidence interval is defined as the Bayesian credible interval. A 100*(1-α)% Bayesian credible interval for an unknown parameter vector θ and observed data vector y is a subset C of parameter space Ф such that
    1-α≤P({C│y})=∫p{θ │y}dθ,
    where integration is performed over the set and is replaced by summation for discrete components of θ. The probability that θ lies in C given the observed data y is at least (1- α) (6).

    County borders in Alaska changed, and new counties were formed and others were merged, during 2003–2015. These changes were reflected in the population files but not in the natality files. For this reason, two counties in Alaska were collapsed so that the birth and population counts were comparable. Additionally, Kalawao County, a remote island county in Hawaii, recorded no births, and census estimates indicated a denominator of 0 (i.e., no females between the ages of 15 and 19 years residing in the county from 2003 through 2015). For this reason, Kalawao County was removed from the analysis. Also , Bedford City, Virginia, was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. For consistency, Bedford City was merged with Bedford County, Virginia, for the entire 2003–2015 period. Final analysis was conducted on 3,137 counties for each year from 2003 through 2015. County boundaries are consistent with the vintage 2005–2007 bridged-race population file geographies (7).

    SOURCES

    National Center for Health Statistics. Vital statistics data available online, Natality all-county files. Hyattsville, MD. Published annually.

    For details about file release and access policy, see NCHS data release and access policy for micro-data and compressed vital statistics files, available from: http://www.cdc.gov/nchs/nvss/dvs_data_release.htm.

    For natality public-use files, see vital statistics data available online, available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.

    National Center for Health Statistics. U.S. Census populations with bridged race categories. Estimated population data available. Postcensal and intercensal files. Hyattsville, MD. Released annually.

    For population files, see U.S. Census populations with bridged race categories, available from: https://www.cdc.gov/nchs/nvss/bridged_race.htm.

    REFERENCES

    1. Khan D, Rossen LM, Hamilton B, Dienes E, He Y, Wei R. Spatiotemporal trends in teen birth rates in the USA, 2003–2012. J R Stat Soc A 181(1):35–58. 2017. Available from: http://onlinelibrary.wiley.com/doi/10.1111/rssa.12266/abstract.

    2. Khan D, Rossen LM, Hamilton BE, He Y, Wei R, Dienes E. Hot spots, cluster detection and spatial outlier analysis of teen birth rates in the U.S., 2003–2012. Spat Spatiotemporal Epidemiol 21:67–75. 2017. Available from: http://www.sciencedirect.com/science/article/pii/S1877584516300442.

    3. Rue H, Martino S, Lindgren F. INLA: Functions which allow to perform a full Bayesian analysis of structured additive models using Integrated Nested Laplace Approximation. R package, version 0.0. 2009.

    4. Rue H, Martino S, Chopin N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc B 71(2):319–92. 2009.

    5. Martin JA, Hamilton BE, Osterman MJK, Driscoll AK, Mathews TJ. Births: Final data for 2015. National Vital Statistics Reports; vol 66 no 1. Hyattsville, MD: National Center for Health Statistics. 2017. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr66/nvsr66_01.pdf (1.9 MB).

    6. Carlin BP, Louis TA. Bayesian methods for data analysis. Boca Raton, FL: CRC Press, 2009.

    7. National Center for Health Statistics. County geography changes: 1990–2012. Available from: http://www.cdc.gov/nchs/data/nvss/bridged_race/County_Geography_Changes.pdf (39 KB).

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NBEP_GIS (2020). POPULATION By Town and State 1990-2010 NBEP2017 (excel) [Dataset]. https://hub.arcgis.com/datasets/5fbb987153c742a7a6a1f274b5569496

POPULATION By Town and State 1990-2010 NBEP2017 (excel)

Explore at:
Dataset updated
Jan 29, 2020
Dataset authored and provided by
NBEP_GIS
Description

This excel contains results from the 2017 State of Narragansett Bay and Its Watershed Technical Report (nbep.org), Chapter 4: "Population." The methods for analyzing population were developed by the US Environmental Protection Agency ORD Atlantic Coastal Environmental Sciences Division in collaboration with the Narragansett Bay Estuary Program and other partners. Population rasters were generated using the USGS dasymetric mapping tool (see http://geography.wr.usgs.gov/science/dasymetric/index.htm) which uses land use data to distribute population data more accurately than simply within a census mapping unit. The 1990, 2000, and 2010 10m cell population density rasters were produced using Rhode Island state land use data, Massachusetts state land use, Connecticut NLCD land use data, and U.S. Census data. To generate a population estimate (number of persons) for any given area within the boundaries of this raster, NBEP used the the Zonal Statistics as Table tool to sum the 10m cell density values within a given zone dataset (e.g., watershed polygon layer). Results presented include population estimates (1990, 2000, 2010) as well as calculation of percent change (1990-2000;2000-2010;1990-2010).

Search
Clear search
Close search
Google apps
Main menu