Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.
This data set contains estimated teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) by county and year.
DEFINITIONS
Estimated teen birth rate: Model-based estimates of teen birth rates for age group 15–19 (expressed per 1,000 females aged 15–19) for a specific county and year. Estimated county teen birth rates were obtained using the methods described elsewhere (1,2,3,4). These annual county-level teen birth estimates “borrow strength” across counties and years to generate accurate estimates where data are sparse due to small population size (1,2,3,4). The inferential method uses information—including the estimated teen birth rates from neighboring counties across years and the associated explanatory variables—to provide a stable estimate of the county teen birth rate. Median teen birth rate: The middle value of the estimated teen birth rates for the age group 15–19 for counties in a state. Bayesian credible intervals: A range of values within which there is a 95% probability that the actual teen birth rate will fall, based on the observed teen births data and the model.
NOTES
Data on the number of live births for women aged 15–19 years were extracted from the National Center for Health Statistics’ (NCHS) National Vital Statistics System birth data files for 2003–2015 (5).
Population estimates were extracted from the files containing intercensal and postcensal bridged-race population estimates provided by NCHS. For each year, the July population estimates were used, with the exception of the year of the decennial census, 2010, for which the April estimates were used.
Hierarchical Bayesian space–time models were used to generate hierarchical Bayesian estimates of county teen birth rates for each year during 2003–2015 (1,2,3,4).
The Bayesian analogue of the frequentist confidence interval is defined as the Bayesian credible interval. A 100*(1-α)% Bayesian credible interval for an unknown parameter vector θ and observed data vector y is a subset C of parameter space Ф such that 1-α≤P({C│y})=∫p{θ │y}dθ, where integration is performed over the set and is replaced by summation for discrete components of θ. The probability that θ lies in C given the observed data y is at least (1- α) (6).
County borders in Alaska changed, and new counties were formed and others were merged, during 2003–2015. These changes were reflected in the population files but not in the natality files. For this reason, two counties in Alaska were collapsed so that the birth and population counts were comparable. Additionally, Kalawao County, a remote island county in Hawaii, recorded no births, and census estimates indicated a denominator of 0 (i.e., no females between the ages of 15 and 19 years residing in the county from 2003 through 2015). For this reason, Kalawao County was removed from the analysis. Also , Bedford City, Virginia, was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. For consistency, Bedford City was merged with Bedford County, Virginia, for the entire 2003–2015 period. Final analysis was conducted on 3,137 counties for each year from 2003 through 2015. County boundaries are consistent with the vintage 2005–2007 bridged-race population file geographies (7).
This dataset contains California’s adolescent birth rate (ABR) by county, age group and race/ethnicity using aggregated years 2014-2016. The ABR is calculated as the number of live births to females aged 15-19 divided by the female population aged 15-19, multiplied by 1,000. Births to females under age 15 are uncommon and thus added to the numerator (total number of births aged 15-19) in calculating the ABR for aged 15-19. The categories by age group are aged 18-19 and aged 15-17; births occurring to females under aged 15 are added to the numerator for aged 15-17 in calculating the ABR for this age group. The race and ethnic groups in this table utilized five mutually exclusive race and ethnicity categories. These categories are Hispanic and the following Non-Hispanic categories of Multi-Race, Black, American Indian (includes Eskimo and Aleut), Asian and Pacific Islander (includes Hawaiian) combined, and White. Note that there are birth records with missing race/ethnicity or categorized as “Other” and not shown in the dataset but included in the ABR calculation overall.
Definition:The crude birth rate is the annual number of live births per 1,000 population.Method of measurementThe crude birth rate is generally computed as a ratio. The numerator is the number of live births observed in a population during a reference period and the denominator is the number of person-years lived by the population during the same period. It is expressed as births per 1,000 population. Method of estimation:Data are taken from the most recent UN Population Division's "World Population Prospects". Other possible data sources:Population censusHousehold surveysPreferred data sources:Civil registration with complete coverageExpected frequency of data dissemination:Biennial (Two years)Data collected March 5, 2021 from: https://www.who.int/data/maternal-newborn-child-adolescent-ageing/indicator-explorer-new/mca/crude-birth-rate-(births-per-1000-population)
Annual average birth data by zip code from the Michigan Department of Community Health, Vital Statistics. Covers years 2009-11, 2010-12, and 2011-13. Birth rates were calculated by Kurt Metzger. Birth Rate = Number of births per 1,000 Women 15-44 years of age (2010 Census).
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The data shows the year-wise estimated birth rates, death rates, infant mortality rates by residence by rural, urban and total for the states and union territories of India over the time period of seven years from 2009 to 2015.
Note: Infant Mortality Rate for smaller States & Union Territories are based on three-years period 2013-15.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Russian Fertility Database of the International Laboratory for Population and Health of HSE University contains fertility rates in Russia for the period from 1946 to 2022 and for women born in 1932-1988. The Russian Fertility Database is primarily oriented to the experts involved in demographic analysis. The data are presented in *.xlsx format.
All indicators presented in the database are calculated on the basis of population statistics data from the Federal State Statistics Service. Birth rates for 1946-1958 are calculated on the basis of the numbers of births by birth order and mother's age for 1946-1958 and population data for 1946-1958 presented in the book Andreev E.M., Darsky L.E., Kharkova T.L. (1998) Demographic History of Russia: 1927-1959. M.: Informatika. 187 p. Birth rates for 1959-2022 are calculated on the basis of the numbers of births by birth order and mother's age for 1959-2022 and data on the age distribution of the population for 1959-2023.
This data is compiled by the Cook County Department of Public Health using data from the Illinois Department of Public Health Vital Statistics. It includes the annual number of live births, and birth related outcomes and characteristics. Further analysis is available by birth mother's age group, race/ethnicity, and place/district of residence for all births in suburban Cook County. Also included is data related to infant mortality. Table of Contents and other information can be found at http://opendocs.cookcountyil.gov/docs/Birth_Table_Of_Contents_Data_Portal_fyn8-c3rk.pdf. Note: * Counts suppressed for events between 1 and 4, - Rates not calculated for events less than 20
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains statistics about births and fertility rates for Australia, states and territories, and sub-state regions. It includes all births that occurred and were registered in Australia, including births to mothers whose place of usual residence was overseas.
Estimated resident populations (ERPs) are used as denominators to calculate fertility rates and are based on the results of the 2016 Census. This dataset uses the ABS Statistical Area Level 2 (SA2) boundaries of the Australian Statistical Geography Standard (ASGS) 2016.
For more information such as the scope, coverage and exclusions used in this dataset please visit the Australian Bureau of Statistics (ABS) methodology documentation.
AURIN has spatially enabled the original data from the ABS with the 2016 SA2 boundaries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fetal mortality occurs after 20 weeks of gestation and before labor. Infant mortality occurs before the first year of age and is a sum of Neonatal (the first 28 days after birth) and Postneonatal (from 28 days up to 1 year) mortality. Rates are calculated per every 1000 births; rates are not available for disaggregated race/ethnicities. Fetal and infant mortality values are available for given race/ethnicities. Connecticut Department of Public Health collects and reports data annually. CTData.org carries 1-, 3- and 5-Year aggregations.
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of live births to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age and age-specific fertility rates to map the estimated distributions of births for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al. and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2018. Pakistan 1km Births. Version 2.0 2015 estimates of numbers of live births per grid square, with national totals adjusted to match UN national estimates on numbers of live births (http://esa.un.org/wpp/). DOI: 10.5258/SOTON/WP00572
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fetal mortality occurs after 20 weeks of gestation and before labor. Infant mortality occurs before the first year of age and is a sum of Neonatal (the first 28 days after birth) and Postneonatal (from 28 days up to 1 year) mortality. Rates are calculated per every 1000 births; rates are not available for disaggregated race/ethnicities. Fetal and infant mortality values are available for given race/ethnicities. Connecticut Department of Public Health collects and reports data annually. CTData.org carries 1-, 3- and 5-Year aggregations.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset is no longer updated as of April 2023.
Basic Metadata Note: The Sudden Infant Death Syndrome (SIDS) Rate is infant deaths (under one year of age) due to SIDS per 1,000 live births, by geography. Data set includes registered deaths only. Numerator represents infant's race/ethnicity. Denominator represents mother's race/ethnicity.
**Blank Cells: Rates not calculated for fewer than 5 events. Rates not calculated in cases where zip code is unknown.
***API: Asian/Pacific Islander. ***AIAN: American Indian/Alaska Native.
Sources: California Department of Public Health, Center for Health Statistics, Office of Health Information and Research, Vital Records Business Intelligence System, 2016. Prepared by: County of San Diego, Health & Human Services Agency, Public Health Services, Community Health Statistics Unit, 2019.
Codes: ICD‐10 Mortality code R95.
Data Guide, Dictionary, and Codebook: https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/phs/CHS/Community%20Profiles/Public%20Health%20Services%20Codebook_Data%20Guide_Metadata_10.2.19.xlsx
Interpretation: "There were 5 SIDS deaths per 1,000 live births in Geography X".
Estimated annual number of births by gender for Canada, provinces and territories.
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of live births to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age and age-specific fertility rates to map the estimated distributions of births for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al. and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2017. Uruguay 1km births. Version 2.0 2015 estimates of numbers of live births per grid square, with national totals adjusted to match UN national estimates on numbers of live births (http://esa.un.org/wpp/). DOI: 10.5258/SOTON/WP00366
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of live births to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age and age-specific fertility rates to map the estimated distributions of births for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al. and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2018. Kazakhstan 1km Births. Version 1.0 2015 estimates of numbers of live births per grid square, with national totals adjusted to match UN national estimates on numbers of live births (http://esa.un.org/wpp/). DOI: 10.5258/SOTON/WP00561
All birth data by race before 1980 are based on race of the child; starting in 1980, birth data by race are based on race of the mother. Birth data are used to calculate infant mortality rate.
https://www.cdc.gov/nchs/data-visualization/mortality-trends/
A flexible model to reconstruct education-specific fertility rates: Sub-saharan Africa case study
The fertility rates are consistent with the United Nation World Population Prospects (UN WPP) 2022 fertility rates.
The Bayesian model developed to reconstruct the fertility rates using Demographic and Health Surveys and the UN WPP is published in a working paper.
Abstract
The future world population growth and size will be largely determined by the pace of fertility decline in sub-Saharan Africa. Correct estimates of education-specific fertility rates are crucial for projecting the future population. Yet, consistent cross-country comparable estimates of education-specific fertility for sub-Saharan African countries are still lacking. We propose a flexible Bayesian hierarchical model to reconstruct education-specific fertility rates by using the patchy Demographic and Health Surveys (DHS) data and the United Nations’ (UN) reliable estimates of total fertility rates (TFR). Our model produces estimates that match the UN TFR to different extents (in other words, estimates of varying levels of consistency with the UN). We present three model specifications: consistent but not identical with the UN, fully-consistent (nearly identical) with the UN, and consistent with the DHS. Further, we provide a full time series of education-specific TFR estimates covering five-year periods between 1980 and 2014 for 36 sub-Saharan African countries. The results show that the DHS-consistent estimates are usually higher than the UN-fully-consistent ones. The differences between the three model estimates vary substantially in size across countries, yielding 1980-2014 fertility trends that differ from each other mostly in level only but in some cases also in direction.
Funding
The data set are part of the BayesEdu Project at Wittgenstein Centre for Demography and Global Human Capital (IIASA, OeAW, University of Vienna) funded from the “Innovation Fund Research, Science and Society” by the Austrian Academy of Sciences (ÖAW).
We provide education-specific total fertility rates (ESTFR) from three model specifications: (1) estimated TFR consistent but not identical with the TFR estimated by the UN (“Main model (UN-consistent)”; (2) estimated TFR fully consistent (nearly identical) with the TFR estimated by the UN ( “UN-fully -consistent”, and (3) estimated TFR consistent only with the TFR estimated by the DHS ( “DHS-consistent”).
For education- and age-specific fertility rates that are UN-fully consistent, please see https://doi.org/10.5281/zenodo.8182960
Variables
Country: Country names
Education: Four education levels, No Education, Primary Education, Secondary Education and Higher Education.
Year: Five-year periods between 1980 and 2015.
ESTFR: Median education-specific total fertility rate estimate
sd: Standard deviation
Upp50: 50% Upper Credible Interval
Lwr50: 50% Lower Credible Interval
Upp80: 80% Upper Credible Interval
Lwr80: 80% Lower Credible Interval
Model: Three model specifications as explained above and in the working paper. DHS-consistent, Main model (UN-consistent) and UN-fully consistent.
List of countries:
Angola, Benin, Burkina Faso, Burundi, Cote D'Ivoire, Cameroon, Central African Republic, Chad, Comoros, Congo, Democratic Republic of Congo, Eswatini, Ethiopia, Gabon, Gambia, Ghana, Guinea, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, South Africa, Tanzania, Togo, Uganda, Zambia, Zimbabwe
The health and survival of women and their new-born babies in low income countries is a key public health priority, but basic and consistent subnational data on the number of live births to support decision making has been lacking. WorldPop integrates small area data on the distribution of women of childbearing age and age-specific fertility rates to map the estimated distributions of births for each 1x1km grid square across all low and middle income countries. Further details on the methods can be found in Tatem et al. and James et al..
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton). 2018. Thailand 1km Births. Version 1.0 2015 estimates of numbers of live births per grid square, with national totals adjusted to match UN national estimates on numbers of live births (http://esa.un.org/wpp/). DOI: 10.5258/SOTON/WP00583
Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.