The Program Access Index (PAI) is one of the measures the USDA Food and Nutrition Service (FNS) uses to reward States for high performance in the administration of the Supplemental Nutrition Assistance Program (SNAP). The Farm Security and Rural Investment Act of 2002 (also known as the 2002 Farm Bill) directed USDA to establish a number of indicators of effective program performance and to award bonus payments to States with the best and most improved performance. The PAI is designed to indicate the degree to which low-income people have access to SNAP benefits.
Measuring the usage of informatics resources such as software tools and databases is essential to quantifying their impact, value and return on investment. We have developed a publicly available dataset of informatics resource publications and their citation network, along with an associated metric (u-Index) to measure informatics resources’ impact over time. Our dataset differentiates the context in which citations occur to distinguish between ‘awareness’ and ‘usage’, and uses a citing universe of open access publications to derive citation counts for quantifying impact. Resources with a high ratio of usage citations to awareness citations are likely to be widely used by others and have a high u-Index score. We have pre-calculated the u-Index for nearly 100,000 informatics resources. We demonstrate how the u-Index can be used to track informatics resource impact over time. The method of calculating the u-Index metric, the pre-computed u-Index values, and the dataset we compiled to calc...
The Case Mix Index (CMI) is the average relative DRG weight of a hospital’s inpatient discharges, calculated by summing the Medicare Severity-Diagnosis Related Group (MS-DRG) weight for each discharge and dividing the total by the number of discharges. The CMI reflects the diversity, clinical complexity, and resource needs of all the patients in the hospital. A higher CMI indicates a more complex and resource-intensive case load. Although the MS-DRG weights, provided by the Centers for Medicare & Medicaid Services (CMS), were designed for the Medicare population, they are applied here to all discharges regardless of payer. Note: It is not meaningful to add the CMI values together.
The Consumer Price Index (CPI) is a measure of the average change over time in the prices paid by urban consumers for a market basket of consumer goods and services. Indexes are available for the U.S. and various geographic areas. Average price data for select utility, automotive fuel, and food items are also available. Prices for the goods and services used to calculate the CPI are collected in 75 urban areas throughout the country and from about 23,000 retail and service establishments. Data on rents are collected from about 43,000 landlords or tenants. More information and details about the data provided can be found at http://www.bls.gov/cpi
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
Notice: Due to funding limitations, this data set was recently changed to a “Basic” Level of Service. Learn more about what this means for users and how you can share your story here: Level of Service Update for Data Products. The Sea Ice Index provides a quick look at Arctic- and Antarctic-wide changes in sea ice. It is a source for consistent, up-to-date sea ice extent and concentration images, in PNG format, and data values, in GeoTIFF and ASCII text files, from November 1978 to the present. Sea Ice Index images also depict trends and anomalies in ice cover calculated using a 30-year reference period of 1981 through 2010.The images and data are produced in a consistent way that makes the Index time-series appropriate for use when looking at long-term trends in sea ice cover. Both monthly and daily products are available. However, monthly products are better to use for long-term trend analysis because errors in the daily product tend to be averaged out in the monthly product and because day-to-day variations are often the result of short-term weather.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains gridded monthly Standardized Precipitation Index (SPI) at 10 timescales: 1-, 3-, 6-, 9-, 12-, 18-, 24-, 36-, 48-, and 60-month intervals from 1920 to 2012 at 250 m resolution for seven of the eight main Hawaiian Islands (18.849°N, 154.668°W to 22.269°N, 159.816°W; the island of Ni‘ihau is excluded due to lack of data). The gridded data use a World Geographic Coordinate System 1984 (WGS84) and are stored as individual GeoTIFF files for each month-year, organized by SPI interval, as indicated by the GeoTIFF file name. Thus, for example, the file “spi3_1999_11.tif” would contain the gridded 3-month SPI values calculated for the month of November in the year 1999. Currently, the data are available from 1920 to 2012, but the datasets will be updated as new gridded monthly rainfall data become available.SPI is a normalized drought index that converts monthly rainfall totals into the number of standard deviations (z-score) by which the observed, cumulative rainfall diverges from the long-term mean. The conversion of raw rainfall to a z-score is done by fitting a designated probability distribution function to the observed precipitation data for a site. In doing so, anomalous rainfall quantities take the form of positive and negative SPI z-scores. Additionally, because distribution fitting is based on long-term (>30 years) precipitation data at that location, SPI score is relative, making comparisons across different climates possible.The creation of a statewide Hawai‘i SPI dataset relied on a 93-year (1920-2012) high resolution (250 m) spatially interpolated monthly gridded rainfall dataset [1]. This dataset is recognized as the highest quality precipitation data available [2] for the main Hawaiian Islands. After performing extensive quality control on the monthly rainfall station data (including homogeneity testing of over 1,100 stations [1,3]) and a geostatistical method comparison, ordinary kriging was using to generate a time series of gridded monthly rainfall from January 1920 to December 2012 at 250 m resolution [3]. This dataset was then used to calculate monthly SPI for 10 timescales (1-, 3-, 6-, 9-, 12-, 18-, 24-, 36-, 48-, and 60-month) at each grid cell. A 3-month SPI in May 2001, for example, represents the March-April-May (MAM) total rainfall in 2001 compared to the MAM rainfall in the entire time series. The resolution of the gridded rainfall dataset provides a more precise representation of drought (and pluvial) events compared to the other available drought products.Frazier, A.G.; Giambelluca, T.W.; Diaz, H.F.; Needham, H.L. Comparison of geostatistical approaches to spatially interpolate month-year rainfall for the Hawaiian Islands. Int. J. Climatol. 2016, 36, 1459–1470, doi:10.1002/joc.4437.Giambelluca, T.W.; Chen, Q.; Frazier, A.G.; Price, J.P.; Chen, Y.-L.; Chu, P.-S.; Eischeid, J.K.; Delparte, D.M. Online Rainfall Atlas of Hawai‘i. B. Am. Meteorol. Soc. 2013, 94, 313–316, doi:10.1175/BAMS-D-11-00228.1.Frazier, A.G.; Giambelluca, T.W. Spatial trend analysis of Hawaiian rainfall from 1920 to 2012. Int. J. Climatol. 2017, 37, 2522–2531, doi:10.1002/joc.4862.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset features the Fragile States Index, calculated and published by "The Fund for Peace." Covering 176 countries from 2006 to 2024, the data were originally provided as separate Excel files for each year. To facilitate research, we compiled the data across all years and offer it in two formats: short and long. For more information about the data and methodology, readers are encouraged to visit The Fund for Peace's website at https://fragilestatesindex.org/.
Benthic macrofauna community data, measured water quality parameters, and benthic index calculations from Pensacola Bay, 2016-2017. This dataset is associated with the following publication: Paul, J., J. Nestlerode, and B. Jarvis. Evaluating the effectiveness of M-AMBI with other biotic indexes in a temperate estuary. MARINE POLLUTION BULLETIN. Elsevier Science Ltd, New York, NY, USA, 193: 10, (2023).
[THIS DATASET HAS BEEN WITHDRAWN]. 5km gridded Standardised Precipitation Index (SPI) data for Great Britain, which is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]" (Tanguy et al., 2015 [2]), apart from the temporal and spatial extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Keller et al., 2015 [3], Tanguy et al., 2014 [4]) was used, whereas in this version, Met Office 5km rainfall grids were used (see supporting information for more details). The methodology to calculate SPI is the same in the two datasets. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California. [2] Tanguy, M.; Hannaford, J.; Barker, L.; Svensson, C.; Kral, F.; Fry, M. (2015). Gridded Standardized Precipitation Index (SPI) using gamma distribution with standard period 1961-2010 for Great Britain [SPIgamma61-10]. NERC Environmental Information Data Centre. https://doi.org/10.5285/94c9eaa3-a178-4de4-8905-dbfab03b69a0 [3] Keller, V. D. J., Tanguy, M., Prosdocimi, I., Terry, J. A., Hitt, O., Cole, S. J., Fry, M., Morris, D. G., and Dixon, H. (2015). CEH-GEAR: 1 km resolution daily and monthly areal rainfall estimates for the UK for hydrological use, Earth Syst. Sci. Data Discuss., 8, 83-112, doi:10.5194/essdd-8-83-2015. [4] Tanguy, M.; Dixon, H.; Prosdocimi, I.; Morris, D. G.; Keller, V. D. J. (2014). Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2012) [CEH-GEAR]. NERC Environmental Information Data Centre. https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e Full details about this dataset can be found at https://doi.org/10.5285/ed7444fc-8c2a-473e-98cd-e68d3cffa2b0
The Location Affordability Index is an indicator of housing and transportation costs at the neighborhood level. It gives the percentage of a given family's income estimated to be spent on housing and transportation costs in a given location for eight different household profiles. It is calculated using actual and modeled data for Census block groups in all 942 Combined Base Statistical Areas, which cover 94% of the U.S. population.
The index relates to costs ruling on the first day of each month. NATIONAL HOUSE CONSTRUCTION COST INDEX; Up until October 2006 it was known as the National House Building Index Oct 2000 data; The index since October, 2000, includes the first phase of an agreement following a review of rates of pay and grading structures for the Construction Industry and the first phase increase under the PPF. April, May and June 2001; Figures revised in July 2001due to 2% PPF Revised Terms. March 2002; The drop in the March 2002 figure is due to a decrease in the rate of PRSI from 12% to 10¾% with effect from 1 March 2002. The index from April 2002 excludes the one-off lump sum payment equal to 1% of basic pay on 1 April 2002 under the PPF. April, May, June 2003; Figures revised in August'03 due to the backdated increase of 3% from 1April 2003 under the National Partnership Agreement 'Sustaining Progress'. The increases in April and October 2006 index are due to Social Partnership Agreement "Towards 2016". March 2011; The drop in the March 2011 figure is due to a 7.5% decrease in labour costs. Methodology in producing the Index Prior to October 2006: The index relates solely to labour and material costs which should normally not exceed 65% of the total price of a house. It does not include items such as overheads, profit, interest charges, land development etc. The House Building Cost Index monitors labour costs in the construction industry and the cost of building materials. It does not include items such as overheads, profit, interest charges or land development. The labour costs include insurance cover and the building material costs include V.A.T. Coverage: The type of construction covered is a typical 3 bed-roomed, 2 level local authority house and the index is applied on a national basis. Data Collection: The labour costs are based on agreed labour rates, allowances etc. The building material prices are collected at the beginning of each month from the same suppliers for the same representative basket. Calculation: Labour and material costs for the construction of a typical 3 bed-roomed house are weighted together to produce the index. Post October 2006: The name change from the House Building Cost Index to the House Construction Cost Index was introduced in October 2006 when the method of assessing the materials sub-index was changed from pricing a basket of materials (representative of a typical 2 storey 3 bedroomed local authority house) to the CSO Table 3 Wholesale Price Index. The new Index does maintains continuity with the old HBCI. The most current data is published on these sheets. Previously published data may be subject to revision. Any change from the originally published data will be highlighted by a comment on the cell in question. These comments will be maintained for at least a year after the date of the value change. Oct 2008 data; Decrease due to a fall in the Oct Wholesale Price Index.
https://www.weforum.org/about/terms-of-usehttps://www.weforum.org/about/terms-of-use
The Global Competitiveness Index (GCI), developed by the World Economic Forum, measures factors influencing productivity and long-term prosperity. The indicators are grouped into 12 pillars: Institutions, Infrastructure, Macroeconomic Environment, Health and Primary Education, Higher Education and Training, Goods Market Efficiency, Labor Market Efficiency, Financial Market Development, Technological Readiness, Market Size, Business Sophistication, and Innovation. The pillars are further organized into three subindexes: Basic Requirements, Efficiency Enhancers, and Innovation and Sophistication Factors. The weight assigned to each subindex in the overall index calculation depends on a country’s stage of development, determined by GDP per capita and the share of exports represented by raw materials.
End-of-day prices refer to the closing prices of various financial instruments, such as equities (stocks), bonds, and indices, at the end of a trading session on a particular trading day. These prices are crucial pieces of market data used by investors, traders, and financial institutions to track the performance and value of these assets over time. The Techsalerator closing prices dataset is considered the most up-to-date, standardized valuation of a security trading commences again on the next trading day. This data is used for portfolio valuation, index calculation, technical analysis and benchmarking throughout the financial industry. The End-of-Day Pricing service covers equities, equity derivative bonds, and indices listed on 170 markets worldwide.
This dataset contains the World Average Degree Days Database for the period 1964-2013. Follow datasource.kapsarc.org for timely data to advance energy economics research.*
Summary_64-13_freq=1D Average Degree Days of various indices for respective countries for the period 1964-2013, converted to a 1 day frequency
Summary_64-13_freq=6hrs Average Degree Days of various indices for respective countries for the period 1964-2013, calculated at 6 hrs frequency
T2m.hdd.18C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=18°C and frequency of 6 hrs
T2m.cdd.18C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=18°C and frequency of 6 hrs
t2m.hdd.15.6C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=15.6°C and frequency of 6 hrs
t2m.hdd.18.3C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=18.3°C and frequency of 6 hrs
t2m.hdd.21.1C Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=21.1°C and frequency of 6 hrs
t2m.cdd.15.6C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=15.6°C and frequency of 6 hrs
t2m.cdd.18.3C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=18.3°C and frequency of 6 hrs
t2m.cdd.21.1C Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=21.1°C and frequency of 6 hrs
t2m.hdd.60F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=60°F and frequency of 6 hrs
t2m.hdd.65F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=65°F and frequency of 6 hrs
t2m.hdd.70F Calculation of Heating Degree Days using plain temperature at 2 m elevation at Tref=70°F and frequency of 6 hrs
t2m.cdd.60F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=60°F and frequency of 6 hrs
t2m.cdd.65F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=65°F and frequency of 6 hrs
t2m.cdd.70F Calculation of Cooling Degree Days using plain temperature at 2 m elevation at Tref=70°F and frequency of 6 hrs
HI.hdd.57.56F Calculation of Heating Degree Days using the Heat Index at Tref=57.56°F and frequency of 6 hrs
HI.hdd.63.08F Calculation of Heating Degree Days using the Heat Index at Tref=63.08°F and frequency of 6 hrs
HI.hdd.68.58F Calculation of Heating Degree Days using the Heat Index at Tref=68.58°F and frequency of 6 hrs
HI.cdd.57.56F Calculation of Cooling Degree Days using the Heat Index at Tref=57.56°F and frequency of 6 hrs
HI.cdd.63.08F Calculation of Cooling Degree Days using the Heat Index at Tref=63.08°F and frequency of 6 hrs
HI.cdd.68.58F Calculation of Cooling Degree Days using the Heat Index at Tref=68.58°F and frequency of 6 hrs
HUM.hdd.13.98C Calculation of Heating Degree Days using the Humidex at Tref=13.98°C and frequency of 6 hrs
HUM.hdd.17.4C Calculation of Heating Degree Days using the Humidex at Tref=17.40°C and frequency of 6 hrs
HUM.hdd.21.09C Calculation of Heating Degree Days using the Humidex at Tref=21.09°C and frequency of 6 hrs
HUM.cdd.13.98C Calculation of Cooling Degree Days using the Humidex at Tref=13.98°C and frequency of 6 hrs
HUM.cdd.17.4C Calculation of Cooling Degree Days using the Humidex at Tref=17.40°C and frequency of 6 hrs
HUM.cdd.21.09C Calculation of Cooling Degree Days using the Humidex at Tref=21.09°C and frequency of 6 hrs
ESI.hdd.12.6C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=12.6°C and frequency of 6 hrs
ESI.hdd.14.9C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=14.9°C and frequency of 6 hrs
ESI.hdd.17.2C Calculation of Heating Degree Days using the Environmental Stress Index at Tref=17.2°C and frequency of 6 hrs
ESI.cdd.12.6C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=12.6°C and frequency of 6 hrs
ESI.cdd.14.9C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=14.9°C and frequency of 6 hrs
ESI.cdd.17.2C Calculation of Cooling Degree Days using the Environmental Stress Index at Tref=17.2°C and frequency of 6 hrs
Note:
Divide Degree Days by 4 to convert from 6 hrs to daily frequency
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes Global Peace Index calculated and published by Institute for Economics & Peace (2023). The dataset includes 163 countries spanning the years 2008 to 2023. For further details and access to the complete dataset, interested readers are encouraged to explore the Institute for Economics & Peace's official platform at https://www.visionofhumanity.org/public-release-data/.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains all data and code necessary to reproduce the analysis presented in the manuscript: Winzeler, H.E., Owens, P.R., Read Q.D.., Libohova, Z., Ashworth, A., Sauer, T. 2022. 2022. Topographic wetness index as a proxy for soil moisture in a hillslope catena: flow algorithms and map generalization. Land 11:2018. DOI: 10.3390/land11112018. There are several steps to this analysis. The relevant scripts for each are listed below. The first step is to use the raw digital elevation data (DEM) to produce different versions of the topographic wetness index (TWI) for the study region (Calculating TWI). Then, these TWI output files are processed, along with soil moisture (volumetric water content or VWC) time series data from a number of sensors located within the study region, to create analysis-ready data objects (Processing TWI and VWC). Next, models are fit relating TWI to soil moisture (Model fitting) and results are plotted (Visualizing main results). A number of additional analyses were also done (Additional analyses). Input data The DEM of the study region is archived in this dataset as SourceDem.zip. This contains the DEM of the study region (DEM1.sgrd) and associated auxiliary files all called DEM1.* with different extensions. In addition, the DEM is provided as a .tif file called USGS_one_meter_x39y400_AR_R6_WashingtonCO_2015.tif. The remaining data and code files are archived in the repository created with a GitHub release on 2022-10-11, twi-moisture-0.1.zip. The data are found in a subfolder called data.
2017_LoggerData_HEW.csv through 2021_HEW.csv: Soil moisture (VWC) logger data for each year 2017-2021 (5 files total). 2882174.csv: weather data from a nearby station. DryPeriods2017-2021.csv: starting and ending days for dry periods 2017-2021. LoggerLocations.csv: Geographic locations and metadata for each VWC logger. Logger_Locations_TWI_2017-2021.xlsx: 546 topographic wetness indexes calculated at each VWC logger location. note: This is intermediate input created in the first step of the pipeline.
Code pipeline To reproduce the analysis in the manuscript run these scripts in the following order. The scripts are all found in the root directory of the repository. See the manuscript for more details on the methods. Calculating TWI
TerrainAnalysis.R: Taking the DEM file as input, calculates 546 different topgraphic wetness indexes using a variety of different algorithms. Each algorithm is run multiple times with different input parameters, as described in more detail in the manuscript. After performing this step, it is necessary to use the SAGA-GIS GUI to extract the TWI values for each of the sensor locations. The output generated in this way is included in this repository as Logger_Locations_TWI_2017-2021.xlsx. Therefore it is not necessary to rerun this step of the analysis but the code is provided for completeness.
Processing TWI and VWC
read_process_data.R: Takes raw TWI and moisture data files and processes them into analysis-ready format, saving the results as CSV. qc_avg_moisture.R: Does additional quality control on the moisture data and averages it across different time periods.
Model fitting Models were fit regressing soil moisture (average VWC for a certain time period) against a TWI index, with and without soil depth as a covariate. In each case, for both the model without depth and the model with depth, prediction performance was calculated with and without spatially-blocked cross-validation. Where cross validation wasn't used, we simply used the predictions from the model fit to all the data.
fit_combos.R: Models were fit to each combination of soil moisture averaged over 57 months (all months from April 2017-December 2021) and 546 TWI indexes. In addition models were fit to soil moisture averaged over years, and to the grand mean across the full study period. fit_dryperiods.R: Models were fit to soil moisture averaged over previously identified dry periods within the study period (each 1 or 2 weeks in length), again for each of the 546 indexes. fit_summer.R: Models were fit to the soil moisture average for the months of June-September for each of the five years, again for each of the 546 indexes.
Visualizing main results Preliminary visualization of results was done in a series of RMarkdown notebooks. All the notebooks follow the same general format, plotting model performance (observed-predicted correlation) across different combinations of time period and characteristics of the TWI indexes being compared. The indexes are grouped by SWI versus TWI, DEM filter used, flow algorithm, and any other parameters that varied. The notebooks show the model performance metrics with and without the soil depth covariate, and with and without spatially-blocked cross-validation. Crossing those two factors, there are four values for model performance for each combination of time period and TWI index presented.
performance_plots_bymonth.Rmd: Using the results from the models fit to each month of data separately, prediction performance was averaged by month across the five years of data to show within-year trends. performance_plots_byyear.Rmd: Using the results from the models fit to each month of data separately, prediction performance was averaged by year to show trends across multiple years. performance_plots_dry_periods.Rmd: Prediction performance was presented for the models fit to the previously identified dry periods. performance_plots_summer.Rmd: Prediction performance was presented for the models fit to the June-September moisture averages.
Additional analyses Some additional analyses were done that may not be published in the final manuscript but which are included here for completeness.
2019dryperiod.Rmd: analysis, done separately for each day, of a specific dry period in 2019. alldryperiodsbyday.Rmd: analysis, done separately for each day, of the same dry periods discussed above. best_indices.R: after fitting models, this script was used to quickly identify some of the best-performing indexes for closer scrutiny. wateryearfigs.R: exploratory figures showing median and quantile interval of VWC for sensors in low and high TWI locations for each water year. Resources in this dataset:Resource Title: Digital elevation model of study region. File Name: SourceDEM.zipResource Description: .zip archive containing digital elevation model files for the study region. See dataset description for more details.Resource Title: twi-moisture-0.1: Archived git repository containing all other necessary data and code . File Name: twi-moisture-0.1.zipResource Description: .zip archive containing all data and code, other than the digital elevation model archived as a separate file. This file was generated by a GitHub release made on 2022-10-11 of the git repository hosted at https://github.com/qdread/twi-moisture (private repository). See dataset description and README file contained within this archive for more details.
This dataset presents the numerical fragility indicators calculated from the formulas developed by the Mednum. All the variables taken into account to calculate the scores are present in this dataset. Calculations are done via python’s Jupyter Notebook.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Time - It is the time stamp of the price
Unemployment data - The Employment Situation report is typically released on the third Friday after the conclusion of the reference week, i.e., the week which includes the 12th of the month. (Every Month)
CPI(consumer price index) - Currently, the consumer price index (CPI) is calculated by considering 299 items. The formula for calculating the CPI index is: (Cost of a fixed basket of goods and services in the current year/cost of a fixed basket of goods and services in the base year) * 100. (Released every month)
P/E(Price to Earning Ratio) - The ratio is used for valuing companies and for finding out whether they are overvalued or undervalued.
Open - The opening price of the price for the particular time frame
High - It is the highest price of the index in the particular time frame
Low - It is the lowest price of the index in the particular time frame
Close - It is the Closing price(The price at which the day or particular timeframe ended).
Industrial production index (IPI) - IPI measures levels of production and capacity in the manufacturing, mining, electric, and gas industries, relative to a base year.
https://eidc.ceh.ac.uk/licences/historicSPIforIHU/plainhttps://eidc.ceh.ac.uk/licences/historicSPIforIHU/plain
Standardised Precipitation Index (SPI) data for Integrated Hydrological Units (IHU) groups (Kral et al., 2015; https://doi.org/10.5285/f1cd5e33-2633-4304-bbc2-b8d34711d902). SPI is a drought index based on the probability of precipitation for a given accumulation period as defined by McKee et al. [1]. SPI is calculated for different accumulation periods: 1, 3, 6, 9, 12, 18, 24 months. Each of these is in turn calculated for each of the twelve calendar months. Note that values in monthly (and for longer accumulation periods also annual) time series of the data therefore are likely to be autocorrelated. The standard period which was used to fit the gamma distribution is 1961-2010. The dataset covers the period from 1862 to 2015. NOTE: the difference between this dataset with the previously published dataset 'Standardised Precipitation Index time series for IHU Groups (1961-2012) [SPI_IHU_groups]' (Tanguy et al., 2015; https://doi.org/10.5285/dfd59438-2170-4472-b810-bab33a83d09f), apart from the temporal extent, is the underlying rainfall data from which SPI was calculated. In the previously published dataset, CEH-GEAR (Tanguy et al., 2014; https://doi.org/10.5285/5dc179dc-f692-49ba-9326-a6893a503f6e) was used, whereas in this new version, Met Office 5km rainfall grids were used (see supporting information for more details). Within Historic Droughts project (grant number: NE/L01016X/1), the Met Office has digitised historic rainfall and temperature data to produce high quality historic rainfall and temperature grids, which motivated the change in the underlying data to calculate SPI. The methodology to calculate SPI is the same in the two datasets. This release supersedes the previous version, https://doi.org/10.5285/047d914f-2a65-4e9c-b191-09abf57423db, as it addresses localised issues with the source data (Met Office monthly rainfall grids) for the period 1960 to 2000. [1] McKee, T. B., Doesken, N. J., Kleist, J. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Eighth Conference on Applied Climatology, 17-22 January 1993, Anaheim, California.
The Program Access Index (PAI) is one of the measures the USDA Food and Nutrition Service (FNS) uses to reward States for high performance in the administration of the Supplemental Nutrition Assistance Program (SNAP). The Farm Security and Rural Investment Act of 2002 (also known as the 2002 Farm Bill) directed USDA to establish a number of indicators of effective program performance and to award bonus payments to States with the best and most improved performance. The PAI is designed to indicate the degree to which low-income people have access to SNAP benefits.