100+ datasets found
  1. T

    United States Unemployment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Aug 31, 2025
    Area covered
    United States
    Description

    Unemployment Rate in the United States increased to 4.30 percent in August from 4.20 percent in July of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  2. T

    Canada Unemployment Rate

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Mar 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Canada Unemployment Rate [Dataset]. https://tradingeconomics.com/canada/unemployment-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Mar 6, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1966 - Aug 31, 2025
    Area covered
    Canada
    Description

    Unemployment Rate in Canada increased to 7.10 percent in August from 6.90 percent in July of 2025. This dataset provides - Canada Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  3. C

    Employment and Unemployment

    • data.ccrpc.org
    csv
    Updated Dec 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Champaign County Regional Planning Commission (2024). Employment and Unemployment [Dataset]. https://data.ccrpc.org/dataset/employment-and-unemployment
    Explore at:
    csvAvailable download formats
    Dataset updated
    Dec 9, 2024
    Dataset authored and provided by
    Champaign County Regional Planning Commission
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The employment and unemployment indicator shows several data points. The first figure is the number of people in the labor force, which includes the number of people who are either working or looking for work. The second two figures, the number of people who are employed and the number of people who are unemployed, are the two subcategories of the labor force. The unemployment rate is a calculation of the number of people who are in the labor force and unemployed as a percentage of the total number of people in the labor force.

    The unemployment rate does not include people who are not employed and not in the labor force. This includes adults who are neither working nor looking for work. For example, full-time students may choose not to seek any employment during their college career, and are thus not considered in the unemployment rate. Stay-at-home parents and other caregivers are also considered outside of the labor force, and therefore outside the scope of the unemployment rate.

    The unemployment rate is a key economic indicator, and is illustrative of economic conditions in the county at the individual scale.

    There are additional considerations to the unemployment rate. Because it does not count those who are outside the labor force, it can exclude individuals who were looking for a job previously, but have since given up. The impact of this on the overall unemployment rate is difficult to quantify, but it is important to note because it shows that no statistic is perfect.

    The unemployment rates for Champaign County, the City of Champaign, and the City of Urbana are extremely similar between 2000 and 2023.

    All three areas saw a dramatic increase in the unemployment rate between 2006 and 2009. The unemployment rates for all three areas decreased overall between 2010 and 2019. However, the unemployment rate in all three areas rose sharply in 2020 due to the effects of the COVID-19 pandemic. The unemployment rate in all three areas dropped again in 2021 as pandemic restrictions were removed, and were almost back to 2019 rates in 2022. However, the unemployment rate in all three areas rose slightly from 2022 to 2023.

    This data is sourced from the Illinois Department of Employment Security’s Local Area Unemployment Statistics (LAUS), and from the U.S. Bureau of Labor Statistics.

    Sources: Illinois Department of Employment Security, Local Area Unemployment Statistics (LAUS); U.S. Bureau of Labor Statistics.

  4. T

    China Unemployment Rate

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). China Unemployment Rate [Dataset]. https://tradingeconomics.com/china/unemployment-rate
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Aug 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 2002 - Jul 31, 2025
    Area covered
    China
    Description

    Unemployment Rate in China increased to 5.20 percent in July from 5 percent in June of 2025. This dataset provides - China Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. Regional unemployment rates used by the Employment Insurance program,...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Aug 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Regional unemployment rates used by the Employment Insurance program, three-month moving average, seasonally adjusted [Dataset]. http://doi.org/10.25318/1410035401-eng
    Explore at:
    Dataset updated
    Aug 8, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    Regional unemployment rates used by the Employment Insurance program, by effective date, current month.

  6. T

    Japan Unemployment Rate

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Aug 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Unemployment Rate [Dataset]. https://tradingeconomics.com/japan/unemployment-rate
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Aug 28, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1953 - Jul 31, 2025
    Area covered
    Japan
    Description

    Unemployment Rate in Japan decreased to 2.30 percent in July from 2.50 percent in June of 2025. This dataset provides the latest reported value for - Japan Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  7. State

    • center-for-community-investment-lincolninstitute.hub.arcgis.com
    • resilience.climate.gov
    • +11more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). State [Dataset]. https://center-for-community-investment-lincolninstitute.hub.arcgis.com/datasets/esri::bureau-of-labor-statistics-monthly-unemployment-latest-14-months?layer=1
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: July 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: August 27, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

  8. Country

    • ars-geolibrary-usdaars.hub.arcgis.com
    • covid-hub.gio.georgia.gov
    • +7more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Country [Dataset]. https://ars-geolibrary-usdaars.hub.arcgis.com/datasets/esri::country-11
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: May 2025 (preliminary values at the county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: July 18th, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

  9. o

    Unemployment - Registered Actively Seeking Work - Datasets - Government of...

    • opendata.gov.je
    Updated Jan 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Unemployment - Registered Actively Seeking Work - Datasets - Government of Jersey Open Data [Dataset]. https://opendata.gov.je/dataset/unemployment-registered-actively-seeking-work
    Explore at:
    Dataset updated
    Jan 8, 2018
    License
    Area covered
    Jersey
    Description

    IMPORTANT: This dataset is an historic series that will no longer be updated. This series is now maintained by Employment, Social Security and Housing, from quarter 4 2024 onwards. For the most current data please see: https://opendata.gov.je/dataset/back-to-work Data on numbers of people registered as actively seeking work (ASW) in Jersey. It is important to note that unemployed Jersey residents are not required to register as ASW. There are however certain requirements for those in receipt of an income support claim. Changes to the income support criteria, as well as administrative decisions within Employment, Social Security and Housing, can have an impact on the total numbers registered as ASW. On a more historical basis, the introduction of Income Support in 2008 led to the inclusion of a greater number of individuals in the registered figures. The numbers shown therefore constitute an informative set of indicators demonstrating the level of individuals registered as actively seeking work in the Island at a given point in time. The latest reports on registered actively seeking work are available here.

  10. T

    United States Employment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, United States Employment Rate [Dataset]. https://tradingeconomics.com/united-states/employment-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Aug 31, 2025
    Area covered
    United States
    Description

    Employment Rate in the United States remained unchanged at 59.60 percent in August. This dataset provides - United States Employment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.

  11. g

    Annual Population Survey / Local Labour Force Survey: Summary of economic...

    • statswales.gov.wales
    json
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Annual Population Survey / Local Labour Force Survey: Summary of economic activity [Dataset]. https://statswales.gov.wales/Catalogue/Business-Economy-and-Labour-Market/People-and-Work/Employment/Persons-Employed/employmentrate-by-welshlocalarea-year
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    Description

    These data are taken from the ANNUAL datasets from the Labour Force Survey (LFS) carried out by the Office for National Statistics (ONS), providing labour market data back to 1996 for the NUTS2 areas in Wales, and back to 2001 for the local authorities in Wales. The availability of local authority data is dependent upon on an enhanced sample (around 350 per cent larger) for the annual LFS, which commenced in 2001. For years labelled 1996 to 2004 in this dataset, the actual periods covered are the 12 months running from March in the year given to February in the following year (e.g. 2001 = 1 March 2001 to 28 February 2002). Since 2004, the annual data have been produced on a rolling annual basis, updated every three months, and the dataset is now referred to as the Annual Population Survey (APS). The rolling annual averages are on a calendar basis with the first rolling annual average presented here covering the period 1 January 2004 to 31 December 2004, followed by data covering the period 1 April 2004 to 31 March 2005, with rolling quarterly updates applied thereafter. Note therefore that the consecutive rolling annual averages overlap by nine months, and there is also a two-month overlap between the last period presented on the former March to February basis, and the first period on the new basis. The population can be broken down into economically active and economically inactive populations. The economically active population is made up of persons in employment, and persons unemployed according to the International Labour Organisation (ILO) definition. This report allows the user to access these data. Although each measure is available for different population bases, there is an official standard population base used for each of the measures, as follows. Population aged 16 and over: Economic activity level, Employment level, ILO unemployment level Population aged 16-64: Economic inactivity level 16-64 population is used as the base for economic inactivity. By excluding persons of pensionable age who are generally retired and therefore economically inactive, this gives a more appropriate measure of workforce inactivity. Rates for each of the above measures are also calculated in a standard manner and are available in the dataset. With the exception of the ILO unemployment rate, each rate is defined in terms of the shares of population that fall into each category. The ILO unemployment rate is defined as ILO unemployed persons as a percentage of the economically active population. Although each rate is available for the different population bases, there is an official standard population base used for each of the rates, as follows. Percentage of population aged 16-64: Economic activity, Employment,. Economic inactivity Percentage of economically active population aged 16 and over: ILO unemployment

  12. u

    Labour Force Survey Two-Quarter Longitudinal Dataset, January - June, 2023

    • beta.ukdataservice.ac.uk
    Updated 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office For National Statistics (2025). Labour Force Survey Two-Quarter Longitudinal Dataset, January - June, 2023 [Dataset]. http://doi.org/10.5255/ukda-sn-9132-2
    Explore at:
    Dataset updated
    2025
    Dataset provided by
    UK Data Servicehttps://ukdataservice.ac.uk/
    datacite
    Authors
    Office For National Statistics
    Description

    Background
    The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.

    Longitudinal data
    The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.

    New reweighting policy
    Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.

    LFS Documentation
    The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.

    Additional data derived from the QLFS
    The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.

    Variables DISEA and LNGLST
    Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.

    An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.

    Occupation data for 2021 and 2022 data files

    The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: https://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/employmentandemployeetypes/articles/revisionofmiscodedoccupationaldataintheonslabourforcesurveyuk/january2021toseptember2022" style="background-color: rgb(255, 255, 255);">Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.

    2022 Weighting

    The population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust.

    Latest edition information

    For the second edition (February 2025), the data file was resupplied with the 2024 weighting variable included (LGWT24).

  13. e

    County

    • coronavirus-resources.esri.com
    • prep-response-portal.napsgfoundation.org
    • +4more
    Updated Aug 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). County [Dataset]. https://coronavirus-resources.esri.com/maps/esri::county-76
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: July 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor forceData obtained from the U.S. Bureau of Labor Statistics. Data downloaded: August 27, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and County NationData Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova. As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:

  14. f

    Data_Sheet_1_Nowcasting unemployment rate during the COVID-19 pandemic using...

    • frontiersin.figshare.com
    docx
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zahra Movahedi Nia; Ali Asgary; Nicola Bragazzi; Bruce Mellado; James Orbinski; Jianhong Wu; Jude Kong (2023). Data_Sheet_1_Nowcasting unemployment rate during the COVID-19 pandemic using Twitter data: The case of South Africa.docx [Dataset]. http://doi.org/10.3389/fpubh.2022.952363.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    Frontiers
    Authors
    Zahra Movahedi Nia; Ali Asgary; Nicola Bragazzi; Bruce Mellado; James Orbinski; Jianhong Wu; Jude Kong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    The global economy has been hard hit by the COVID-19 pandemic. Many countries are experiencing a severe and destructive recession. A significant number of firms and businesses have gone bankrupt or been scaled down, and many individuals have lost their jobs. The main goal of this study is to support policy- and decision-makers with additional and real-time information about the labor market flow using Twitter data. We leverage the data to trace and nowcast the unemployment rate of South Africa during the COVID-19 pandemic. First, we create a dataset of unemployment-related tweets using certain keywords. Principal Component Regression (PCR) is then applied to nowcast the unemployment rate using the gathered tweets and their sentiment scores. Numerical results indicate that the volume of the tweets has a positive correlation, and the sentiments of the tweets have a negative correlation with the unemployment rate during and before the COVID-19 pandemic. Moreover, the now-casted unemployment rate using PCR has an outstanding evaluation result with a low Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), Symmetric MAPE (SMAPE) of 0.921, 0.018, 0.018, respectively and a high R2-score of 0.929.

  15. T

    Greece Unemployment Rate

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Greece Unemployment Rate [Dataset]. https://tradingeconomics.com/greece/unemployment-rate
    Explore at:
    json, xml, excel, csvAvailable download formats
    Dataset updated
    Sep 1, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Mar 31, 1998 - Jul 31, 2025
    Area covered
    Greece
    Description

    Unemployment Rate in Greece decreased to 8 percent in July from 9 percent in June of 2025. This dataset provides the latest reported value for - Greece Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  16. Labour force characteristics, monthly, seasonally adjusted and trend-cycle

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Aug 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Labour force characteristics, monthly, seasonally adjusted and trend-cycle [Dataset]. http://doi.org/10.25318/1410028701-eng
    Explore at:
    Dataset updated
    Aug 8, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of persons in the labour force (employment and unemployment), unemployment rate, participation rate and employment rate by data type (seasonally adjusted and trend-cycle), gender and age group. Data are also available for the standard error of the estimate, the standard error of the month-to-month change and the standard error of the year-over-year change.

  17. Claimant count and vacancies time series

    • ons.gov.uk
    • cy.ons.gov.uk
    csdb, csv, xlsx
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Claimant count and vacancies time series [Dataset]. https://www.ons.gov.uk/employmentandlabourmarket/peoplenotinwork/unemployment/datasets/claimantcountandvacanciesdataset
    Explore at:
    csdb, csv, xlsxAvailable download formats
    Dataset updated
    Aug 12, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This dataset contains series for the Claimant Count (which measures the number of people claiming unemployment-related benefits) and vacancies.

  18. Data from: Young people not in education, employment or training (NEET)

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Young people not in education, employment or training (NEET) [Dataset]. https://www.ons.gov.uk/employmentandlabourmarket/peoplenotinwork/unemployment/datasets/youngpeoplenotineducationemploymentortrainingneettable1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 21, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Quarterly estimates for young people (aged 16 to 24 years) who are not in education, employment or training (NEET) in the UK. These are official statistics in development.

  19. Labor Force Survey 2006, Harmonized Dataset - Egypt, Arab Rep.

    • catalog.ihsn.org
    Updated Dec 5, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Agency For Public Mobilization And Statistics (2019). Labor Force Survey 2006, Harmonized Dataset - Egypt, Arab Rep. [Dataset]. https://catalog.ihsn.org/index.php/catalog/8141
    Explore at:
    Dataset updated
    Dec 5, 2019
    Dataset provided by
    Central Agency for Public Mobilization and Statisticshttps://www.capmas.gov.eg/
    Economic Research Forum
    Time period covered
    2006
    Area covered
    Egypt
    Description

    Abstract

    The cleaned and harmonized version of the survey data produced and published by the Economic Research Forum represents 100% of the original survey data collected by the Central Agency for Public Mobilization and Statistics (CAPMAS)

    In any society, the human element represents the basis of the work force which exercises all the service and production activities. Therefore, it is a mandate to produce labor force statistics and studies, that is related to the growth and distribution of manpower and labor force distribution by different types and characteristics.

    In this context, the Central Agency for Public Mobilization and Statistics conducts "Quarterly Labor Force Survey" which includes data on the size of manpower and labor force (employed and unemployed) and their geographical distribution by their characteristics.

    By the end of each year, CAPMAS issues the annual aggregated labor force bulletin publication that includes the results of the quarterly survey rounds that represent the manpower and labor force characteristics during the year.

    ----> Historical Review of the Labor Force Survey:

    1- The First Labor Force survey was undertaken in 1957. The first round was conducted in November of that year, the survey continued to be conducted in successive rounds (quarterly, bi-annually, or annually) till now.

    2- Starting the October 2006 round, the fieldwork of the labor force survey was developed to focus on the following two points: a. The importance of using the panel sample that is part of the survey sample, to monitor the dynamic changes of the labor market. b. Improving the used questionnaire to include more questions, that help in better defining of relationship to labor force of each household member (employed, unemployed, out of labor force ...etc.). In addition to re-order of some of the already existing questions in much logical way.

    3- Starting the January 2008 round, the used methodology was developed to collect more representative sample during the survey year. this is done through distributing the sample of each governorate into five groups, the questionnaires are collected from each of them separately every 15 days for 3 months (in the middle and the end of the month)

    ----> The survey aims at covering the following topics:

    1- Measuring the size of the Egyptian labor force among civilians (for all governorates of the republic) by their different characteristics. 2- Measuring the employment rate at national level and different geographical areas. 3- Measuring the distribution of employed people by the following characteristics: gender, age, educational status, occupation, economic activity, and sector. 4- Measuring unemployment rate at different geographic areas. 5- Measuring the distribution of unemployed people by the following characteristics: gender, age, educational status, unemployment type "ever employed/never employed", occupation, economic activity, and sector for people who have ever worked.

    The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.

    Geographic coverage

    Covering a sample of urban and rural areas in all the governorates.

    Analysis unit

    1- Household/family. 2- Individual/person.

    Universe

    The survey covered a national sample of households and all individuals permanently residing in surveyed households.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The cleaned and harmonized version of the survey data produced and published by the Economic Research Forum represents 100% of the original survey data collected by the Central Agency for Public Mobilization and Statistics (CAPMAS)

    Sample Design and Selection

    The sample of the LFS 2006 survey is a simple systematic random sample.

    Sample Size

    The sample size varied in each quarter (it is Q1=19429, Q2=19419, Q3=19119 and Q4=18835) households with a total number of 76802 households annually. These households are distributed on the governorate level (urban/rural).

    A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among external resources in Arabic.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire design follows the latest International Labor Organization (ILO) concepts and definitions of labor force, employment, and unemployment.

    The questionnaire comprises 3 tables in addition to the identification and geographic data of household on the cover page.

    ----> Table 1- Demographic and employment characteristics and basic data for all household individuals

    Including: gender, age, educational status, marital status, residence mobility and current work status

    ----> Table 2- Employment characteristics table

    This table is filled by employed individuals at the time of the survey or those who were engaged to work during the reference week, and provided information on: - Relationship to employer: employer, self-employed, waged worker, and unpaid family worker - Economic activity - Sector - Occupation - Effective working hours - Work place - Average monthly wage

    ----> Table 3- Unemployment characteristics table

    This table is filled by all unemployed individuals who satisfied the unemployment criteria, and provided information on: - Type of unemployment (unemployed, unemployed ever worked) - Economic activity and occupation in the last held job before being unemployed - Last unemployment duration in months - Main reason for unemployment

    Cleaning operations

    ----> Raw Data

    Office editing is one of the main stages of the survey. It started once the questionnaires were received from the field and accomplished by the selected work groups. It includes: a-Editing of coverage and completeness b-Editing of consistency

    ----> Harmonized Data

    • STATA is used to clean and SPSS is used harmonize the datasets.
    • The harmonization process starts with a cleaning process for all raw data files received from the Statistical Agency.
    • All cleaned data files are then merged to produce one data file on the individual level containing all variables subject to harmonization.
    • A country-specific program is generated for each dataset to generate/ compute/ recode/ rename/ format/ label harmonized variables.
    • A post-harmonization cleaning process is then conducted on the data.
    • Harmonized data is saved on the household as well as the individual level, in SPSS and then converted to STATA, to be disseminated.
  20. e

    Labour Force Survey Five-Quarter Longitudinal Dataset, June 1993 - August...

    • b2find.eudat.eu
    Updated Oct 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Labour Force Survey Five-Quarter Longitudinal Dataset, June 1993 - August 1994 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/97e17d67-f129-5f92-aa28-ec896271a95d
    Explore at:
    Dataset updated
    Oct 29, 2023
    Description

    Abstract copyright UK Data Service and data collection copyright owner.Background The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation. Longitudinal data The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary. LFS Documentation The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.Occupation data for 2021 and 2022 data filesThe ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.2022 WeightingThe population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust. For the second edition of the study, the depositor supplied a re-weighted version of the data file. The re-weighting has been done to bring LFS data in line with the population estimates from the 2001 Census. Main Topics:The five-quarter longitudinal datasets include a subset of the most commonly used variables from the Quarterly Labour Force Survey (QLFS), covering the main areas of the survey. See documentation for details Compilation or synthesis of existing material the datasets were created from existing QLFS data. They do not contain all records, but only those of respondents of working age who have responded to the survey in all the periods being linked. The data therefore comprise approximately one third of all QLFS variables. Cases were linked using the QLFS panel design.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate

United States Unemployment Rate

United States Unemployment Rate - Historical Dataset (1948-01-31/2025-08-31)

Explore at:
121 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, csv, jsonAvailable download formats
Dataset updated
Jul 3, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1948 - Aug 31, 2025
Area covered
United States
Description

Unemployment Rate in the United States increased to 4.30 percent in August from 4.20 percent in July of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Search
Clear search
Close search
Google apps
Main menu