Facebook
TwitterThe USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global big data technology market size was valued at approximately $162 billion in 2023 and is projected to reach around $471 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 12.6% during the forecast period. The growth of this market is primarily driven by the increasing demand for data analytics and insights to enhance business operations, coupled with advancements in AI and machine learning technologies.
One of the principal growth factors of the big data technology market is the rapid digital transformation across various industries. Businesses are increasingly recognizing the value of data-driven decision-making processes, leading to the widespread adoption of big data analytics. Additionally, the proliferation of smart devices and the Internet of Things (IoT) has led to an exponential increase in data generation, necessitating robust big data solutions to analyze and extract meaningful insights. Organizations are leveraging big data to streamline operations, improve customer engagement, and gain a competitive edge.
Another significant growth driver is the advent of advanced technologies like artificial intelligence (AI) and machine learning (ML). These technologies are being integrated into big data platforms to enhance predictive analytics and real-time decision-making capabilities. AI and ML algorithms excel at identifying patterns within large datasets, which can be invaluable for predictive maintenance in manufacturing, fraud detection in banking, and personalized marketing in retail. The combination of big data with AI and ML is enabling organizations to unlock new revenue streams, optimize resource utilization, and improve operational efficiency.
Moreover, regulatory requirements and data privacy concerns are pushing organizations to adopt big data technologies. Governments worldwide are implementing stringent data protection regulations, like the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. These regulations necessitate robust data management and analytics solutions to ensure compliance and avoid hefty fines. As a result, organizations are investing heavily in big data platforms that offer secure and compliant data handling capabilities.
As organizations continue to navigate the complexities of data management, the role of Big Data Professional Services becomes increasingly critical. These services offer specialized expertise in implementing and managing big data solutions, ensuring that businesses can effectively harness the power of their data. Professional services encompass a range of offerings, including consulting, system integration, and managed services, tailored to meet the unique needs of each organization. By leveraging the knowledge and experience of big data professionals, companies can optimize their data strategies, streamline operations, and achieve their business objectives more efficiently. The demand for these services is driven by the growing complexity of big data ecosystems and the need for seamless integration with existing IT infrastructure.
Regionally, North America holds a dominant position in the big data technology market, primarily due to the early adoption of advanced technologies and the presence of key market players. The Asia Pacific region is expected to witness the highest growth rate during the forecast period, driven by increasing digitalization, the rapid growth of industries such as e-commerce and telecommunications, and supportive government initiatives aimed at fostering technological innovation.
The big data technology market is segmented into software, hardware, and services. The software segment encompasses data management software, analytics software, and data visualization tools, among others. This segment is expected to witness substantial growth due to the increasing demand for data analytics solutions that can handle vast amounts of data. Advanced analytics software, in particular, is gaining traction as organizations seek to gain deeper insights and make data-driven decisions. Companies are increasingly adopting sophisticated data visualization tools to present complex data in an easily understandable format, thereby enhancing decision-making processes.
Facebook
TwitterExcel spreadsheets by species (4 letter code is abbreviation for genus and species used in study, year 2010 or 2011 is year data collected, SH indicates data for Science Hub, date is date of file preparation). The data in a file are described in a read me file which is the first worksheet in each file. Each row in a species spreadsheet is for one plot (plant). The data themselves are in the data worksheet. One file includes a read me description of the column in the date set for chemical analysis. In this file one row is an herbicide treatment and sample for chemical analysis (if taken). This dataset is associated with the following publication: Olszyk , D., T. Pfleeger, T. Shiroyama, M. Blakely-Smith, E. Lee , and M. Plocher. Plant reproduction is altered by simulated herbicide drift toconstructed plant communities. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY. Society of Environmental Toxicology and Chemistry, Pensacola, FL, USA, 36(10): 2799-2813, (2017).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 3 rows and is filtered where the books is Beginning big data with Power BI and Excel 2013 : big data processing and analysis using Power BI in Excel 2013. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The field of cancer research is overall ambiguous to the general population and apart from medical news, not a lot is known of the proceedings. This study aims to provide some clarity towards cancer research, especially towards the correlations between research of different types of cancer. The amount of research papers pertaining to different types of cancers is compared against mortality and diagnosis rates to determine the amount of research attention towards a type of cancer in relation to its overall importance or danger level to the general population. This is achieved through the use of many computational tools such as Python, R, and Microsoft Excel. Python is used to parse through the JSON files and extract the abstract and Altmetric score onto a single CSV file. R is used to iterate through the rows of the CSV files and count the appearance of each type of cancer in the abstract. As well as this, R creates the histograms describing Altmetric scores and file frequency. Microsoft Excel is used to provide further data analysis and find correlations between Altmetrics data and Canadian Cancer Society data. The analysis from these tools revealed that breast cancer was the most researched cancer by a large margin with nearly 1,700 papers. Although there were a large number of cancer research papers, the Altmetric scores revealed that most of these papers did not gain significant attention. By comparing these results to Canadian Cancer Society data, it was uncovered that Breast Cancer was receiving research attention that was not merited. There were four times more breast cancer research papers than the second most researched cancer, prostate cancer. This was despite the fact that breast cancer was fourth in mortality and third in new cases among all cancers. Inversely, lung cancer was underrepresented with only 401 research papers in spite of being the deadliest cancer in Canada.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data Description: Weibo information with a country as the key word (such as "Egypt") in a period of time, including posting users, posting time, posting content, amount of comment, amount of thumb-up, etc. Time frame: 2016.10.1-2017.10.23. The amount of data: 340,000. Data Format: excel (Total 19).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Five files, one of which is a ZIP archive, containing data that support the findings of this study. PDF file "IA screenshots CSU Libraries search config" contains screenshots captured from the Internet Archive's Wayback Machine for all 24 CalState libraries' homepages for years 2017 - 2019. Excel file "CCIHE2018-PublicDataFile" contains Carnegie Classifications data from the Indiana University Center for Postsecondary Research for all of the CalState campuses from 2018. CSV file "2017-2019_RAW" contains the raw data exported from Ex Libris Primo Analytics (OBIEE) for all 24 CalState libraries for calendar years 2017 - 2019. CSV file "clean_data" contains the cleaned data from Primo Analytics which was used for all subsequent analysis such as charting and import into SPSS for statistical testing. ZIP archive file "NonparametricStatisticalTestsFromSPSS" contains 23 SPSS files [.spv format] reporting the results of testing conducted in SPSS. This archive includes things such as normality check, descriptives, and Kruskal-Wallis H-test results.
Facebook
Twitterhttps://www.knowledge-sourcing.com/privacy-policyhttps://www.knowledge-sourcing.com/privacy-policy
Available data formats for the Analytical Courses Market Size, Share, Opportunities, And Trends By Age Group (Less than 20, 20-25, 25-30, More than 35), By Work Experience (Less than5 years, 5-10 years, 10-15 Years, Above 15 years), By Modules (Data Analytics and Intelligence, Trade Analytics, Big Data Analytics, Web & Social Media Analytics, Others), By Tools (Excel, Python, Power BI, Tableau, SQL, Alteryx, R, Others), And By Geography - Forecasts From 2025 To 2030 report.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GlobalHighPM2.5 is one of the series of long-term, full-coverage, global high-resolution and high-quality datasets of ground-level air pollutants over land (i.e., GlobalHighAirPollutants, GHAP). It is generated from big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution.
This dataset contains input data, analysis codes, and generated dataset used for the following article, and if you use the GlobalHighPM2.5 dataset for related scientific research, please cite the below-listed corresponding reference (Wei et al., NC, 2023):
Wei, J., Li, Z., Lyapustin, A., Wang, J., Dubovik, O., Schwartz, J., Sun, L., Li, C., Liu, S., and Zhu, T. First close insight into global daily gapless 1 km PM2.5 pollution, variability, and health impact. Nature Communications, 2023, 14, 8349. https://doi.org/10.1038/s41467-023-43862-3
Input Data
Relevant raw data for each figure (compiled into a single sheet within an Excel document) in the manuscript.
Code
Relevant Python scripts for replicating and ploting the analysis results in the manuscript, as well as codes for converting data formats.
Generated Dataset
Here is the first big data-derived gapless (spatial coverage = 100%) monthly and yearly 1 km (i.e., M1K, and Y1K) global ground-level PM2.5 dataset over land from 2017 to 2022. This dataset yields a high quality with cross-validation coefficient of determination (CV-R2) values of 0.91, 0.97, and 0.98, and root-mean-square errors (RMSEs) of 9.20, 4.15, and 2.77 µg m-3 on the daily, monthly, and annual basises, respectively.
Due to data volume limitations,
all (including daily) data for the year 2022 is accessible at: GlobalHighPM2.5 (2022)
all (including daily) data for the year 2021 is accessible at: GlobalHighPM2.5 (2021)
all (including daily) data for the year 2020 is accessible at: GlobalHighPM2.5 (2020)
all (including daily) data for the year 2019 is accessible at: GlobalHighPM2.5 (2019)
all (including daily) data for the year 2018 is accessible at: GlobalHighPM2.5 (2018)
all (including daily) data for the year 2017 is accessible at: GlobalHighPM2.5 (2017)
Continuously updated...
More air quality datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data Description: The nationwide public job recruitment data, including job title, job experience requirements, academic requirements, industry, job type, the nature of the company and other fields; Time range: 2017-01-01 to 2017-10-31; Data volume: 40,000 (randomly selected in the time range), sources include major recruitment sites, corporate website, job BBS; Data Format: excel.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Abstract: The aim of this study is to gain insights into the attitudes of the population towards big data practices and the factors influencing them. To this end, a nationwide survey (N = 1,331), representative of the population of Germany, addressed the attitudes about selected big data practices exemplified by four scenarios, which may have a direct impact on the personal lifestyle. The scenarios contained price discrimination in retail, credit scoring, differentiations in health insurance, and differentiations in employment. The attitudes about the scenarios were set into relation to demographic characteristics, personal value orientations, knowledge about computers and the internet, and general attitudes about privacy and data protection. Another focus of the study is on the institutional framework of privacy and data protection, because the realization of benefits or risks of big data practices for the population also depends on the knowledge about the rights the institutional framework provided to the population and the actual use of those rights. As results, several challenges for the framework by big data practices were confirmed, in particular for the elements of informed consent with privacy policies, purpose limitation, and the individuals’ rights to request information about the processing of personal data and to have these data corrected or erased. TechnicalRemarks: TYPE OF SURVEY AND METHODS The data set includes responses to a survey conducted by professionally trained interviewers of a social and market research company in the form of computer-aided telephone interviews (CATI) from 2017-02 to 2017-04. The target population was inhabitants of Germany aged 18 years and more, who were randomly selected by using the sampling approaches ADM eASYSAMPLe (based on the Gabler-Häder method) for landline connections and eASYMOBILe for mobile connections. The 1,331 completed questionnaires comprise 44.2 percent mobile and 55.8 percent landline phone respondents. Most questions had options to answer with a 5-point rating scale (Likert-like) anchored with ‘Fully agree’ to ‘Do not agree at all’, or ‘Very uncomfortable’ to ‘Very comfortable’, for instance. Responses by the interviewees were weighted to obtain a representation of the entire German population (variable ‘gewicht’ in the data sets). To this end, standard weighting procedures were applied to reduce differences between the sample and the entire population with regard to known rates of response and non-response depending on household size, age, gender, educational level, and place of residence. RELATED PUBLICATION AND FURTHER DETAILS The questionnaire, analysis and results will be published in the corresponding report (main text in English language, questionnaire in Appendix B in German language of the interviews and English translation). The report will be available as open access publication at KIT Scientific Publishing (https://www.ksp.kit.edu/). Reference: Orwat, Carsten; Schankin, Andrea (2018): Attitudes towards big data practices and the institutional framework of privacy and data protection - A population survey, KIT Scientific Report 7753, Karlsruhe: KIT Scientific Publishing. FILE FORMATS The data set of responses is saved for the repository KITopen at 2018-11 in the following file formats: comma-separated values (.csv), tapulator-separated values (.dat), Excel (.xlx), Excel 2007 or newer (.xlxs), and SPSS Statistics (.sav). The questionnaire is saved in the following file formats: comma-separated values (.csv), Excel (.xlx), Excel 2007 or newer (.xlxs), and Portable Document Format (.pdf). PROJECT AND FUNDING The survey is part of the project Assessing Big Data (ABIDA) (from 2015-03 to 2019-02), which receives funding from the Federal Ministry of Education and Research (BMBF), Germany (grant no. 01IS15016A-F). http://www.abida.de
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterThe documentation covers Enterprise Survey panel datasets that were collected in Slovenia in 2009, 2013 and 2019.
The Slovenia ES 2009 was conducted between 2008 and 2009. The Slovenia ES 2013 was conducted between March 2013 and September 2013. Finally, the Slovenia ES 2019 was conducted between December 2018 and November 2019. The objective of the Enterprise Survey is to gain an understanding of what firms experience in the private sector.
As part of its strategic goal of building a climate for investment, job creation, and sustainable growth, the World Bank has promoted improving the business environment as a key strategy for development, which has led to a systematic effort in collecting enterprise data across countries. The Enterprise Surveys (ES) are an ongoing World Bank project in collecting both objective data based on firms' experiences and enterprises' perception of the environment in which they operate.
National
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment must take its own financial decisions and have its own financial statements separate from those of the firm. An establishment must also have its own management and control over its payroll.
As it is standard for the ES, the Slovenia ES was based on the following size stratification: small (5 to 19 employees), medium (20 to 99 employees), and large (100 or more employees).
Sample survey data [ssd]
The sample for Slovenia ES 2009, 2013, 2019 were selected using stratified random sampling, following the methodology explained in the Sampling Manual for Slovenia 2009 ES and for Slovenia 2013 ES, and in the Sampling Note for 2019 Slovenia ES.
Three levels of stratification were used in this country: industry, establishment size, and oblast (region). The original sample designs with specific information of the industries and regions chosen are included in the attached Excel file (Sampling Report.xls.) for Slovenia 2009 ES. For Slovenia 2013 and 2019 ES, specific information of the industries and regions chosen is described in the "The Slovenia 2013 Enterprise Surveys Data Set" and "The Slovenia 2019 Enterprise Surveys Data Set" reports respectively, Appendix E.
For the Slovenia 2009 ES, industry stratification was designed in the way that follows: the universe was stratified into manufacturing industries, services industries, and one residual (core) sector as defined in the sampling manual. Each industry had a target of 90 interviews. For the manufacturing industries sample sizes were inflated by about 17% to account for potential non-response cases when requesting sensitive financial data and also because of likely attrition in future surveys that would affect the construction of a panel. For the other industries (residuals) sample sizes were inflated by about 12% to account for under sampling in firms in service industries.
For Slovenia 2013 ES, industry stratification was designed in the way that follows: the universe was stratified into one manufacturing industry, and two service industries (retail, and other services).
Finally, for Slovenia 2019 ES, three levels of stratification were used in this country: industry, establishment size, and region. The original sample design with specific information of the industries and regions chosen is described in "The Slovenia 2019 Enterprise Surveys Data Set" report, Appendix C. Industry stratification was done as follows: Manufacturing – combining all the relevant activities (ISIC Rev. 4.0 codes 10-33), Retail (ISIC 47), and Other Services (ISIC 41-43, 45, 46, 49-53, 55, 56, 58, 61, 62, 79, 95).
For Slovenia 2009 and 2013 ES, size stratification was defined following the standardized definition for the rollout: small (5 to 19 employees), medium (20 to 99 employees), and large (more than 99 employees). For stratification purposes, the number of employees was defined on the basis of reported permanent full-time workers. This seems to be an appropriate definition of the labor force since seasonal/casual/part-time employment is not a common practice, except in the sectors of construction and agriculture.
For Slovenia 2009 ES, regional stratification was defined in 2 regions. These regions are Vzhodna Slovenija and Zahodna Slovenija. The Slovenia sample contains panel data. The wave 1 panel “Investment Climate Private Enterprise Survey implemented in Slovenia” consisted of 223 establishments interviewed in 2005. A total of 57 establishments have been re-interviewed in the 2008 Business Environment and Enterprise Performance Survey.
For Slovenia 2013 ES, regional stratification was defined in 2 regions (city and the surrounding business area) throughout Slovenia.
Finally, for Slovenia 2019 ES, regional stratification was done across two regions: Eastern Slovenia (NUTS code SI03) and Western Slovenia (SI04).
Computer Assisted Personal Interview [capi]
Questionnaires have common questions (core module) and respectfully additional manufacturing- and services-specific questions. The eligible manufacturing industries have been surveyed using the Manufacturing questionnaire (includes the core module, plus manufacturing specific questions). Retail firms have been interviewed using the Services questionnaire (includes the core module plus retail specific questions) and the residual eligible services have been covered using the Services questionnaire (includes the core module). Each variation of the questionnaire is identified by the index variable, a0.
Survey non-response must be differentiated from item non-response. The former refers to refusals to participate in the survey altogether whereas the latter refers to the refusals to answer some specific questions. Enterprise Surveys suffer from both problems and different strategies were used to address these issues.
Item non-response was addressed by two strategies: a- For sensitive questions that may generate negative reactions from the respondent, such as corruption or tax evasion, enumerators were instructed to collect the refusal to respond as (-8). b- Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
For 2009 and 2013 Slovenia ES, the survey non-response was addressed by maximizing efforts to contact establishments that were initially selected for interview. Up to 4 attempts were made to contact the establishment for interview at different times/days of the week before a replacement establishment (with similar strata characteristics) was suggested for interview. Survey non-response did occur but substitutions were made in order to potentially achieve strata-specific goals. Further research is needed on survey non-response in the Enterprise Surveys regarding potential introduction of bias.
For 2009, the number of contacted establishments per realized interview was 6.18. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The relatively low ratio of contacted establishments per realized interview (6.18) suggests that the main source of error in estimates in the Slovenia may be selection bias and not frame inaccuracy.
For 2013, the number of realized interviews per contacted establishment was 25%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The number of rejections per contact was 44%.
Finally, for 2019, the number of interviews per contacted establishments was 9.7%. This number is the result of two factors: explicit refusals to participate in the survey, as reflected by the rate of rejection (which includes rejections of the screener and the main survey) and the quality of the sample frame, as represented by the presence of ineligible units. The share of rejections per contact was 75.2%.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Key-Value Database (KVD) market is experiencing robust growth, projected to reach $6.531 billion in 2025 and maintain a Compound Annual Growth Rate (CAGR) of 16.7% from 2025 to 2033. This expansion is driven by several factors. The increasing adoption of cloud computing and microservices architectures necessitates efficient and scalable data storage solutions, a role KVDs excel in. Furthermore, the rise of big data analytics and real-time applications demands databases capable of handling high volumes of data with low latency, another strength of KVD technology. The proliferation of IoT devices and the need for high-performance data management in these scenarios further fuels market growth. Significant advancements in KVD technology, such as improved scalability, enhanced security features, and better integration with various cloud platforms, also contribute to its rising popularity. Major players like Amazon Web Services, Microsoft, and Google are actively investing in and enhancing their KVD offerings, fostering competition and innovation. The competitive landscape is characterized by a blend of established players and emerging startups. Established vendors leverage their extensive experience and established ecosystems, while new entrants introduce innovative solutions and disruptive technologies. Market segmentation likely includes offerings tailored to specific cloud platforms, deployment models (on-premise, cloud), and industry verticals (e.g., finance, healthcare, e-commerce). Geographic distribution will likely see strong growth in North America and Asia-Pacific, driven by high technology adoption and significant investments in digital infrastructure. However, regions like Europe and Latin America also present significant opportunities for expansion as businesses increasingly embrace digital transformation. While market restraints could include the complexity of managing distributed KVD deployments and potential security concerns related to data breaches, the overall growth trajectory remains overwhelmingly positive, indicating a bright future for the KVD market.
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global document databases market size was valued at approximately USD 3.5 billion in 2023 and is projected to reach around USD 8.2 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 9.7% over the forecast period. This impressive growth can be attributed to the increasing demand for more flexible and scalable database solutions that can handle diverse data types and structures.
One of the primary growth factors for the document databases market is the rising adoption of NoSQL databases. Traditional relational databases often struggle with the unstructured data generated by modern applications, social media, and IoT devices. NoSQL databases, such as document databases, offer a more flexible and scalable solution to handle this data, which has led to their increased adoption across various industry verticals. Additionally, the growing popularity of microservices architecture in application development also drives the need for document databases, as they provide the necessary agility and performance.
Another significant growth factor is the increasing volume of data generated globally. With the exponential growth of data, organizations require robust and efficient database management systems to store, process, and analyze vast amounts of information. Document databases excel in managing large volumes of semi-structured and unstructured data, making them an ideal choice for enterprises looking to harness the power of big data analytics. Furthermore, advancements in cloud computing have made it easier for organizations to deploy and scale document databases, further driving their adoption.
The rise of artificial intelligence (AI) and machine learning (ML) technologies is also propelling the growth of the document databases market. AI and ML applications require databases that can handle complex data structures and provide quick access to large datasets for training and inference purposes. Document databases, with their schema-less design and ability to store diverse data types, are well-suited for these applications. As more organizations incorporate AI and ML into their operations, the demand for document databases is expected to grow significantly.
Regionally, North America holds the largest market share for document databases, driven by the presence of major technology companies and a high adoption rate of advanced database solutions. Europe is also a significant market, with growing investments in digital transformation initiatives. The Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by rapid technological advancements and increasing adoption of cloud-based solutions in countries like China, India, and Japan. Latin America and the Middle East & Africa are also experiencing growth, albeit at a slower pace, due to increasing digitalization efforts and the need for efficient data management solutions.
NoSQL databases, a subset of document databases, have gained significant traction over the past decade. They are designed to handle unstructured and semi-structured data, making them highly versatile and suitable for a wide range of applications. Unlike traditional relational databases, NoSQL databases do not require a predefined schema, allowing for greater flexibility and scalability. This has led to their adoption in industries such as retail, e-commerce, and social media, where the volume and variety of data are constantly changing.
The key advantage of NoSQL databases is their ability to scale horizontally. Traditional relational databases often face challenges when scaling up, as they require more powerful hardware and complex configurations. In contrast, NoSQL databases can easily scale out by adding more servers to the database cluster. This makes them an ideal choice for applications that experience high traffic and require real-time data processing. Companies like Amazon, Facebook, and Google have already adopted NoSQL databases to manage their massive data workloads, setting a precedent for other organizations to follow.
Another driving factor for the adoption of NoSQL databases is their performance in handling large datasets. NoSQL databases are optimized for read and write operations, making them faster and more efficient than traditional relational databases. This is particularly important for applications that require real-time analytics and immediate data access. For instance, e-commerce platforms use NoSQL databases to provide personalized recommendations to users based on th
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Appendix B. Supplementary data
All FE data is available in an excel file.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
SQL In-Memory Database Market size was valued at USD 9.26 Billion in 2024 and is projected to reach USD 35.7 Billion by 2032, growing at a CAGR of 20.27% from 2026 to 2032.
SQL In-Memory Database Market Drivers
Demand for Real-Time Analytics and Processing: Businesses increasingly require real-time insights from their data to make faster and more informed decisions. SQL In-Memory databases excel at processing data much faster than traditional disk-based databases, enabling real-time analytics and operational dashboards.
Growth of Big Data and IoT Applications: The rise of Big Data and the Internet of Things (IoT) generates massive amounts of data that needs to be processed quickly. SQL In-Memory databases can handle these high-velocity data streams efficiently due to their in-memory architecture.
Improved Performance for Transaction Processing Systems (TPS): In-memory databases offer significantly faster query processing times compared to traditional databases. This translates to improved performance for transaction-intensive applications like online banking, e-commerce platforms, and stock trading systems.
Reduced Hardware Costs (in some cases): While implementing an in-memory database might require an initial investment in additional RAM, it can potentially reduce reliance on expensive high-performance storage solutions in specific scenarios.
Focus on User Experience and Application Responsiveness: In today's digital landscape, fast and responsive applications are crucial. SQL In-Memory databases contribute to a smoother user experience by enabling quicker data retrieval and transaction processing.
However, it's important to consider some factors that might influence market dynamics:
Limited Data Capacity: In-memory databases are typically limited by the amount of available RAM, making them less suitable for storing massive datasets compared to traditional disk-based solutions.
Higher Implementation Costs: Setting up and maintaining an in-memory database can be more expensive due to the additional RAM requirements compared to traditional databases.
Hybrid Solutions: Many organizations opt for hybrid database solutions that combine in-memory and disk-based storage, leveraging the strengths of both for different data sets and applications.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Key-Value Database (KVD) market, currently valued at $841 million in 2025, is projected to experience robust growth, driven by the increasing demand for high-performance, scalable data storage solutions across various industries. The 7.5% CAGR from 2025 to 2033 indicates a substantial market expansion, fueled by several key factors. The rising adoption of cloud computing and big data analytics necessitates efficient data management systems, with KVDs offering speed and scalability unmatched by traditional relational databases. Furthermore, the growing popularity of real-time applications, such as IoT devices and online gaming, significantly contributes to the market's expansion, as KVDs excel in handling large volumes of rapidly changing data. The proliferation of mobile devices and the expansion of the digital economy further reinforces the market's growth trajectory. Competition among major players like AWS, Azure, Redis, and others fosters innovation and drives down costs, making KVD solutions accessible to a broader range of businesses. However, potential security concerns and the need for specialized expertise to manage and maintain KVD systems could act as minor restraints on market growth. The market segmentation, while not explicitly detailed, likely includes variations based on deployment model (cloud, on-premise), database type (NoSQL, in-memory), industry verticals (finance, healthcare, e-commerce), and geographic regions. Companies are constantly innovating to enhance features like data consistency, fault tolerance, and data encryption. The forecast period (2025-2033) presents significant opportunities for existing players to consolidate their market share and for new entrants to disrupt the market with innovative technologies. Continued focus on improving performance, security, and ease of use will be critical to success within this rapidly evolving landscape. The historical period (2019-2024) showcases a period of growing adoption, providing a solid foundation for the anticipated growth during the forecast period.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to Cognitive Market Research, the global GPU Database market size was USD 455 million in 2024 and will expand at a compound annual growth rate (CAGR) of 20.7% from 2024 to 2031. Market Dynamics of GPU Database Market Key Drivers for GPU Database Market Growing Demand for High-Performance Computing in Various Data-Intensive Industries- One of the main reasons the GPU Database market is growing demand for high-performance computing (HPC) across various data-intensive industries. These industries, including finance, healthcare, and telecommunications, require rapid data processing and real-time analytics, which GPU databases excel at providing. Unlike traditional CPU databases, GPU databases leverage the parallel processing power of GPUs to handle complex queries and large datasets more efficiently. This capability is crucial for applications such as machine learning, artificial intelligence, and big data analytics. The expansion of data and the increasing need for speed and scalability in processing are pushing enterprises to adopt GPU databases. Consequently, the market is poised for robust growth as organizations continue to seek solutions that offer enhanced performance, reduced latency, and greater computational power to meet their evolving data management needs. The increasing demand for gaining insights from large volumes of data generated across verticals to drive the GPU Database market's expansion in the years ahead. Key Restraints for GPU Database Market Lack of efficient training professionals poses a serious threat to the GPU Database industry. The market also faces significant difficulties related to insufficient security options. Introduction of the GPU Database Market The GPU database market is experiencing rapid growth due to the increasing demand for high-performance data processing and analytics. GPUs, or Graphics Processing Units, excel in parallel processing, making them ideal for handling large-scale, complex data sets with unprecedented speed and efficiency. This market is driven by the proliferation of big data, advancements in AI and machine learning, and the need for real-time analytics across industries such as finance, healthcare, and retail. Companies are increasingly adopting GPU-accelerated databases to enhance data visualization, predictive analytics, and computational workloads. Key players in this market include established tech giants and specialized startups, all contributing to a competitive landscape marked by innovation and strategic partnerships. As organizations continue to seek faster and more efficient ways to harness their data, the GPU database market is poised for substantial growth, reshaping the future of data management and analytics.< /p>
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Data Description: WeiChat information with a country as the key word (such as "Egypt") in a period of time, including WeiChat number, article titles, abstracts, amount of reading, amount of thumb-up and so on. Time range: 2016.10.1-2017.10.23 Data volume: 1.84 million Data Format: excel (Total 19)
Facebook
TwitterThe USDA Agricultural Research Service (ARS) recently established SCINet , which consists of a shared high performance computing resource, Ceres, and the dedicated high-speed Internet2 network used to access Ceres. Current and potential SCINet users are using and generating very large datasets so SCINet needs to be provisioned with adequate data storage for their active computing. It is not designed to hold data beyond active research phases. At the same time, the National Agricultural Library has been developing the Ag Data Commons, a research data catalog and repository designed for public data release and professional data curation. Ag Data Commons needs to anticipate the size and nature of data it will be tasked with handling. The ARS Web-enabled Databases Working Group, organized under the SCINet initiative, conducted a study to establish baseline data storage needs and practices, and to make projections that could inform future infrastructure design, purchases, and policies. The SCINet Web-enabled Databases Working Group helped develop the survey which is the basis for an internal report. While the report was for internal use, the survey and resulting data may be generally useful and are being released publicly. From October 24 to November 8, 2016 we administered a 17-question survey (Appendix A) by emailing a Survey Monkey link to all ARS Research Leaders, intending to cover data storage needs of all 1,675 SY (Category 1 and Category 4) scientists. We designed the survey to accommodate either individual researcher responses or group responses. Research Leaders could decide, based on their unit's practices or their management preferences, whether to delegate response to a data management expert in their unit, to all members of their unit, or to themselves collate responses from their unit before reporting in the survey. Larger storage ranges cover vastly different amounts of data so the implications here could be significant depending on whether the true amount is at the lower or higher end of the range. Therefore, we requested more detail from "Big Data users," those 47 respondents who indicated they had more than 10 to 100 TB or over 100 TB total current data (Q5). All other respondents are called "Small Data users." Because not all of these follow-up requests were successful, we used actual follow-up responses to estimate likely responses for those who did not respond. We defined active data as data that would be used within the next six months. All other data would be considered inactive, or archival. To calculate per person storage needs we used the high end of the reported range divided by 1 for an individual response, or by G, the number of individuals in a group response. For Big Data users we used the actual reported values or estimated likely values. Resources in this dataset:Resource Title: Appendix A: ARS data storage survey questions. File Name: Appendix A.pdfResource Description: The full list of questions asked with the possible responses. The survey was not administered using this PDF but the PDF was generated directly from the administered survey using the Print option under Design Survey. Asterisked questions were required. A list of Research Units and their associated codes was provided in a drop down not shown here. Resource Software Recommended: Adobe Acrobat,url: https://get.adobe.com/reader/ Resource Title: CSV of Responses from ARS Researcher Data Storage Survey. File Name: Machine-readable survey response data.csvResource Description: CSV file includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed. This information is that same data as in the Excel spreadsheet (also provided).Resource Title: Responses from ARS Researcher Data Storage Survey. File Name: Data Storage Survey Data for public release.xlsxResource Description: MS Excel worksheet that Includes raw responses from the administered survey, as downloaded unfiltered from Survey Monkey, including incomplete responses. Also includes additional classification and calculations to support analysis. Individual email addresses and IP addresses have been removed.Resource Software Recommended: Microsoft Excel,url: https://products.office.com/en-us/excel