100+ datasets found
  1. Retail Transactions Dataset

    • kaggle.com
    Updated May 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasad Patil (2024). Retail Transactions Dataset [Dataset]. https://www.kaggle.com/datasets/prasad22/retail-transactions-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 18, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Prasad Patil
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:

    Context:

    Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.

    Inspiration:

    The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.

    Dataset Information:

    The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:

    • Transaction_ID: A unique identifier for each transaction, represented as a 10-digit number. This column is used to uniquely identify each purchase.
    • Date: The date and time when the transaction occurred. It records the timestamp of each purchase.
    • Customer_Name: The name of the customer who made the purchase. It provides information about the customer's identity.
    • Product: A list of products purchased in the transaction. It includes the names of the products bought.
    • Total_Items: The total number of items purchased in the transaction. It represents the quantity of products bought.
    • Total_Cost: The total cost of the purchase, in currency. It represents the financial value of the transaction.
    • Payment_Method: The method used for payment in the transaction, such as credit card, debit card, cash, or mobile payment.
    • City: The city where the purchase took place. It indicates the location of the transaction.
    • Store_Type: The type of store where the purchase was made, such as a supermarket, convenience store, department store, etc.
    • Discount_Applied: A binary indicator (True/False) representing whether a discount was applied to the transaction.
    • Customer_Category: A category representing the customer's background or age group.
    • Season: The season in which the purchase occurred, such as spring, summer, fall, or winter.
    • Promotion: The type of promotion applied to the transaction, such as "None," "BOGO (Buy One Get One)," or "Discount on Selected Items."

    Use Cases:

    • Market Basket Analysis: Discover associations between products and uncover buying patterns.
    • Customer Segmentation: Group customers based on purchasing behavior.
    • Pricing Optimization: Optimize pricing strategies and identify opportunities for discounts and promotions.
    • Retail Analytics: Analyze store performance and customer trends.

    Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.

  2. d

    Retail Food Stores

    • catalog.data.gov
    • data.buffalony.gov
    • +3more
    Updated Sep 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ny.gov (2024). Retail Food Stores [Dataset]. https://catalog.data.gov/dataset/retail-food-stores
    Explore at:
    Dataset updated
    Sep 13, 2024
    Dataset provided by
    data.ny.gov
    Description

    A listing of all retail food stores which are licensed by the Department of Agriculture and Markets.

  3. R

    Retail Store Dataset

    • universe.roboflow.com
    zip
    Updated Mar 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ATM (2023). Retail Store Dataset [Dataset]. https://universe.roboflow.com/atm/retail-store-xtekf/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 7, 2023
    Dataset authored and provided by
    ATM
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Retail Products Bounding Boxes
    Description

    Retail Store

    ## Overview
    
    Retail Store is a dataset for object detection tasks - it contains Retail Products annotations for 451 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  4. c

    Grocery Store Dataset

    • cubig.ai
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CUBIG (2025). Grocery Store Dataset [Dataset]. https://cubig.ai/store/products/367/grocery-store-dataset
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    CUBIG
    License

    https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service

    Measurement technique
    Privacy-preserving data transformation via differential privacy, Synthetic data generation using AI techniques for model training
    Description

    1) Data Introduction • The Grocery Store Dataset is a tabulated retail dataset of detailed information, including detailed classifications, prices, discounts, ratings, product names, currencies, key features, and detailed descriptions of groceries collected from the Costco online market.

    2) Data Utilization (1) Grocery Store Dataset has characteristics that: • Each row contains a variety of attributes needed for grocery analysis, including detailed categories of products, prices, applied discounts, customer ratings, product names, currencies, key features, and detailed descriptions. • The data encompasses a wide range of products and is organized to enable multi-faceted analysis of price policies, promotions, customer evaluations, and product characteristics. (2) Grocery Store Dataset can be used to: • Analysis of pricing and discount strategies: Use price, discount, and rating data to create effective pricing policies and promotion strategies. • Product recommendations and popularity analysis by category: Based on product characteristics, ratings, and detailed descriptions, it can be applied to recommend customized products and derive popular products by category.

  5. d

    Grocery Store Locations

    • catalog.data.gov
    • ozmarketplace.dc.gov
    • +3more
    Updated May 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of the Chief Technology Officer (2025). Grocery Store Locations [Dataset]. https://catalog.data.gov/dataset/grocery-store-locations
    Explore at:
    Dataset updated
    May 21, 2025
    Dataset provided by
    Office of the Chief Technology Officer
    Description

    To create this layer, OCTO staff used ABCA's definition of “Full-Service Grocery Stores” (https://abca.dc.gov/page/full-service-grocery-store#gsc.tab=0)– pulled from the Food System Assessment below), and using those criteria, determined locations that fulfilled the categories in section 1 of the definition.Then, staff reviewed the Office of Planning’s Food System Assessment (https://dcfoodpolicycouncilorg.files.wordpress.com/2019/06/2018-food-system-assessment-final-6.13.pdf) list in Appendix D, comparing that to the created from the ABCA definition, which led to the addition of a additional examples that meet, or come very close to, the full-service grocery store criteria. The explanation from Office of Planning regarding how the agency created their list:“To determine the number of grocery stores in the District, we analyzed existing business licenses in the Department of Consumer and Regulatory Affairs (2018) Business License Verification system (located at https://eservices.dcra.dc.gov/BBLV/Default.aspx). To distinguish grocery stores from convenience stores, we applied the Alcohol Beverage and Cannabis Administration’s (ABCA) definition of a full-service grocery store. This definition requires a store to be licensed as a grocery store, sell at least six different food categories, dedicate either 50% of the store’s total square feet or 6,000 square feet to selling food, and dedicate at least 5% of the selling area to each food category. This definition can be found at https://abca.dc.gov/page/full-service-grocery-store#gsc.tab=0. To distinguish small grocery stores from large grocery stores, we categorized large grocery stores as those 10,000 square feet or more. This analysis was conducted using data from the WDCEP’s Retail and Restaurants webpage (located at https://wdcep.com/dc-industries/retail/) and using ARCGIS Spatial Analysis tools when existing data was not available. Our final numbers differ slightly from existing reports like the DC Hunger Solutions’ Closing the Grocery Store Gap and WDCEP’s Grocery Store Opportunities Map; this difference likely comes from differences in our methodology and our exclusion of stores that have closed.”Staff also conducted a visual analysis of locations and relied on personal experience of visits to locations to determine whether they should be included in the list.

  6. Grocery Inventory

    • kaggle.com
    Updated Mar 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    willian oliveira (2025). Grocery Inventory [Dataset]. http://doi.org/10.34740/kaggle/dsv/11053760
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 16, 2025
    Dataset provided by
    Kaggle
    Authors
    willian oliveira
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    this graph was created in R and Canva :

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F1a47e2e6e4836b86b065441359d5c9f0%2Fgraph1.gif?generation=1742159161939732&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F87de025c5703cb69483764c4fc9c58ab%2Fgraph2.gif?generation=1742159169346925&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2Fddf5001438c97c8c030333261685849b%2Fgraph3.png?generation=1742159174793142&alt=media" alt="">

    The dataset offers a comprehensive view of grocery inventory, covering 990 products across multiple categories such as Grains & Pulses, Beverages, Fruits & Vegetables, and more. It includes crucial details about each product, such as its unique identifier (Product_ID), name, category, and supplier information, including Supplier_ID and Supplier_Name. This dataset is particularly valuable for businesses aiming to optimize inventory management, sales tracking, and supply chain efficiency.

    Key inventory-related fields include Stock_Quantity, which indicates the current stock level, and Reorder_Level, which determines when a product should be reordered. The Reorder_Quantity specifies how much stock to order when inventory falls below the reorder threshold. Additionally, Unit_Price provides insight into pricing, helping businesses analyze cost trends and profitability.

    To manage product flow, the dataset includes dates such as Date_Received, which tracks when the product was added to the warehouse, and Last_Order_Date, marking the most recent procurement. For perishable goods, the Expiration_Date column is critical, allowing businesses to minimize waste by monitoring shelf life. The Warehouse_Location specifies where each product is stored, facilitating efficient inventory handling.

    Sales and performance metrics are also included. The Sales_Volume column records the total number of units sold, providing insights into consumer demand. Inventory_Turnover_Rate helps businesses assess how quickly a product sells and is replenished, ensuring better stock management. The dataset also tracks the Status of each product, indicating whether it is Active, Discontinued, or Backordered.

    The dataset serves multiple purposes in inventory management, sales performance evaluation, supplier analysis, and product lifecycle tracking. Businesses can leverage this data to refine reorder strategies, ensuring optimal stock levels and avoiding stockouts or excessive inventory. Sales analysis can help identify high-demand products and slow-moving items, enabling better decision-making in pricing and promotions. Evaluating suppliers based on their performance, pricing, and delivery efficiency helps streamline procurement and improve overall supply chain operations.

    Furthermore, the dataset can support predictive analytics by employing machine learning techniques to estimate reorder quantities, forecast demand, and optimize stock replenishment. Inventory turnover insights can aid in maintaining a balanced supply, preventing unnecessary overstocking or shortages. By tracking trends in sales, businesses can refine their marketing and distribution strategies, ensuring sustained profitability.

    This dataset is designed for educational and demonstration purposes, offering fictional data under the Creative Commons Attribution 4.0 International License. Users are free to analyze, modify, and apply the data while providing proper attribution. Additionally, certain products are marked as discontinued or backordered, reflecting real-world inventory dynamics. Businesses dealing with perishable goods should closely monitor expiration and last order dates to avoid losses due to spoilage.

    Overall, this dataset provides a versatile resource for those interested in inventory management, sales analysis, and supply chain optimization. By leveraging the structured data, businesses can make data-driven decisions to enhance operational efficiency and maximize profitability.

  7. R

    Retail Store Item Detection Dataset

    • universe.roboflow.com
    zip
    Updated Sep 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Groceries (2023). Retail Store Item Detection Dataset [Dataset]. https://universe.roboflow.com/groceries-71i3a/retail-store-item-detection-f4ygb
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 4, 2023
    Dataset authored and provided by
    Groceries
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Groceries Bounding Boxes
    Description

    Retail Store Item Detection

    ## Overview
    
    Retail Store Item Detection is a dataset for object detection tasks - it contains Groceries annotations for 3,946 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  8. Retail sales quality tables

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Jun 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2025). Retail sales quality tables [Dataset]. https://www.ons.gov.uk/businessindustryandtrade/retailindustry/datasets/retailsalesqualitytables
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Standard error reference tables for the Retail Sales Index in Great Britain.

  9. A

    ‘🏦 US Retail Sales Per Capita by Store Type’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘🏦 US Retail Sales Per Capita by Store Type’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-us-retail-sales-per-capita-by-store-type-46e1/fadb9a71/?iid=002-694&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘🏦 US Retail Sales Per Capita by Store Type’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/yamqwe/us-retail-sales-per-capita-by-store-type-2000-20e on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    About this dataset

    I have added a column on the right that shows the compound annual growth rate (CGR) of per capita spending from 2000 to 2015.

    source:

    This dataset was created by Gary Hoover and contains around 0 samples along with Unnamed: 15, Unnamed: 9, technical information and other features such as: - Unnamed: 18 - Unnamed: 12 - and more.

    How to use this dataset

    • Analyze Unnamed: 4 in relation to Unnamed: 10
    • Study the influence of Unnamed: 14 on Unnamed: 1
    • More datasets

    Acknowledgements

    If you use this dataset in your research, please credit Gary Hoover

    Start A New Notebook!

    --- Original source retains full ownership of the source dataset ---

  10. sales data

    • kaggle.com
    Updated Aug 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ronny Kimathi kaimenyi (2023). sales data [Dataset]. https://www.kaggle.com/datasets/ronnykym/online-store-sales-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 2, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ronny Kimathi kaimenyi
    License

    https://ec.europa.eu/info/legal-notice_enhttps://ec.europa.eu/info/legal-notice_en

    Description

    Deluxe is an online retailer based in UK that deals in a wide range of products in the following categories: 1. Clothing 2. Games 3. Appliances 4. Electronics 5. Books 6. Beauty products 7. Smartphones 8. Outdoors products 9. Accessories 10. Other Basic household products are classified as 'Other' in the category column since they have small value to the business.

    Data Description: dates: sale date order_value_EUR : sale price in EUR cost: cost of goods sold in EUR category: item category country: customers' country at the time of purchase customer_name: name of customer device_type: The gadget used by customer to access our online store(PC, mobile, tablet) sales_manager: name of the sales manager for each sale sales_representative: name of the sales rep for each sale order_id: unique identifier of an order

    The data was recorded for the period 1/2/2019 and 12/30/2020 with an aim to generate business insights to guide business direction. We would like to see what interesting insights the Kaggle community members can produce from this data.

  11. x

    Retail Store Location Data | Retail Location Data | Xtract.io

    • xtract.io
    Updated Nov 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xtract.io Technology Solutions (2022). Retail Store Location Data | Retail Location Data | Xtract.io [Dataset]. https://www.xtract.io/cmp/poidata/retail
    Explore at:
    Dataset updated
    Nov 4, 2022
    Dataset provided by
    Xtract.Io Technology Solutions Private Limited
    Authors
    Xtract.io Technology Solutions
    License

    https://www.xtract.io/privacy-policyhttps://www.xtract.io/privacy-policy

    Area covered
    United States, Canada
    Description

    This core point of interest dataset consists of 1M location information of retail stores in the US and Canada. The POI database includes electronic stores, supermarkets and groceries, specialty retailers, home improvement and convenience stores, and apparel and accessories shops.

  12. Retail Data | Retail Sector in North America | Comprehensive Contact...

    • datarade.ai
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Success.ai, Retail Data | Retail Sector in North America | Comprehensive Contact Profiles | Best Price Guaranteed [Dataset]. https://datarade.ai/data-products/retail-data-retail-sector-in-north-america-comprehensive-success-ai
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset provided by
    Area covered
    Bermuda, Guatemala, Greenland, Canada, Costa Rica, El Salvador, Saint Pierre and Miquelon, Belize, United States of America, Honduras, North America
    Description

    Success.ai’s Retail Data for the Retail Sector in North America offers a comprehensive dataset designed to connect businesses with key players across the diverse retail industry. Covering everything from department stores and supermarkets to specialty shops and e-commerce platforms, this dataset provides verified contact details, business locations, and leadership profiles for retail companies in the United States, Canada, and Mexico.

    With access to over 170 million verified professional profiles and 30 million company profiles, Success.ai ensures your outreach, marketing, and business development efforts are powered by accurate, continuously updated, and AI-validated data.

    Backed by our Best Price Guarantee, this solution empowers businesses to thrive in North America’s competitive retail landscape.

    Why Choose Success.ai’s Retail Data for North America?

    1. Verified Contact Data for Precision Outreach

      • Access verified phone numbers, work emails, and LinkedIn profiles of retail executives, store managers, and decision-makers.
      • AI-driven validation ensures 99% accuracy, enabling confident communication and efficient campaign execution.
    2. Comprehensive Coverage Across Retail Segments

      • Includes profiles of retail businesses across major markets, from large department stores and grocery chains to boutique retailers and online platforms.
      • Gain insights into the operational dynamics of retail hubs in cities such as New York, Los Angeles, Toronto, and Mexico City.
    3. Continuously Updated Datasets

      • Real-time updates reflect leadership changes, new store openings, market expansions, and shifts in consumer preferences.
      • Stay aligned with evolving industry trends and emerging opportunities in the North American retail sector.
    4. Ethical and Compliant

      • Adheres to GDPR, CCPA, and other privacy regulations, ensuring responsible and lawful use of data in your campaigns.

    Data Highlights:

    • 170M+ Verified Professional Profiles: Engage with executives, marketing directors, and operations managers across the North American retail sector.
    • 30M Company Profiles: Access firmographic data, including revenue ranges, store counts, and geographic footprints.
    • Store Location Data: Pinpoint retail outlets, regional offices, and distribution centers to refine supply chain and marketing strategies.
    • Leadership Contact Details: Connect with CEOs, CMOs, and procurement officers influencing retail operations and vendor selections.

    Key Features of the Dataset:

    1. Retail Decision-Maker Profiles

      • Identify and engage with store owners, category managers, and marketing directors shaping customer experiences and product strategies.
      • Target professionals responsible for inventory planning, vendor contracts, and store performance.
    2. Advanced Filters for Precision Targeting

      • Filter companies by industry segment (luxury, grocery, e-commerce), geographic location, company size, or revenue range.
      • Tailor outreach to align with regional market trends, customer demographics, and operational priorities.
    3. Market Trends and Operational Insights

      • Analyze trends such as online shopping growth, sustainability practices, and supply chain optimization.
      • Leverage insights to refine product offerings, identify partnership opportunities, and design effective campaigns.
    4. AI-Driven Enrichment

      • Profiles enriched with actionable data enable personalized messaging, highlight unique value propositions, and enhance engagement outcomes.

    Strategic Use Cases:

    1. Sales and Lead Generation

      • Present products, services, or technology solutions to retail procurement teams, marketing departments, and operations managers.
      • Build relationships with retailers seeking innovative tools, efficient supply chain solutions, or unique product offerings.
    2. Market Research and Consumer Insights

      • Analyze retail trends, customer behaviors, and seasonal demands to inform marketing strategies and product launches.
      • Benchmark against competitors to identify gaps, emerging niches, and growth opportunities.
    3. E-Commerce and Digital Strategy Development

      • Target e-commerce managers and digital transformation teams driving online retail initiatives and omnichannel integration.
      • Offer solutions to enhance online shopping experiences, logistics, and customer loyalty programs.
    4. Recruitment and Workforce Solutions

      • Engage HR professionals and hiring managers in recruiting talent for store operations, customer service, or marketing roles.
      • Provide workforce optimization tools, training platforms, or staffing services tailored to retail environments.

    Why Choose Success.ai?

    1. Best Price Guarantee

      • Access premium-quality retail data at competitive prices, ensuring strong ROI for your marketing and outreach efforts in North America.
    2. Seamless Integration
      ...

  13. Data from: Online Retail Dataset

    • kaggle.com
    Updated Apr 16, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Biplav Kant (2022). Online Retail Dataset [Dataset]. https://www.kaggle.com/datasets/biplavkant/online-retail-dataset/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 16, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Biplav Kant
    Description

    Dataset

    This dataset was created by Biplav Kant

    Contents

  14. T

    US Retail Sales

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). US Retail Sales [Dataset]. https://tradingeconomics.com/united-states/retail-sales
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Jul 17, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 29, 1992 - Jun 30, 2025
    Area covered
    United States
    Description

    Retail Sales in the United States increased 0.60 percent in June of 2025 over the previous month. This dataset provides - U.S. December Retail Sales Increased More Than Forecast - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  15. R

    Faces Retail Store Dataset

    • universe.roboflow.com
    zip
    Updated Jun 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Universe Tutorial (2022). Faces Retail Store Dataset [Dataset]. https://universe.roboflow.com/universe-tutorial/faces-retail-store/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 28, 2022
    Dataset authored and provided by
    Universe Tutorial
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Occupancy Bounding Boxes
    Description

    Faces Retail Store

    ## Overview
    
    Faces Retail Store is a dataset for object detection tasks - it contains Occupancy annotations for 1,114 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  16. Data from: Online Retail Store

    • kaggle.com
    Updated Mar 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ashish (2019). Online Retail Store [Dataset]. https://www.kaggle.com/ashydv/online-retail-store/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 14, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Ashish
    Description

    Dataset

    This dataset was created by Ashish

    Contents

  17. P

    Locount Dataset

    • paperswithcode.com
    Updated Nov 25, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuan-Qiang Cai; Longyin Wen; Libo Zhang; Dawei Du; Weiqiang Wang (2020). Locount Dataset [Dataset]. https://paperswithcode.com/dataset/locount
    Explore at:
    Dataset updated
    Nov 25, 2022
    Authors
    Yuan-Qiang Cai; Longyin Wen; Libo Zhang; Dawei Du; Weiqiang Wang
    Description

    Loucount is a retail object detection and and counting dataset with rich annotations in retail stores, which consists of 50, 394 images with more than 1.9 million object instances in 140 categories

  18. R

    Retail Store India New 2 Dataset

    • universe.roboflow.com
    zip
    Updated Nov 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NMIMS (2023). Retail Store India New 2 Dataset [Dataset]. https://universe.roboflow.com/nmims-b6ta9/retail-store-india-new-2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 16, 2023
    Dataset authored and provided by
    NMIMS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    India
    Variables measured
    Indian Retail Products LKMG 8lGe Bounding Boxes
    Description

    Retail Store India New 2

    ## Overview
    
    Retail Store India New 2 is a dataset for object detection tasks - it contains Indian Retail Products LKMG 8lGe annotations for 699 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  19. f

    Bicycle Retail Stores

    • data.ferndalemi.gov
    • detroitdata.org
    • +3more
    Updated Jul 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2024). Bicycle Retail Stores [Dataset]. https://data.ferndalemi.gov/datasets/detroitmi::bicycle-retail-stores/about
    Explore at:
    Dataset updated
    Jul 10, 2024
    Dataset authored and provided by
    City of Detroit
    Area covered
    Description

    The Detroit Greenway Coalition's mission is to create, conserve, and promote greenways and green spaces in order to connect people, places, and nature. The dataset includes the location of bike retail stores in the City of Detroit.For more information please visit https://detroitgreenways.org/.This dataset replaces the previous Bike Retail Locations dataset, which is now deprecated as of August 6th, 2024.

  20. d

    Grepsr | Comprehensive Dataset of Walgreens US Stores Across the United...

    • datarade.ai
    Updated Nov 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grepsr (2023). Grepsr | Comprehensive Dataset of Walgreens US Stores Across the United States [Dataset]. https://datarade.ai/data-products/grepsr-comprehensive-dataset-of-walgreens-us-stores-across-grepsr
    Explore at:
    .bin, .json, .xml, .csv, .xls, .sql, .txtAvailable download formats
    Dataset updated
    Nov 24, 2023
    Dataset authored and provided by
    Grepsr
    Area covered
    United States
    Description

    Potential Applications of the Dataset:

    1. Geospatial Information: Precise geographical coordinates for each Walgreens store, enabling accurate mapping and spatial analysis. State-wise and city-wise breakdown of store locations for a comprehensive overview.

    2. Store Details: Store addresses, including street name, city, state, and zip code, facilitating easy identification and location-based analysis. Contact information, such as phone numbers, providing a direct link to store management.

    3. Operational Attributes: Store opening and closing hours, aiding businesses in strategic planning and market analysis. Services and amenities are available at each location, offering insights into the diverse offerings of Walgreens stores.

    4. Historical Data: Historical data on store openings and closures, providing a timeline perspective on Walgreens' expansion and market presence.

    5. Demographic Insights: Demographic information of the areas surrounding each store, empowering users to understand the local customer base.

    6. Comprehensive and Up-to-Date: Regularly updated to ensure the dataset reflects the latest information on Walgreens store locations and attributes. Detailed data quality checks and verification processes for accuracy and reliability.

    The dataset is structured in a flexible format, allowing users to tailor their queries and analyses based on specific criteria and preferences.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Prasad Patil (2024). Retail Transactions Dataset [Dataset]. https://www.kaggle.com/datasets/prasad22/retail-transactions-dataset
Organization logo

Retail Transactions Dataset

For market basket analysis, customer segmentation & other retail analytics tasks

Explore at:
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
May 18, 2024
Dataset provided by
Kagglehttp://kaggle.com/
Authors
Prasad Patil
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Description

This dataset was created to simulate a market basket dataset, providing insights into customer purchasing behavior and store operations. The dataset facilitates market basket analysis, customer segmentation, and other retail analytics tasks. Here's more information about the context and inspiration behind this dataset:

Context:

Retail businesses, from supermarkets to convenience stores, are constantly seeking ways to better understand their customers and improve their operations. Market basket analysis, a technique used in retail analytics, explores customer purchase patterns to uncover associations between products, identify trends, and optimize pricing and promotions. Customer segmentation allows businesses to tailor their offerings to specific groups, enhancing the customer experience.

Inspiration:

The inspiration for this dataset comes from the need for accessible and customizable market basket datasets. While real-world retail data is sensitive and often restricted, synthetic datasets offer a safe and versatile alternative. Researchers, data scientists, and analysts can use this dataset to develop and test algorithms, models, and analytical tools.

Dataset Information:

The columns provide information about the transactions, customers, products, and purchasing behavior, making the dataset suitable for various analyses, including market basket analysis and customer segmentation. Here's a brief explanation of each column in the Dataset:

  • Transaction_ID: A unique identifier for each transaction, represented as a 10-digit number. This column is used to uniquely identify each purchase.
  • Date: The date and time when the transaction occurred. It records the timestamp of each purchase.
  • Customer_Name: The name of the customer who made the purchase. It provides information about the customer's identity.
  • Product: A list of products purchased in the transaction. It includes the names of the products bought.
  • Total_Items: The total number of items purchased in the transaction. It represents the quantity of products bought.
  • Total_Cost: The total cost of the purchase, in currency. It represents the financial value of the transaction.
  • Payment_Method: The method used for payment in the transaction, such as credit card, debit card, cash, or mobile payment.
  • City: The city where the purchase took place. It indicates the location of the transaction.
  • Store_Type: The type of store where the purchase was made, such as a supermarket, convenience store, department store, etc.
  • Discount_Applied: A binary indicator (True/False) representing whether a discount was applied to the transaction.
  • Customer_Category: A category representing the customer's background or age group.
  • Season: The season in which the purchase occurred, such as spring, summer, fall, or winter.
  • Promotion: The type of promotion applied to the transaction, such as "None," "BOGO (Buy One Get One)," or "Discount on Selected Items."

Use Cases:

  • Market Basket Analysis: Discover associations between products and uncover buying patterns.
  • Customer Segmentation: Group customers based on purchasing behavior.
  • Pricing Optimization: Optimize pricing strategies and identify opportunities for discounts and promotions.
  • Retail Analytics: Analyze store performance and customer trends.

Note: This dataset is entirely synthetic and was generated using the Python Faker library, which means it doesn't contain real customer data. It's designed for educational and research purposes.

Search
Clear search
Close search
Google apps
Main menu