2 datasets found
  1. R

    Robust Shelf Monitoring Dataset

    • universe.roboflow.com
    zip
    Updated Dec 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shelf Monitoring (2022). Robust Shelf Monitoring Dataset [Dataset]. https://universe.roboflow.com/shelf-monitoring/robust-shelf-monitoring/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 14, 2022
    Dataset authored and provided by
    Shelf Monitoring
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Stock Of Products In Shelf Bounding Boxes
    Description

    Robust Shelf Monitoring

    We aim to build a Robust Shelf Monitoring system to help store keepers to maintain accurate inventory details, to re-stock items efficiently and on-time and to tackle the problem of misplaced items where an item is accidentally placed at a different location. Our product aims to serve as store manager that alerts the owner about items that needs re-stocking and misplaced items.

    Training the model:

    • Unzip the labelled dataset from kaggle and store it to your google drive.
    • Follow the tutorial and update the training parameters in custom-yolov4-detector.cfg file in /darknet/cfg/ directory.
    • filters = (number of classes + 5) * 3 for each yolo layer.
    • max_batches = (number of classes) * 2000

    Steps to run the prediction colab notebook:

    1. Install the required dependencies; pymongo,dnspython.
    2. Clone the darknet repository and the required python scripts.
    3. Mount the google drive containing the weight file.
    4. Copy the pre-trained weight file to the yolo content directory.
    5. Run the detect.py script to peform the prediction. ## Presenting the predicted result. The detect.py script have option to send SMS notification to the shop keepers. We have built a front-end for building the phone-book for collecting the details of the shopkeepers. It also displays the latest prediction result and model accuracy.
  2. R

    Accident Detection Model Dataset

    • universe.roboflow.com
    zip
    Updated Apr 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Accident detection model (2024). Accident Detection Model Dataset [Dataset]. https://universe.roboflow.com/accident-detection-model/accident-detection-model/model/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 8, 2024
    Dataset authored and provided by
    Accident detection model
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Accident Bounding Boxes
    Description

    Accident-Detection-Model

    Accident Detection Model is made using YOLOv8, Google Collab, Python, Roboflow, Deep Learning, OpenCV, Machine Learning, Artificial Intelligence. It can detect an accident on any accident by live camera, image or video provided. This model is trained on a dataset of 3200+ images, These images were annotated on roboflow.

    Problem Statement

    • Road accidents are a major problem in India, with thousands of people losing their lives and many more suffering serious injuries every year.
    • According to the Ministry of Road Transport and Highways, India witnessed around 4.5 lakh road accidents in 2019, which resulted in the deaths of more than 1.5 lakh people.
    • The age range that is most severely hit by road accidents is 18 to 45 years old, which accounts for almost 67 percent of all accidental deaths.

    Accidents survey

    https://user-images.githubusercontent.com/78155393/233774342-287492bb-26c1-4acf-bc2c-9462e97a03ca.png" alt="Survey">

    Literature Survey

    • Sreyan Ghosh in Mar-2019, The goal is to develop a system using deep learning convolutional neural network that has been trained to identify video frames as accident or non-accident.
    • Deeksha Gour Sep-2019, uses computer vision technology, neural networks, deep learning, and various approaches and algorithms to detect objects.

    Research Gap

    • Lack of real-world data - We trained model for more then 3200 images.
    • Large interpretability time and space needed - Using google collab to reduce interpretability time and space required.
    • Outdated Versions of previous works - We aer using Latest version of Yolo v8.

    Proposed methodology

    • We are using Yolov8 to train our custom dataset which has been 3200+ images, collected from different platforms.
    • This model after training with 25 iterations and is ready to detect an accident with a significant probability.

    Model Set-up

    Preparing Custom dataset

    • We have collected 1200+ images from different sources like YouTube, Google images, Kaggle.com etc.
    • Then we annotated all of them individually on a tool called roboflow.
    • During Annotation we marked the images with no accident as NULL and we drew a box on the site of accident on the images having an accident
    • Then we divided the data set into train, val, test in the ratio of 8:1:1
    • At the final step we downloaded the dataset in yolov8 format.
      #### Using Google Collab
    • We are using google colaboratory to code this model because google collab uses gpu which is faster than local environments.
    • You can use Jupyter notebooks, which let you blend code, text, and visualisations in a single document, to write and run Python code using Google Colab.
    • Users can run individual code cells in Jupyter Notebooks and quickly view the results, which is helpful for experimenting and debugging. Additionally, they enable the development of visualisations that make use of well-known frameworks like Matplotlib, Seaborn, and Plotly.
    • In Google collab, First of all we Changed runtime from TPU to GPU.
    • We cross checked it by running command ‘!nvidia-smi’
      #### Coding
    • First of all, We installed Yolov8 by the command ‘!pip install ultralytics==8.0.20’
    • Further we checked about Yolov8 by the command ‘from ultralytics import YOLO from IPython.display import display, Image’
    • Then we connected and mounted our google drive account by the code ‘from google.colab import drive drive.mount('/content/drive')’
    • Then we ran our main command to run the training process ‘%cd /content/drive/MyDrive/Accident Detection model !yolo task=detect mode=train model=yolov8s.pt data= data.yaml epochs=1 imgsz=640 plots=True’
    • After the training we ran command to test and validate our model ‘!yolo task=detect mode=val model=runs/detect/train/weights/best.pt data=data.yaml’ ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt conf=0.25 source=data/test/images’
    • Further to get result from any video or image we ran this command ‘!yolo task=detect mode=predict model=runs/detect/train/weights/best.pt source="/content/drive/MyDrive/Accident-Detection-model/data/testing1.jpg/mp4"’
    • The results are stored in the runs/detect/predict folder.
      Hence our model is trained, validated and tested to be able to detect accidents on any video or image.

    Challenges I ran into

    I majorly ran into 3 problems while making this model

    • I got difficulty while saving the results in a folder, as yolov8 is latest version so it is still underdevelopment. so i then read some blogs, referred to stackoverflow then i got to know that we need to writ an extra command in new v8 that ''save=true'' This made me save my results in a folder.
    • I was facing problem on cvat website because i was not sure what
  3. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Shelf Monitoring (2022). Robust Shelf Monitoring Dataset [Dataset]. https://universe.roboflow.com/shelf-monitoring/robust-shelf-monitoring/dataset/1

Robust Shelf Monitoring Dataset

robust-shelf-monitoring

robust-shelf-monitoring-dataset

Explore at:
24 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset updated
Dec 14, 2022
Dataset authored and provided by
Shelf Monitoring
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Variables measured
Stock Of Products In Shelf Bounding Boxes
Description

Robust Shelf Monitoring

We aim to build a Robust Shelf Monitoring system to help store keepers to maintain accurate inventory details, to re-stock items efficiently and on-time and to tackle the problem of misplaced items where an item is accidentally placed at a different location. Our product aims to serve as store manager that alerts the owner about items that needs re-stocking and misplaced items.

Training the model:

  • Unzip the labelled dataset from kaggle and store it to your google drive.
  • Follow the tutorial and update the training parameters in custom-yolov4-detector.cfg file in /darknet/cfg/ directory.
  • filters = (number of classes + 5) * 3 for each yolo layer.
  • max_batches = (number of classes) * 2000

Steps to run the prediction colab notebook:

  1. Install the required dependencies; pymongo,dnspython.
  2. Clone the darknet repository and the required python scripts.
  3. Mount the google drive containing the weight file.
  4. Copy the pre-trained weight file to the yolo content directory.
  5. Run the detect.py script to peform the prediction. ## Presenting the predicted result. The detect.py script have option to send SMS notification to the shop keepers. We have built a front-end for building the phone-book for collecting the details of the shopkeepers. It also displays the latest prediction result and model accuracy.
Search
Clear search
Close search
Google apps
Main menu