64 datasets found
  1. Black Marble Nighttime Blue/Yellow Composite (VIIRS / Suomi-NPP) for...

    • disasters.amerigeoss.org
    • hub.arcgis.com
    • +2more
    Updated Sep 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA ArcGIS Online (2022). Black Marble Nighttime Blue/Yellow Composite (VIIRS / Suomi-NPP) for Hurricane Ian [Dataset]. https://disasters.amerigeoss.org/maps/3c155a23453141939e1c599f097ef9a3
    Explore at:
    Dataset updated
    Sep 28, 2022
    Dataset provided by
    NASAhttp://nasa.gov/
    Authors
    NASA ArcGIS Online
    Area covered
    Description

    Date of Images:9/25 - PresentVisualization OverviewThis visualization represents a "false color" band combination (Red = DNB, Green = DNB, Blue = Inverted M15) of data collected by the VIIRS instrument on the joint NASA/NOAA Suomi-NPP satellite. The imagery is most useful for identifying nighttime lights from cities, fires, boats, and other phenomena. At its highest resolution, this visualization represents the underlying data scaled to a resolution of 500m per pixel at the equator.The algorithm to combine the VIIRS DNB and M15 bands into an RGB composite was originally designed by the Naval Research Lab and was subsequently incorporated into NASA research and applications efforts. As you will see, nighttime city lights appear in shades of yellow, while clouds appear in shades of blue to yellow/white as the illumination from the moon changes over the lunar month. Hence, this visualization is colloquially referred to as a "blue-yellow RGB."The following guidelines will aid in understanding this visualization.Interpretation of both the presence and relative brightness of the city lights will be affected by the lunar cycle. This composite offers a qualitative assessment of the light conditions and should not be used as the sole source of information concerning power outages. During bright moonlight conditions, moonlight reflected from cloud tops and the land surface may also provide a yellow hue to those features. Comparisons of cloud-free conditions before and after a period of significant change, such as new city growth, disasters, fires, or other factors, may exhibit a change in emitted light (yellows) from those features over time.Multi-Spectral BandsAt its highest resolution, this visualization represents the underlying data scaled from its native 750m per pixel resolution to 500m per pixel at the equator. The following table lists the VIIRS bands that are utilized to create this visualization. See here for a full description of all VIIRS bands.BandDescriptionWavelength (µm)Resolution (m)DNBVisible (reflective)0.5 - 0.9750DNBVisible (reflective)0.5 - 0.9750M15 (Inverted)Longwave IR10.26 - 11.26750Temporal CoverageBy default, this layer will display the imagery currently available for today’s date. This imagery is a "daily composite" that is assembled from hundreds of individual data files. When viewing imagery for “today,” you may notice that only a portion of the map has imagery. This is because the visualization is continually updated as the satellite collects more data. To view imagery over time, you can update the layer properties to enable time animation and configure time settings. Currently, this layer is available from present back to April 30th, 2021. In the coming months, this will be extended to the start of the mission (October 28th, 2011).Data AccessThis visualization is generated from hourly and daily Near-Real Time versions of the "VIIRS/NPP Daily Gridded Day Night Band 500m Linear Lat Lon Grid Night" (VNP46A1_NRT) data product distributed by the Land, Atmosphere Near real-time Capability for EOS (LANCE). A standard quality version of the data product (VNP46A1), which is distributed by the Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS DAAC), is also available within 1-2 days of acquisition. You may use the Earthdata Search client to search for near real-time and science quality data files and associated documentation and services. Additionally, you may use the Worldview Snapshots tool to download custom images in a GeoTIFF , JPEG, PNG, or KMZ format for offline use.NASA Global Imagery Browse Services (GIBS), NASA Worldview, & NASA LANCEThis visualization is provided through the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery for hundreds of NASA Earth science datasets and science parameters. Through its services, and the NASA Worldview client, GIBS enables interactive exploration of NASA's Earth imagery for a broad range of users. The data and imagery are generated within 3 hours of acquisition through the NASA LANCE capability.Esri and NASA Collaborative ServicesThis visualization is made available through an ArcGIS image service hosted on Esri servers and facilitates access to a NASA GIBS service endpoint. For each image service request, the Esri server issues multiple requests to the GIBS service, processes and assembles the responses, and returns a proper mosaic image to the user. Processing occurs on-the-fly for each and every request to ensure that any update to the GIBS imagery is immediately available to the user. As such, availability of this visualization is dependent on both the Esri and the NASA GIBS services.

  2. a

    Color Radiance Imagery Services from NASA GIBS

    • hub.arcgis.com
    • anrgeodata.vermont.gov
    • +5more
    Updated Nov 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Color Radiance Imagery Services from NASA GIBS [Dataset]. https://hub.arcgis.com/maps/74d32a3d0d094de8bfe9151caea54a87
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

  3. e

    GIS at NASA

    • gisinschools.eagle.co.nz
    Updated Aug 23, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GIS in Schools - Teaching Materials - New Zealand (2021). GIS at NASA [Dataset]. https://gisinschools.eagle.co.nz/datasets/gis-at-nasa
    Explore at:
    Dataset updated
    Aug 23, 2021
    Dataset authored and provided by
    GIS in Schools - Teaching Materials - New Zealand
    Description

    At NASA they use Geographic Information systems to provide:maps and powerful capabilities to visualise, analyse and interact with big dataFind out more about how they do this in this ArcGIS StoryMap created by NASA in 2020. This StoryMap includes a section on where you can find NASA data.

  4. MODIS Thermal (Last 7 days)

    • wifire-data.sdsc.edu
    Updated Mar 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). MODIS Thermal (Last 7 days) [Dataset]. https://wifire-data.sdsc.edu/dataset/modis-thermal-last-7-days
    Explore at:
    csv, geojson, kml, arcgis geoservices rest api, htmlAvailable download formats
    Dataset updated
    Mar 3, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Description

    This layer presents detectable thermal activity from MODIS satellites for the last 7 days. MODIS Global Fires is a product of NASA’s Earth Observing System Data and Information System (EOSDIS), part of NASA's Earth Science Data. EOSDIS integrates remote sensing and GIS technologies to deliver global MODIS hotspot/fire locations to natural resource managers and other stakeholders around the World.


    Consumption Best Practices:

    • As a service that is subject to Viral loads (very high usage), avoid adding Filters that use a Date/Time type field. These queries are not cacheable and WILL be subject to 'https://en.wikipedia.org/wiki/Rate_limiting' rel='nofollow ugc'>Rate Limiting by ArcGIS Online. To accommodate filtering events by Date/Time, we encourage using the included "Age" fields that maintain the number of Days or Hours since a record was created or last modified compared to the last service update. These queries fully support the ability to cache a response, allowing common query results to be supplied to many users without adding load on the service.
    • When ingesting this service in your applications, avoid using POST requests, these requests are not cacheable and will also be subject to Rate Limiting measures.

    Scale/Resolution: 1km

    Update Frequency: 1/2 Hour (every 30 minutes) using the Aggregated Live Feed Methodology

    Area Covered: World

    What can I do with this layer?
    The MODIS thermal activity layer can be used to visualize and assess wildfires worldwide. However, it should be noted that this dataset contains many “false positives” (e.g., oil/natural gas wells or volcanoes) since the satellite will detect any large thermal signal.

    Additional Information
    MODIS stands for MODerate resolution Imaging Spectroradiometer. The MODIS instrument is on board NASA’s Earth Observing System (EOS) Terra (EOS AM) and Aqua (EOS PM) satellites. The orbit of the Terra satellite goes from north to south across the equator in the morning and Aqua passes south to north over the equator in the afternoon resulting in global coverage every 1 to 2 days. The EOS satellites have a ±55 degree scanning pattern and orbit at 705 km with a 2,330 km swath width.

    It takes approximately 2 – 4 hours after satellite overpass for MODIS Rapid Response to process the data, and for the Fire Information for Resource Management System (FIRMS) to update the website. Occasionally, hardware errors can result in processing delays beyond the 2-4 hour range. Additional information on the MODIS system status can be found at MODIS Rapid Response.

    Attribute Information
    • Latitude and Longitude: The center point location of the 1km (approx.) pixel flagged as containing one or more fires/hotspots (fire size is not 1km, but variable). Stored by Point Geometry. See What does a hotspot/fire detection mean on the ground?
    • Brightness: The brightness temperature measured (in Kelvin) using the MODIS channels 21/22 and channel 31.
    • Scan and Track: The actual spatial resolution of the scanned pixel. Although the algorithm works at 1km resolution, the MODIS pixels get bigger toward the edge of the scan. See What does scan and track mean?
    • Date and Time: Acquisition date of the hotspot/active fire pixel and time of satellite overpass in UTC (client presentation in local time). Stored by Acquisition Date.
    • Acquisition Date: Derived Date/Time field combining Date and Time attributes.
    • Satellite: Whether the detection was picked up by the Terra or Aqua satellite.
    • Confidence: The detection confidence is a quality flag of the individual hotspot/active fire pixel.
    • Version: Version refers to the processing collection and source of data. The number before the decimal refers to the collection (e.g. MODIS Collection 6). The number after the decimal indicates the source of Level 1B data; data processed in near-real time by MODIS Rapid Response will have the source code “CollectionNumber.0”. Data sourced from MODAPS (with a 2-month lag) and processed by FIRMS using the standard MOD14/MYD14 Thermal Anomalies algorithm will have a source code “CollectionNumber.x”. For example, data with the version listed as 5.0 is collection 5, processed by MRR, data with the version listed as 5.1 is collection 5 data processed by FIRMS using Level 1B data from MODAPS.
    • Bright.T31: Channel 31 brightness temperature (in Kelvins) of the hotspot/active fire pixel.
    • FRP: Fire Radiative Power. Depicts the pixel-integrated fire radiative power in MW (MegaWatts). FRP provides information on the measured radiant heat output of detected fires. The amount of radiant heat energy liberated per unit time (the Fire Radiative Power) is thought to be related to the rate at which fuel is being consumed (Wooster et. al. (2005)).
    • DayNight: The standard processing algorithm uses the solar zenith angle (SZA) to threshold the day/night value; if the SZA exceeds 85 degrees it is assigned a night value. SZA values less than 85 degrees are assigned a day time value. For the NRT algorithm the day/night flag is assigned by ascending (day) vs descending (night) observation. It is expected that the NRT assignment of the day/night flag will be amended to be consistent with the standard processing.
    • Hours Old: Derived field that provides age of record in hours between Acquisition date/time and latest update date/time. 0 = less than 1 hour ago, 1 = less than 2 hours ago, 2 = less than 3 hours ago, and so on.
    Revisions
    • June 22, 2022: Added 'HOURS_OLD' field to enhance Filtering data. Added 'Last 7 days' Layer to extend data to match time range of VIIRS offering. Added Field level descriptions.
    This map is provided for informational purposes and is not monitored 24/7 for accuracy and

  5. a

    Daily Planet Imagery-Copia

    • monitoreo-volcnico-1-sernageomin.hub.arcgis.com
    Updated Jun 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sernageomin - SDNG (2021). Daily Planet Imagery-Copia [Dataset]. https://monitoreo-volcnico-1-sernageomin.hub.arcgis.com/datasets/daily-planet-imagery-copia
    Explore at:
    Dataset updated
    Jun 9, 2021
    Dataset authored and provided by
    Sernageomin - SDNG
    Area covered
    Description

    This series of products from MODIS represents the only daily global composites available and is suitable for use at global and regional levels. This True Color band composition (Bands 1 4 3 | Red, Green, Blue) most accurately shows how we see the earth’s surface with our own eyes. It is a natural looking image that is useful for land surface, oceanic and atmospheric analysis. There are four True Color products in total. For each satellite (Aqua and Terra) there is a 250 meter corrected reflectance product and a 500 meter surface reflectance product. Although the resolution is coarser than other satellites, this allows for a global collection of imagery on a daily basis, which is made available in near real-time. In contrast, Landsat needs 16 days to collect a global composite. Besides the maximum resolution difference, the surface and corrected reflectance products also differ in the algorithm used for atmospheric correction.NASA Global Imagery Browse Services (GIBS)This image layer provides access to a subset of the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery. The GIBS goal is to enable interactive exploration of NASA's Earth imagery for a broad range of users. The purpose of this image layer, and the other GIBS image services hosted by Esri, is to enable convenient access to this beautiful and useful satellite imagery for users of ArcGIS. The source data used by this image layer is a finished image; it is not recommended for quantitative analysis.Several full resolution, global imagery products are built and served by GIBS in near real-time (usually within 3.5 hours of observation). These products are built from NASA Earth Observing System satellites data courtesy of LANCE data providers and other sources. The MODIS instrument aboard Terra and Aqua satellites, the AIRS instrument aboard Aqua, and the OMI instrument aboard Aura are used as sources. Several of the MODIS global products are made available on this Esri hosted service.This image layer hosted by Esri provides direct access to one of the GIBS image products. The Esri servers do not store any of this data itself. Instead, for each received data request, multiple image tiles are retrieved from GIBS, which are then processed and assembled into the proper image for the response. This processing takes place on-the-fly, for each and every request. This ensures that any update to the GIBS data is immediately available in the Esri mosaic service.Note on Time: The image service supporting this map is time enabled, but time has been disabled on this image layer so that the most recent imagery displays by default. If you would like to view imagery over time, you can update the layer properties to enable time animation and configure time settings. The results can be saved in a web map to use later or share with others.

  6. MODIS (True Color)

    • hub.arcgis.com
    • idaho-epscor-gem3-uidaho.hub.arcgis.com
    • +1more
    Updated Jun 16, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). MODIS (True Color) [Dataset]. https://hub.arcgis.com/maps/esri::modis-true-color/about
    Explore at:
    Dataset updated
    Jun 16, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This series of products from MODIS represents the only daily global composites available and is suitable for use at global and regional levels. This True Color band composition (Bands 1 4 3 | Red, Green, Blue) most accurately shows how we see the earth’s surface with our own eyes. It is a natural looking image that is useful for land surface, oceanic and atmospheric analysis. This map shows the 250 meter corrected reflectance product from both satellites that carry a MODIS, Aqua and Terra. Although the resolution is coarser than other satellites, this allows for a global collection of imagery on a daily basis, which is made available in near real-time. In contrast, Landsat needs 16 days to collect a global composite. Besides the maximum resolution difference, the surface and corrected reflectance products also differ in the algorithm used for atmospheric correction.NASA Global Imagery Browse Services (GIBS)This image layer provides access to a subset of the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery. The GIBS goal is to enable interactive exploration of NASA's Earth imagery for a broad range of users. The purpose of this image layer, and the other GIBS image services hosted by Esri, is to enable convenient access to this beautiful and useful satellite imagery for users of ArcGIS. The source data used by this image layer is a finished image; it is not recommended for quantitative analysis.Several full resolution, global imagery products are built and served by GIBS in near real-time (usually within 3.5 hours of observation). These products are built from NASA Earth Observing System satellites data courtesy of LANCE data providers and other sources. The MODIS instrument aboard Terra and Aqua satellites, the AIRS instrument aboard Aqua, and the OMI instrument aboard Aura are used as sources. Several of the MODIS global products are made available on this Esri hosted service.This image layer hosted by Esri provides direct access to one of the GIBS image products. The Esri servers do not store any of this data itself. Instead, for each received data request, multiple image tiles are retrieved from GIBS, which are then processed and assembled into the proper image for the response. This processing takes place on-the-fly, for each and every request. This ensures that any update to the GIBS data is immediately available in the Esri mosaic service.Note on Time: The image service supporting this map is time enabled, but time has been disabled on this image layer so that the most recent imagery displays by default. If you would like to view imagery over time, you can update the layer properties to enable time animation and configure time settings. The results can be saved in a web map to use later or share with others.

  7. d

    High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska,...

    • catalog.data.gov
    • datasets.ai
    • +4more
    Updated Apr 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NSIDC (2025). High-Resolution QuickBird Imagery and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://catalog.data.gov/dataset/high-resolution-quickbird-imagery-and-related-gis-layers-for-barrow-alaska-usa-version-1
    Explore at:
    Dataset updated
    Apr 11, 2025
    Dataset provided by
    NSIDC
    Area covered
    Utqiagvik, Alaska, United States
    Description

    This data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats. Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format). Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data.

  8. 5. André Oliveira

    • hub.arcgis.com
    Updated Apr 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). 5. André Oliveira [Dataset]. https://hub.arcgis.com/documents/aa3734f37eaa4311ac17fd31645c5722
    Explore at:
    Dataset updated
    Apr 2, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    The goal of this project is to create a map of the planet Mars, by using ESRI software. For this, a 3D project was developed using ArcGIS Pro, considering a global scene, to be published in an online platform. All the various data from Mars will be available in a single website, where everyone can visualize and interact. The Red Planet has been studied for many decades and this year marks the launch of a new rover, Mars2020, which will happen on the 17th of July. This new rover will be continuing the on-going work of the Curiosity Rover, launched in 2012. The main objective for these rovers is to determine if Mars could have supported life, by studying its water, climate and geology. Currently, the only operational rover in Mars is Curiosity and with that in mind, this project will have a strong focus on the path taken by this rover, during almost 8 years of exploration. In the web application, the user will be able to see the course taken by Curiosity in Mars’ Gale Crater, from its landing until January 2020. The map highlights several points of interest, such as the location after each year passed on MarsEarth year and every kilometer, which can be interacted with as well as browse through photos taken at each of the locations, through a pop-up window. Additionally, the application also supports global data of Mars. The two main pieces, used as basemaps, are the global imagery, with a pixel size of 925 meters and the Digital Elevation Model (DEM), with 200 meters per pixel. The DEM represents the topography of Mars and was also used to develop Relief and Slope Maps. Furthermore, the application also includes data regarding the geology of the planet and nomenclature to identify regions, areas of interest and craters of Mars. This project wouldn’t have been possible without NASA’s open-source philosophy, working alongside other entities, such as the European Space Agency, the International Astronomical Union and the Working Group for Planetary System Nomenclature. All the data related to Imagery, DEM raster files, Mars geology and nomenclature was obtained on USGS Astrogeology Science Center database. Finally, the data related to the Curiosity Rover was obtained on the portal of The Planetary Society. Working with global datasets means working with very large files, so selecting the right approach is crucial and there isn’t much margin for experiments. In fact, a wrong step means losing several hours of computing time. All the data that was downloaded came in Mars Coordinate Reference Systems (CRS) and luckily, ESRI handles that format well. This not only allowed the development of accurate analysis of the planet, but also modelling the data around a globe. One limitation, however, is that ESRI only has the celestial body for planet Earth, so this meant that the Mars imagery and elevation was wrapped around Earth. ArcGIS Pro allows CRS transformation on the fly, but rendering times were not efficient, so the workaround was to project all data into WGS84. The slope map and respective reclassification and hillshading was developed in the original CRS. This process was done twice: one globally and another considering the Gale Crater. The results show that the crater’s slope characteristics are quite different from the global panorama of Mars. The crater has a depression that is approximately 5000 meters deep, but at the top it’s possible to identify an elevation of 750 meters, according to the altitude system of Mars. These discrepancies in a relatively small area result in very high slope values. Globally, 88% of the area has slopes less than 2 degrees, while in the Gale Crater this value is only 36%. Slopes between 2 and 10 degrees represent almost 60% of the area of the crater. On the other hand, they only represent 10% of the area globally. A considerable area with more than 10 degrees of slope can also be found within the crater, but globally the value is less than 1%. By combining Curiosity’s track path with the DEM, a profile graph of the path was obtained. It is possible to observe that Curiosity landed in a flat area and has been exploring in a “steady path”. However, in the last few years (since the 12th km), the rover has been more adventurous and is starting to climb the crater. In the last 10 km of its journey, Curiosity “climbed” around 300 meters, whereas in the first 11 km it never went above 100 meters. With the data processed in the WGS84 system, all was ready to start modelling Mars, which was firstly done in ArcGIS Pro. When the data was loaded, symbology and pop-ups configured, the project was exported to ArcGIS Online. Both the imagery and elevation layer were exported as “hosted tile service”. This was a key step, since keeping the same level of detail online and offline would have a steep increase in imagery size, to hundreds of Terabytes, thus a lot of work was put into balancing tile cache size and the intended quality of imagery. For the remaining data, it was a straight-forward step, exporting these files as vectors. Once all the data was in the Online Portal, a Global Web Scene was developed. This is an on-going project with an outlook to develop the global scene into an application with ESRI’s AppBuilder, allowing the addition of more information. In the future, there is also interest to increment the displayed data, like adding the paths taken by other rovers in the past, alongside detailed imagery of other areas beyond the Gale Crater. Finally, with 2021 being the year when the new rover Mars2020 will land on the Red Planet, we might be looking into adding it to this project.https://arcg.is/KuS4r

  9. A

    Pattern-based GIS for understanding content of very large Earth Science...

    • data.amerigeoss.org
    • data.wu.ac.at
    html
    Updated Jan 29, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2020). Pattern-based GIS for understanding content of very large Earth Science datasets [Dataset]. https://data.amerigeoss.org/dataset/pattern-based-gis-for-understanding-content-of-very-large-earth-science-datasets1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 29, 2020
    Dataset provided by
    United States
    Area covered
    Earth
    Description

    The research focus in the field of remotely sensed imagery has shifted from collection and warehousing of data ' tasks for which a mature technology already exists, to auto-extraction of information and knowledge discovery from this valuable resource ' tasks for which technology is still under active development. In particular, intelligent algorithms for analysis of very large rasters, either high resolutions images or medium resolution global datasets, that are becoming more and more prevalent, are lacking. We propose to develop the Geospatial Pattern Analysis Toolbox (GeoPAT) a computationally efficient, scalable, and robust suite of algorithms that supports GIS processes such as segmentation, unsupervised/supervised classification of segments, query and retrieval, and change detection in giga-pixel and larger rasters. At the core of the technology that underpins GeoPAT is the novel concept of pattern-based image analysis. Unlike pixel-based or object-based (OBIA) image analysis, GeoPAT partitions an image into overlapping square scenes containing 1,000'100,000 pixels and performs further processing on those scenes using pattern signature and pattern similarity ' concepts first developed in the field of Content-Based Image Retrieval. This fusion of methods from two different areas of research results in orders of magnitude performance boost in application to very large images without sacrificing quality of the output.

    GeoPAT v.1.0 already exists as the GRASS GIS add-on that has been developed and tested on medium resolution continental-scale datasets including the National Land Cover Dataset and the National Elevation Dataset. Proposed project will develop GeoPAT v.2.0 ' much improved and extended version of the present software. We estimate an overall entry TRL for GeoPAT v.1.0 to be 3-4 and the planned exit TRL for GeoPAT v.2.0 to be 5-6. Moreover, several new important functionalities will be added. Proposed improvements includes conversion of GeoPAT from being the GRASS add-on to stand-alone software capable of being integrated with other systems, full implementation of web-based interface, writing new modules to extent it applicability to high resolution images/rasters and medium resolution climate data, extension to spatio-temporal domain, enabling hierarchical search and segmentation, development of improved pattern signature and their similarity measures, parallelization of the code, implementation of divide and conquer strategy to speed up selected modules.

    The proposed technology will contribute to a wide range of Earth Science investigations and missions through enabling extraction of information from diverse types of very large datasets. Analyzing the entire dataset without the need of sub-dividing it due to software limitations offers important advantage of uniformity and consistency. We propose to demonstrate the utilization of GeoPAT technology on two specific applications. The first application is a web-based, real time, visual search engine for local physiography utilizing query-by-example on the entire, global-extent SRTM 90 m resolution dataset. User selects region where process of interest is known to occur and the search engine identifies other areas around the world with similar physiographic character and thus potential for similar process. The second application is monitoring urban areas in their entirety at the high resolution including mapping of impervious surface and identifying settlements for improved disaggregation of census data.

  10. a

    Snow Extent Imagery Services from NASA GIBS

    • climate.amerigeoss.org
    • amerigeo.org
    • +8more
    Updated Nov 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Snow Extent Imagery Services from NASA GIBS [Dataset]. https://climate.amerigeoss.org/maps/2cab59ef3de64bc096dba040ce50322b
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.The GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov.

  11. a

    Stereo Height Imagery Services from NASA GIBS

    • climate-amerigeoss.hub.arcgis.com
    • amerigeo.org
    • +6more
    Updated Nov 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Stereo Height Imagery Services from NASA GIBS [Dataset]. https://climate-amerigeoss.hub.arcgis.com/datasets/stereo-height-imagery-services-from-nasa-gibs-
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

  12. a

    Cloud Multi Layer Flag Imagery Services from NASA GIBS

    • amerigeo-amerigeoss.hub.arcgis.com
    • amerigeo.org
    • +5more
    Updated Nov 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Cloud Multi Layer Flag Imagery Services from NASA GIBS [Dataset]. https://amerigeo-amerigeoss.hub.arcgis.com/maps/0c43c22ac23045e2baaf3a7d878198f5
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

  13. v

    Cloud Top Temperature Imagery Services from NASA GIBS

    • anrgeodata.vermont.gov
    • sdgs.amerigeoss.org
    • +4more
    Updated Nov 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Cloud Top Temperature Imagery Services from NASA GIBS [Dataset]. https://anrgeodata.vermont.gov/maps/84b5c5c860de4c608096a3c74d33b4c8
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

  14. a

    Cloud Top Pressure Imagery Services from NASA GIBS

    • amerigeo.org
    • anrgeodata.vermont.gov
    • +7more
    Updated Nov 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Cloud Top Pressure Imagery Services from NASA GIBS [Dataset]. https://www.amerigeo.org/maps/9ce1bf7d415643ea81dbaf9a9e76c772
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

  15. a

    RGB Composite Imagery (Copernicus Sentinel-1) for Hurricane Dorian

    • disasters.amerigeoss.org
    • hub.arcgis.com
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA ArcGIS Online (2022). RGB Composite Imagery (Copernicus Sentinel-1) for Hurricane Dorian [Dataset]. https://disasters.amerigeoss.org/maps/d25773bcb7844d3daa26f0e37e7f7d3d
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset authored and provided by
    NASA ArcGIS Online
    Area covered
    Description

    Dates of Images:8/21/2019; 8/23/2019; 8/25/2019; 8/26/2019; 8/31/2019; 9/2/2019; 9/3/2019; 9/4/2019; 9/5/2019; 9/6/2019; 9/7/2019; 9/8/2019; 9/9/2019Date of Next Image:UnknownSummary:The Alaska Satellite Facility has developed a false color Red, Green, Blue (RGB) composite image of the Sentinel-1A/B Synthetic Aperture Radar (SAR) instrument which assigns the co- and cross-polarization information to a channel in the RGB composite. When used to support a flooding event, areas in blue denotes water present at the time of the satellite overpass before or after the start of the flooding event. Suggested Use:In this image, water appears in blue, vegetated areas in shades of green and urban areas in bright orange. It is recommended to use this product with ancillary information to derive flooded areas. Satellite/Sensor: Synthetic Aperture Radar on European Space Agency's (ESA) Copernicus Sentinel-1A/B satellite; 30 m resolution Credits: Sentinel data used in this derived product, contains modified Copernicus Sentinel data (2019), processed by ESA, Alaska Satellite Facility, and NASA Marshall Space Flight Center.Esri REST Endpoint:See URL section on right side of pageWMS Endpoint:https://maps.disasters.nasa.gov/ags04/services/hurricane_dorian_2019/sentinel1_rgb/MapServer/WMSServer

  16. a

    Sea Surface Salinity Imagery Services

    • hub.arcgis.com
    • amerigeo.org
    • +5more
    Updated Nov 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Sea Surface Salinity Imagery Services [Dataset]. https://hub.arcgis.com/maps/1a15bfce02c045a29c071215bd8e0f5e
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.The GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov.

  17. a

    Precipitation Imagery Services from NASA GIBS

    • amerigeo.org
    • climate.amerigeoss.org
    • +5more
    Updated Nov 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Precipitation Imagery Services from NASA GIBS [Dataset]. https://www.amerigeo.org/maps/amerigeoss::precipitation-imagery-services-from-nasa-gibs/about
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.The GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov.

  18. Reduced-Resolution Radar Imagery, Digital Elevation Models, and Related GIS...

    • data.nasa.gov
    • datasets.ai
    • +6more
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Reduced-Resolution Radar Imagery, Digital Elevation Models, and Related GIS Layers for Barrow, Alaska, USA, Version 1 [Dataset]. https://data.nasa.gov/dataset/reduced-resolution-radar-imagery-digital-elevation-models-and-related-gis-layers-for-barro
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Area covered
    Utqiagvik, United States
    Description

    This product set contains reduced-resolution Interferometric Synthetic Aperture Radar (IFSAR) imagery and geospatial data for the Barrow Peninsula (155.39 - 157.48 deg W, 70.86 - 71.47 deg N), for use in Geographic Information Systems (GIS) and remote sensing software. The primary IFSAR data sets were acquired by Intermap Technologies from 27 to 29 July 2002, and consist of an Orthorectified Radar Imagery (ORRI), a Digital Surface Model (DSM), and a Digital Terrain Model (DTM). Derived data layers include aspect, shaded relief, and slope-angle grids (floating-point binary format), as well as a vector layer of contour lines (ESRI Shapefile format). Also available are accessory layers compiled from other sources: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow Peninsula (ESRI Shapefile format). The DSM and DTM data sets (20 m resolution) are provided in floating-point binary format with header and projection files. The ORRI mosaic (5 m resolution) is available in GeoTIFF format. FGDC-compliant metadata for all data sets are provided in text, HTML, and XML formats, along with the Intermap License Agreement and product handbook. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are available via FTP and CD-ROM.

  19. a

    Cloud Liquid Water Imagery Services from NASA GIBS

    • hub.arcgis.com
    • anrgeodata.vermont.gov
    • +6more
    Updated Nov 18, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Cloud Liquid Water Imagery Services from NASA GIBS [Dataset]. https://hub.arcgis.com/maps/0387dc22061a4e1fbb3d444f8e86188e
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

  20. v

    Cloud Phase Imagery Services from NASA GIBS

    • anrgeodata.vermont.gov
    • amerigeo.org
    • +4more
    Updated Nov 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmeriGEOSS (2021). Cloud Phase Imagery Services from NASA GIBS [Dataset]. https://anrgeodata.vermont.gov/maps/55343d49c0cf404fa3c8795a7711f454
    Explore at:
    Dataset updated
    Nov 18, 2021
    Dataset authored and provided by
    AmeriGEOSS
    Area covered
    Earth
    Description

    The Global Imagery Browse Services (GIBS) system is a core EOSDIS component which provides a scalable, responsive, highly available, and community standards based set of imagery services. These services are designed with the goal of advancing user interactions with EOSDIS’ inter-disciplinary data through enhanced visual representation and discovery.GIBS Available Imagery ProductsThe GIBS imagery archive includes approximately 1000 imagery products representing visualized science data from the NASA Earth Observing System Data and Information System (EOSDIS). Each imagery product is generated at the native resolution of the source data to provide "full resolution" visualizations of a science parameter. GIBS works closely with the science teams to identify the appropriate data range and color mappings, where appropriate, to provide the best quality imagery to the Earth science community. Many GIBS imagery products are generated by the EOSDIS LANCE near real-time processing system resulting in imagery available in GIBS within 3.5 hours of observation. These products and others may also extend from present to the beginning of the satellite mission. In addition, GIBS makes available supporting imagery layers such as data/no-data, water masks, orbit tracks, and graticules to improve imagery usage.The GIBS team is actively engaging the NASA EOSDIS Distributed Active Archive Centers (DAACs) to add more imagery products and to extend their coverage throughout the life of the mission. The remainder of this page provides a structured view of the layers currently available within GIBS grouped by science discipline and science observation. For information regarding how to access these products, see the GIBS API section of this wiki. For information regarding how to access these products through an existing client, refer to the Map Library and GIS Client sections of this wiki. If you are aware of a science parameter that you would like to see visualized, please contact us at support@earthdata.nasa.gov. https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+Available+Imagery+Products#expand-AerosolOpticalDepth29ProductsNASA GIS API for Developers https://wiki.earthdata.nasa.gov/display/GIBS/GIBS+API+for+Developers

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
NASA ArcGIS Online (2022). Black Marble Nighttime Blue/Yellow Composite (VIIRS / Suomi-NPP) for Hurricane Ian [Dataset]. https://disasters.amerigeoss.org/maps/3c155a23453141939e1c599f097ef9a3
Organization logo

Black Marble Nighttime Blue/Yellow Composite (VIIRS / Suomi-NPP) for Hurricane Ian

Explore at:
Dataset updated
Sep 28, 2022
Dataset provided by
NASAhttp://nasa.gov/
Authors
NASA ArcGIS Online
Area covered
Description

Date of Images:9/25 - PresentVisualization OverviewThis visualization represents a "false color" band combination (Red = DNB, Green = DNB, Blue = Inverted M15) of data collected by the VIIRS instrument on the joint NASA/NOAA Suomi-NPP satellite. The imagery is most useful for identifying nighttime lights from cities, fires, boats, and other phenomena. At its highest resolution, this visualization represents the underlying data scaled to a resolution of 500m per pixel at the equator.The algorithm to combine the VIIRS DNB and M15 bands into an RGB composite was originally designed by the Naval Research Lab and was subsequently incorporated into NASA research and applications efforts. As you will see, nighttime city lights appear in shades of yellow, while clouds appear in shades of blue to yellow/white as the illumination from the moon changes over the lunar month. Hence, this visualization is colloquially referred to as a "blue-yellow RGB."The following guidelines will aid in understanding this visualization.Interpretation of both the presence and relative brightness of the city lights will be affected by the lunar cycle. This composite offers a qualitative assessment of the light conditions and should not be used as the sole source of information concerning power outages. During bright moonlight conditions, moonlight reflected from cloud tops and the land surface may also provide a yellow hue to those features. Comparisons of cloud-free conditions before and after a period of significant change, such as new city growth, disasters, fires, or other factors, may exhibit a change in emitted light (yellows) from those features over time.Multi-Spectral BandsAt its highest resolution, this visualization represents the underlying data scaled from its native 750m per pixel resolution to 500m per pixel at the equator. The following table lists the VIIRS bands that are utilized to create this visualization. See here for a full description of all VIIRS bands.BandDescriptionWavelength (µm)Resolution (m)DNBVisible (reflective)0.5 - 0.9750DNBVisible (reflective)0.5 - 0.9750M15 (Inverted)Longwave IR10.26 - 11.26750Temporal CoverageBy default, this layer will display the imagery currently available for today’s date. This imagery is a "daily composite" that is assembled from hundreds of individual data files. When viewing imagery for “today,” you may notice that only a portion of the map has imagery. This is because the visualization is continually updated as the satellite collects more data. To view imagery over time, you can update the layer properties to enable time animation and configure time settings. Currently, this layer is available from present back to April 30th, 2021. In the coming months, this will be extended to the start of the mission (October 28th, 2011).Data AccessThis visualization is generated from hourly and daily Near-Real Time versions of the "VIIRS/NPP Daily Gridded Day Night Band 500m Linear Lat Lon Grid Night" (VNP46A1_NRT) data product distributed by the Land, Atmosphere Near real-time Capability for EOS (LANCE). A standard quality version of the data product (VNP46A1), which is distributed by the Level-1 and Atmosphere Archive & Distribution System Distributed Active Archive Center (LAADS DAAC), is also available within 1-2 days of acquisition. You may use the Earthdata Search client to search for near real-time and science quality data files and associated documentation and services. Additionally, you may use the Worldview Snapshots tool to download custom images in a GeoTIFF , JPEG, PNG, or KMZ format for offline use.NASA Global Imagery Browse Services (GIBS), NASA Worldview, & NASA LANCEThis visualization is provided through the NASA Global Imagery Browse Services (GIBS), which are a set of standard services to deliver global, full-resolution satellite imagery for hundreds of NASA Earth science datasets and science parameters. Through its services, and the NASA Worldview client, GIBS enables interactive exploration of NASA's Earth imagery for a broad range of users. The data and imagery are generated within 3 hours of acquisition through the NASA LANCE capability.Esri and NASA Collaborative ServicesThis visualization is made available through an ArcGIS image service hosted on Esri servers and facilitates access to a NASA GIBS service endpoint. For each image service request, the Esri server issues multiple requests to the GIBS service, processes and assembles the responses, and returns a proper mosaic image to the user. Processing occurs on-the-fly for each and every request to ensure that any update to the GIBS imagery is immediately available to the user. As such, availability of this visualization is dependent on both the Esri and the NASA GIBS services.

Search
Clear search
Close search
Google apps
Main menu