96 datasets found
  1. f

    Dataset for paper: Body Positivity but not for everyone

    • sussex.figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kathleen Simon; Megan Hurst (2023). Dataset for paper: Body Positivity but not for everyone [Dataset]. http://doi.org/10.25377/sussex.9885644.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    University of Sussex
    Authors
    Kathleen Simon; Megan Hurst
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Data for a Brief Report/Short Communication published in Body Image (2021). Details of the study are included below via the abstract from the manuscript. The dataset includes online experimental data from 167 women who were recruited via social media and institutional participant pools. The experiment was completed in Qualtrics.Women viewed either neutral travel images (control), body positivity posts with an average-sized model (e.g., ~ UK size 14), or body positivity posts with a larger model (e.g., UK size 18+); which images women viewed is show in the ‘condition’ variable in the data.The data includes the age range, height, weight, calculated BMI, and Instagram use of participants. After viewing the images, women responded to the Positive and Negative Affect Schedule (PANAS), a state version of the Body Satisfaction Scale (BSS), and reported their immediate social comparison with the images (SAC items). Women then selected a lunch for themselves from a hypothetical menu; these selections are detailed in the data, as are the total calories calculated from this and the proportion of their picks which were (provided as a percentage, and as a categorical variable [as used in the paper analyses]). Women also reported whether they were on a special diet (e.g., vegan or vegetarian), had food intolerances, when they last ate, and how hungry they were.

    Women also completed trait measures of Body Appreciation (BAS-2) and social comparison (PACS-R). Women also were asked to comment on what they thought the experiment was about. Items and computed scales are included within the dataset.This item includes the dataset collected for the manuscript (in SPSS and CSV formats), the variable list for the CSV file (for users working with the CSV datafile; the variable list and details are contained within the .sav file for the SPSS version), and the SPSS syntax for our analyses (.sps). Also included are the information and consent form (collected via Qualtrics) and the questions as completed by participants (both in pdf format).Please note that the survey order in the PDF is not the same as in the datafiles; users should utilise the variable list (either in CSV or SPSS formats) to identify the items in the data.The SPSS syntax can be used to replicate the analyses reported in the Results section of the paper. Annotations within the syntax file guide the user through these.

    A copy of SPSS Statistics is needed to open the .sav and .sps files.

    Manuscript abstract:

    Body Positivity (or ‘BoPo’) social media content may be beneficial for women’s mood and body image, but concerns have been raised that it may reduce motivation for healthy behaviours. This study examines differences in women’s mood, body satisfaction, and hypothetical food choices after viewing BoPo posts (featuring average or larger women) or a neutral travel control. Women (N = 167, 81.8% aged 18-29) were randomly assigned in an online experiment to one of three conditions (BoPo-average, BoPo-larger, or Travel/Control) and viewed three Instagram posts for two minutes, before reporting their mood and body satisfaction, and selecting a meal from a hypothetical menu. Women who viewed the BoPo posts featuring average-size women reported more positive mood than the control group; women who viewed posts featuring larger women did not. There were no effects of condition on negative mood or body satisfaction. Women did not make less healthy food choices than the control in either BoPo condition; women who viewed the BoPo images of larger women showed a stronger association between hunger and calories selected. These findings suggest that concerns over BoPo promoting unhealthy behaviours may be misplaced, but further research is needed regarding women’s responses to different body sizes.

  2. g

    Statistical Computing: SPSS

    • search.gesis.org
    • dataverse.unc.edu
    • +1more
    Updated Oct 29, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zimmer, Catherine (2021). Statistical Computing: SPSS [Dataset]. https://search.gesis.org/research_data/datasearch-httpsdataverse-unc-eduoai--hdl1902-2911631
    Explore at:
    Dataset updated
    Oct 29, 2021
    Dataset provided by
    UNC Dataverse
    GESIS search
    Authors
    Zimmer, Catherine
    License

    https://search.gesis.org/research_data/datasearch-httpsdataverse-unc-eduoai--hdl1902-2911631https://search.gesis.org/research_data/datasearch-httpsdataverse-unc-eduoai--hdl1902-2911631

    Description

    Part 1 of the course will offer an introduction to SPSS and teach how to work with data saved in SPSS format. Part 2 will demonstrate how to work with SPSS syntax, how to create your own SPSS data files, and how to convert data in other formats to SPSS. Part 3 will teach how to append and merge SPSS files, demonstrate basic analytical procedures, and show how to work with SPSS graphics.

  3. RAAAP-2 SPSS Data Cleansing syntax files

    • figshare.com
    txt
    Updated May 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Simon Kerridge (2023). RAAAP-2 SPSS Data Cleansing syntax files [Dataset]. http://doi.org/10.6084/m9.figshare.18972992.v2
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 16, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Simon Kerridge
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    These two syntax files were used to convert the SPSS data output from the Qualtrics survey tool into the 17 cleansed and anonymised RAAAP-2 datasets form the 2019 international survey of research managers and administrators. The first creates and interim cleansed and anonymised datafile, the latter splits these into separate datasets to ensure anonymisation. Errata (16/6/23): v13 of the main Data Cleansing file has an error (two variables were missing value labels). This file has now been replaced with v14, and the Main Dataset has also been updated with the new data.

  4. m

    Data on Integrating Multidimensional Dependability with the Technology...

    • data.mendeley.com
    Updated Jul 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    chi-hoon song (2019). Data on Integrating Multidimensional Dependability with the Technology Acceptance Model [Dataset]. http://doi.org/10.17632/mgd4h2vnzd.1
    Explore at:
    Dataset updated
    Jul 18, 2019
    Authors
    chi-hoon song
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is raw and analysis data for empirical study, entitled entitled “Integrating Multidimensional Dependability with the Technology Acceptance Model: A Study of Adoption of Cloud Computing at the Organizational Level”. This study investigated how perceived dependability affects user acceptance by integrating perceived dependability with the technology acceptance model in the context of cloud computing. In this study, perceived dependability was treated as a multi-dimensional variable and conceptualized as a second-order construct. A total of 216 samples (organizational managers) were analyzed using the structural equation modeling. IBM SPSS AMOS 23 tool was used for data analysis.

    (1) File 1: Survey questionnaire in Korean
    This is a Korean version. If you want a English version, you can check "Appendix A." in our original article.
    (2) File 2: DATASET (216_including item parceling)
    You can use this file for your analysis. This spss file also contains the values obtained from item parceling technique this study used.
    (3) File 3 ~ 6
    These files are the results of using Excel to calculate CR and AVE values.

    This data is valuable because no other research have considered the multidimensional approach to dependability. These empirical data can provide academic researchers and businesses with insights on organizational level adoption of cloud computing.

  5. Z

    Albero study: a longitudinal database of the social network and personal...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Mar 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maya Jariego, Isidro (2021). Albero study: a longitudinal database of the social network and personal networks of a cohort of students at the end of high school [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_3532047
    Explore at:
    Dataset updated
    Mar 26, 2021
    Dataset provided by
    Maya Jariego, Isidro
    Alieva, Deniza
    Holgado Ramos, Daniel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ABSTRACT

    The Albero study analyzes the personal transitions of a cohort of high school students at the end of their studies. The data consist of (a) the longitudinal social network of the students, before (n = 69) and after (n = 57) finishing their studies; and (b) the longitudinal study of the personal networks of each of the participants in the research. The two observations of the complete social network are presented in two matrices in Excel format. For each respondent, two square matrices of 45 alters of their personal networks are provided, also in Excel format. For each respondent, both psychological sense of community and frequency of commuting is provided in a SAV file (SPSS). The database allows the combined analysis of social networks and personal networks of the same set of individuals.

    INTRODUCTION

    Ecological transitions are key moments in the life of an individual that occur as a result of a change of role or context. This is the case, for example, of the completion of high school studies, when young people start their university studies or try to enter the labor market. These transitions are turning points that carry a risk or an opportunity (Seidman & French, 2004). That is why they have received special attention in research and psychological practice, both from a developmental point of view and in the situational analysis of stress or in the implementation of preventive strategies.

    The data we present in this article describe the ecological transition of a group of young people from Alcala de Guadaira, a town located about 16 kilometers from Seville. Specifically, in the “Albero” study we monitored the transition of a cohort of secondary school students at the end of the last pre-university academic year. It is a turning point in which most of them began a metropolitan lifestyle, with more displacements to the capital and a slight decrease in identification with the place of residence (Maya-Jariego, Holgado & Lubbers, 2018).

    Normative transitions, such as the completion of studies, affect a group of individuals simultaneously, so they can be analyzed both individually and collectively. From an individual point of view, each student stops attending the institute, which is replaced by new interaction contexts. Consequently, the structure and composition of their personal networks are transformed. From a collective point of view, the network of friendships of the cohort of high school students enters into a gradual process of disintegration and fragmentation into subgroups (Maya-Jariego, Lubbers & Molina, 2019).

    These two levels, individual and collective, were evaluated in the “Albero” study. One of the peculiarities of this database is that we combine the analysis of a complete social network with a survey of personal networks in the same set of individuals, with a longitudinal design before and after finishing high school. This allows combining the study of the multiple contexts in which each individual participates, assessed through the analysis of a sample of personal networks (Maya-Jariego, 2018), with the in-depth analysis of a specific context (the relationships between a promotion of students in the institute), through the analysis of the complete network of interactions. This potentially allows us to examine the covariation of the social network with the individual differences in the structure of personal networks.

    PARTICIPANTS

    The social network and personal networks of the students of the last two years of high school of an institute of Alcala de Guadaira (Seville) were analyzed. The longitudinal follow-up covered approximately a year and a half. The first wave was composed of 31 men (44.9%) and 38 women (55.1%) who live in Alcala de Guadaira, and who mostly expect to live in Alcala (36.2%) or in Seville (37.7%) in the future. In the second wave, information was obtained from 27 men (47.4%) and 30 women (52.6%).

    DATE STRUCTURE AND ARCHIVES FORMAT

    The data is organized in two longitudinal observations, with information on the complete social network of the cohort of students of the last year, the personal networks of each individual and complementary information on the sense of community and frequency of metropolitan movements, among other variables.

    Social network

    The file “Red_Social_t1.xlsx” is a valued matrix of 69 actors that gathers the relations of knowledge and friendship between the cohort of students of the last year of high school in the first observation. The file “Red_Social_t2.xlsx” is a valued matrix of 57 actors obtained 17 months after the first observation.

    The data is organized in two longitudinal observations, with information on the complete social network of the cohort of students of the last year, the personal networks of each individual and complementary information on the sense of community and frequency of metropolitan movements, among other variables.

    In order to generate each complete social network, the list of 77 students enrolled in the last year of high school was passed to the respondents, asking that in each case they indicate the type of relationship, according to the following values: 1, “his/her name sounds familiar"; 2, "I know him/her"; 3, "we talk from time to time"; 4, "we have good relationship"; and 5, "we are friends." The two resulting complete networks are represented in Figure 2. In the second observation, it is a comparatively less dense network, reflecting the gradual disintegration process that the student group has initiated.

    Personal networks

    Also in this case the information is organized in two observations. The compressed file “Redes_Personales_t1.csv” includes 69 folders, corresponding to personal networks. Each folder includes a valued matrix of 45 alters in CSV format. Likewise, in each case a graphic representation of the network obtained with Visone (Brandes and Wagner, 2004) is included. Relationship values range from 0 (do not know each other) to 2 (know each other very well).

    Second, the compressed file “Redes_Personales_t2.csv” includes 57 folders, with the information equivalent to each respondent referred to the second observation, that is, 17 months after the first interview. The structure of the data is the same as in the first observation.

    Sense of community and metropolitan displacements

    The SPSS file “Albero.sav” collects the survey data, together with some information-summary of the network data related to each respondent. The 69 rows correspond to the 69 individuals interviewed, and the 118 columns to the variables related to each of them in T1 and T2, according to the following list:

     • Socio-economic data.
    
    
     • Data on habitual residence.
    
    
     • Information on intercity journeys.
    
    
     • Identity and sense of community.
    
    
     • Personal network indicators.
    
    
     • Social network indicators.
    

    DATA ACCESS

    Social networks and personal networks are available in CSV format. This allows its use directly with UCINET, Visone, Pajek or Gephi, among others, and they can be exported as Excel or text format files, to be used with other programs.

    The visual representation of the personal networks of the respondents in both waves is available in the following album of the Graphic Gallery of Personal Networks on Flickr: .

    In previous work we analyzed the effects of personal networks on the longitudinal evolution of the socio-centric network. It also includes additional details about the instruments applied. In case of using the data, please quote the following reference:

    Maya-Jariego, I., Holgado, D. & Lubbers, M. J. (2018). Efectos de la estructura de las redes personales en la red sociocéntrica de una cohorte de estudiantes en transición de la enseñanza secundaria a la universidad. Universitas Psychologica, 17(1), 86-98. https://doi.org/10.11144/Javeriana.upsy17-1.eerp

    The English version of this article can be downloaded from: https://tinyurl.com/yy9s2byl

    CONCLUSION

    The database of the “Albero” study allows us to explore the co-evolution of social networks and personal networks. In this way, we can examine the mutual dependence of individual trajectories and the structure of the relationships of the cohort of students as a whole. The complete social network corresponds to the same context of interaction: the secondary school. However, personal networks collect information from the different contexts in which the individual participates. The structural properties of personal networks may partly explain individual differences in the position of each student in the entire social network. In turn, the properties of the entire social network partly determine the structure of opportunities in which individual trajectories are displayed.

    The longitudinal character and the combination of the personal networks of individuals with a common complete social network, make this database have unique characteristics. It may be of interest both for multi-level analysis and for the study of individual differences.

    ACKNOWLEDGEMENTS

    The fieldwork for this study was supported by the Complementary Actions of the Ministry of Education and Science (SEJ2005-25683), and was part of the project “Dynamics of actors and networks across levels: individuals, groups, organizations and social settings” (2006 -2009) of the European Science Foundation (ESF). The data was presented for the first time on June 30, 2009, at the European Research Collaborative Project Meeting on Dynamic Analysis of Networks and Behaviors, held at the Nuffield College of the University of Oxford.

    REFERENCES

    Brandes, U., & Wagner, D. (2004). Visone - Analysis and Visualization of Social Networks. In M. Jünger, & P. Mutzel (Eds.), Graph Drawing Software (pp. 321-340). New York: Springer-Verlag.

    Maya-Jariego, I. (2018). Why name generators with a fixed number of alters may be a pragmatic option for personal network analysis. American Journal of

  6. Z

    Needs and preferences of different groups of informal caregivers towards...

    • data.niaid.nih.gov
    Updated Apr 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mariët Hagedoorn (2023). Needs and preferences of different groups of informal caregivers towards designing digital solutions [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7868195
    Explore at:
    Dataset updated
    Apr 27, 2023
    Dataset provided by
    Giovanni Lamura
    Srishti Dang
    Anne Looijmans
    Mariët Hagedoorn
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The project aimed to understand whether young adults who take care of a loved-one (young adult caregivers; YACs) differ in their perceived life balance and psychosocial functioning as compared to young adults without care responsibilities (non-YACs). In addition, this project aimed to understand how YACs evaluated a tool to support informal careg

    ivers. This tool (“Caregiver Balance”; https://balans.mantelzorg.nl) is specifically designed to support informal caregivers taking care of a loved-one in the palliative phase and could potentially be adapted to meet the needs of YACs.

    In this project, we collected data of 74 YACs and 246 non-YACs. Both groups completed questionnaires, and the YACs engaged in a usability test. The questionnaire data was used to compare the perceived life balance and psychological functioning between YACs and non-YACs, aged 18-25 years, and studying in the Netherlands (study 1). Furthermore, we examined the relationship between positive aspects of caregiving and relational factors, in particular, relationship quality and collaborative coping among YACs (study 2). Finally, we conducted a usability study where we interviewed YACs to understand the needs and preferences towards a supportive web-based solution (study 3).

    Table: Study details and associated files

        Number
        Study Name
        Study Aim
        Study Type
        Type of data
        Associated Files
    
    
        1
        Perceived life balance among young adult students: a comparison between caregivers and non-caregivers
        Compare the perceived life balance and psychological functions among student young adult caregivers aged 18-25 years (YACs) with young adult without care responsibilities
        Survey study
        Quantitative
    

    ENTWINE_YACs_nonYACsSurvey_RawData

    ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData

    ENTWINE_ PerceivedLifeBalanceSurvey _Syntax

    ENTWINE_YACs_nonYACsSurvey_codebook

        2
        Examining the relationship of positive aspects of caregiving with relational factors among young adult caregivers
        Examine the relationship of positive aspects of caregiving with relational factors, in particular, relationship quality and collaborative coping among a particular group of ICGs, young adult caregivers (YACs), aged 18-25 years.
        Survey study
        Quantitative
    

    ENTWINE_YACs_nonYACsSurvey_RawData

    ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData

    ENTWINE_PositiveAspectsCaregiving_Survey_Syntax

    ENTWINE_YACs_nonYACsSurvey_codebook

        3
        Exploring the support needs of young adult caregivers, their issues, and preferences towards a web-based tool
        Explore (i) challenges and support needs of YACs in caregiving, (ii) their needs towards the content of the ‘MantelzorgBalans’ tool, and (iii) issues they encountered in using the tool and their preferences for adaptation of the tool.
        Usability study
    

    Qualitative and Quantitative

    ENTWINE_Needs_Web-basedTools_YACs_Interview_Usability_RawData [to be determined whether data can be shared]

    ENTWINE_Needs_Web-basedTools_YACs_Questionnaires_RawData

    Description of the files to be uploaded

    Study 1: Perceived life balance among young adult students: a comparison between caregivers and non-caregivers

    ENTWINE_YACs_nonYACsSurvey_RawData: SPSS file with the complete, raw, pseudonomyzed survey data. The following cleaned dataset ‘ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData’ was generated from this raw data.

    ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData: SPSS file with the cleaned dataset having the following metadata -

    Population: young adult caregivers and young adult non-caregivers aged 18-25 years studying in the Netherlands;

    Number of participants: 320 participants in total (74 young adult caregivers and 246 young adult non-caregivers)

    Time point of measurement: Data was collected from December 2020 till March 2022

    Type of data: quantitative

    Measurements included, topics covered: perceived life balance (based on the Occupational balance questionnaire [1]), burnout (Burnout Assessment Tool [2]), negative and positive affect (Positive and Negative Affect Schedule [3]), and life satisfaction (Satisfaction with Life Scale [4])

    Short procedure conducted to receive data: online survey on Qualtrics platform

    SPSS syntax file ‘ENTWINE_ PerceivedLifeBalanceSurvey _Syntax’ was used to clean and analyse ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData dataset

    ENTWINE_YACs_nonYACsSurvey_codebook: Codebook having the variable names, variable labels, and the associated code values and code labels for ENTWINE_PerceivedLifeBalanceSurvey_YACs_nonYACs_CleanedData dataset

    Study 2: Examining the relationship of positive aspects of caregiving with relational factors among young adult caregivers

    ENTWINE_YACs_nonYACsSurvey_RawData: SPSS file with the complete, raw survey data. The following cleaned dataset ‘ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData’ was generated from this raw data.

    ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData: SPSS file with the cleaned dataset having the following metadata -

    Population: young adult caregivers aged 18-25 years studying in the Netherlands;

    Number of participants: 74 young adult caregivers

    Time point of measurement: Data was collected from December 2020 till March 2022

    Type of data: quantitative

    Measurements included, topics covered: positive aspects of caregiving (positive aspects of caregiving scale [5]), relationship quality (Relationship Assessment Scale [6]), collaborative coping (Perception of Collaboration Questionnaire [7] )

    Short procedure conducted to receive data: online survey on Qualtrics platform.

    SPSS syntax file ‘ENTWINE_PositiveAspectsCaregiving_Survey_Syntax’ was used to clean and analyse ‘ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData’ dataset.

    ENTWINE_YACs_nonYACsSurvey_codebook: Codebook having the variable names, variable labels, and the associated code values and code labels for ENTWINE_PositiveAspectsCaregiving_Survey_YACs_cleanedData dataset.

    Study 3: Exploring the support needs of young adult caregivers, their issues, and preferences towards a web-based tool

    ENTWINE_Needs_Web-basedTools_YACs_Interview_Usability_RawData: Pseudonymized word file including 13 transcripts having the qualitative data from interview and usability testing with the following metadata –

    Population: young adult caregivers aged 18-25 years studying in the Netherlands; 13 participants in total

    Time point of measurement: data was collected from October 2021 till February 2022

    Type of data: qualitative and quantitative

    Measurements included, topics covered: Caregiving challenges, support needs and barriers, usability needs, preferences and issues towards eHealth tool

    Short procedure conducted to receive data: Online interviews

    ENTWINE_Needs_Web-basedTools_YACs_Questionnaires_RawData: Excel sheet having the quantitative questionnaire raw data with the following metadata

    Population: young adult caregivers aged 18-25 years studying in the Netherlands; 13 participants in total

    Time point of measurement: data was collected from October 2021 till February 2022

    Type of data: qualitative and quantitative

    Measurements included, topics covered: User experience (user experience questionnaire [8]), satisfaction of using the web-based tool (After scenario questionnaire [9]), Intention of use and persuasive potential of the eHealth tool (persuasive potential questionnaire [10])

    Short procedure conducted to receive data: Online questionnaire

    Data collection details

    All data was collected, processed, and archived in accordance with the General Data Protection Regulation (GDPR) and the FAIR (Findable, Accessible, Interoperable, Reusable) principles under the supervision of the Principal Investigator.

    The principal researcher and a team of experts (supervisors) in the field of health psychology and eHealth (University of Twente, The Netherlands) reviewed the scientific quality of the research. The studies were piloted and tested before starting the collection of the data. For the survey study, the researchers monitored the data collection weekly to ensure it was running smoothly.

    The ethical review board, Centrale Ethische Toetsingscommissie of the University Medical Center Groningen, The Netherlands (CTc), granted approval for this research (Registration number: 202000623).

    Participants digitally signed informed consent for participating in the study.

    Terms of use

    Interested persons can send a data request by contacting the principal investigator (Prof. dr. Mariët Hagedoorn, University Medical Center Groningen, the Netherlands mariet.hageboorn@umcg.nl).

    Interested persons must provide the research plan (including the research question, methodology, and analysis plan) when requesting for the data.

    The principal investigator reviews the research plan on its quality and fit with the data and informs the interested person(s).

    (Pseudo)anonymous data of those participants who agreed on the reuse of their data is available on request for 15 years from the time of completion of the PhD project.

    Data will be available in Excel or SPSS format alongside the variable codebook after the completion of this PhD project and publication of the study results.

    References

    1. Wagman P, Håkansson C. Introducing the Occupational Balance Questionnaire (OBQ). Scand J Occup Ther 2014;21(3):227–231. PMID:24649971

    2. Schaufeli WB, Desart S, De Witte H. Burnout assessment tool (Bat)—development, validity, and reliability. Int J Environ Res Public Health 2020;17(24):1–21. PMID:33352940

    3. Watson D, Clark LA, Tellegen A. Development and Validation of Brief Measures of Positive and Negative Affect: The

  7. m

    Questionnaire data on land use change of Industrial Heritage: Insights from...

    • data.mendeley.com
    Updated Jul 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arsalan Karimi (2023). Questionnaire data on land use change of Industrial Heritage: Insights from Decision-Makers in Shiraz, Iran [Dataset]. http://doi.org/10.17632/gk3z8gp7cp.2
    Explore at:
    Dataset updated
    Jul 20, 2023
    Authors
    Arsalan Karimi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Shiraz, Iran
    Description

    The survey dataset for identifying Shiraz old silo’s new use which includes four components: 1. The survey instrument used to collect the data “SurveyInstrument_table.pdf”. The survey instrument contains 18 main closed-ended questions in a table format. Two of these, concern information on Silo’s decision-makers and proposed new use followed up after a short introduction of the questionnaire, and others 16 (each can identify 3 variables) are related to the level of appropriate opinions for ideal intervention in Façade, Openings, Materials and Floor heights of the building in four values: Feasibility, Reversibility, Compatibility and Social Benefits. 2. The raw survey data “SurveyData.rar”. This file contains an Excel.xlsx and a SPSS.sav file. The survey data file contains 50 variables (12 for each of the four values separated by colour) and data from each of the 632 respondents. Answering each question in the survey was mandatory, therefor there are no blanks or non-responses in the dataset. In the .sav file, all variables were assigned with numeric type and nominal measurement level. More details about each variable can be found in the Variable View tab of this file. Additional variables were created by grouping or consolidating categories within each survey question for simpler analysis. These variables are listed in the last columns of the .xlsx file. 3. The analysed survey data “AnalysedData.rar”. This file contains 6 “SPSS Statistics Output Documents” which demonstrate statistical tests and analysis such as mean, correlation, automatic linear regression, reliability, frequencies, and descriptives. 4. The codebook “Codebook.rar”. The detailed SPSS “Codebook.pdf” alongside the simplified codebook as “VariableInformation_table.pdf” provides a comprehensive guide to all 50 variables in the survey data, including numerical codes for survey questions and response options. They serve as valuable resources for understanding the dataset, presenting dictionary information, and providing descriptive statistics, such as counts and percentages for categorical variables.

  8. e

    Online survey data for the 2017 Aesthetic value project (NESP TWQ 3.2.3,...

    • catalogue.eatlas.org.au
    Updated Nov 22, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (AIMS) (2019). Online survey data for the 2017 Aesthetic value project (NESP TWQ 3.2.3, Griffith Institute for Tourism Research) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/595f79c7-b553-4aab-9ad8-42c092508f81
    Explore at:
    www:link-1.0-http--downloaddata, www:link-1.0-http--relatedAvailable download formats
    Dataset updated
    Nov 22, 2019
    Dataset provided by
    Australian Institute of Marine Science (AIMS)
    Time period covered
    Jan 28, 2017 - Jan 28, 2018
    Description

    This dataset consists of three data folders including all related documents of the online survey conducted within the NESP 3.2.3 project (Tropical Water Quality Hub) and a survey format document representing how the survey was designed. Apart from participants’ demographic information, the survey consists of three sections: conjoint analysis, picture rating and open question. Correspondent outcome of these three sections are downloaded from Qualtrics website and used for three different data analysis processes.

    Related data to the first section “conjoint analysis” is saved in the Conjoint analysis folder which contains two sub-folders. The first one includes a plan file of SAV. Format representing the design suggestion by SPSS orthogonal analysis for testing beauty factors and 9 photoshoped pictures used in the survey. The second (i.e. Final results) contains 1 SAV. file named “data1” which is the imported results of conjoint analysis section in SPSS, 1 SPS. file named “Syntax1” representing the code used to run conjoint analysis, 2 SAV. files as the output of conjoint analysis by SPSS, and 1 SPV file named “Final output” showing results of further data analysis by SPSS on the basis of utility and importance data.

    Related data to the second section “Picture rating” is saved into Picture rating folder including two subfolders. One subfolder contains 2500 pictures of Great Barrier Reef used in the rating survey section. These pictures are organised by named and stored in two folders named as “Survey Part 1” and “Survey Part 2” which are correspondent with two parts of the rating survey sections. The other subfolder “Rating results” consist of one XLSX. file representing survey results downloaded from Qualtric website.

    Finally, related data to the open question is saved in “Open question” folder. It contains one csv. file and one PDF. file recording participants’ answers to the open question as well as one PNG. file representing a screenshot of Leximancer analysis outcome.

    Methods: This dataset resulted from the input and output of an online survey regarding how people assess the beauty of Great Barrier Reef. This survey was designed for multiple purposes including three main sections: (1) conjoint analysis (ranking 9 photoshopped pictures to determine the relative importance weights of beauty attributes), (2) picture rating (2500 pictures to be rated) and (3) open question on the factors that makes a picture of the Great Barrier Reef beautiful in participants’ opinion (determining beauty factors from tourist perspective). Pictures used in this survey were downloaded from public sources such as websites of the Tourism and Events Queensland and Tropical Tourism North Queensland as well as tourist sharing sources (i.e. Flickr). Flickr pictures were downloaded using the key words “Great Barrier Reef”. About 10,000 pictures were downloaded in August and September 2017. 2,500 pictures were then selected based on several research criteria: (1) underwater pictures of GBR, (2) without humans, (3) viewed from 1-2 metres from objects and (4) of high resolution.

    The survey was created on Qualtrics website and launched on 4th October 2017 using Qualtrics survey service. Each participant rated 50 pictures randomly selected from the pool of 2500 survey pictures. 772 survey completions were recorded and 705 questionnaires were eligible for data analysis after filtering unqualified questionnaires. Conjoint analysis data was imported to IBM SPSS using SAV. format and the output was saved using SPV. format. Automatic aesthetic rating of 2500 Great Barrier Reef pictures –all these pictures are rated (1 – 10 scale) by at least 10 participants and this dataset was saved in a XLSX. file which is used to train and test an Artificial Intelligence (AI)-based system recognising and assessing the beauty of natural scenes. Answers of the open-question were saved in a XLSX. file and a PDF. file to be employed for theme analysis by Leximancer software.

    Further information can be found in the following publication: Becken, S., Connolly R., Stantic B., Scott N., Mandal R., Le D., (2018), Monitoring aesthetic value of the Great Barrier Reef by using innovative technologies and artificial intelligence, Griffith Institute for Tourism Research Report No 15.

    Format: The Online survey dataset includes one PDF file representing the survey format with all sections and questions. It also contains three subfolders, each has multiple files. The subfolder of Conjoint analysis contains an image of the 9 JPG. Pictures, 1 SAV. format file for the Orthoplan subroutine outcome and 5 outcome documents (i.e. 3 SAV. files, 1 SPS. file, 1 SPV. file). The subfolder of Picture rating contains a capture of the 2500 pictures used in the survey, 1 excel file for rating results. The subfolder of Open question includes 1 CSV. file, 1 PDF. file representing participants’ answers and one PNG. file for the analysis outcome.

    Data Dictionary:

    Card 1: Picture design option number 1 suggested by SPSS orthogonal analysis. Importance value: The relative importance weight of each beauty attribute calculated by SPSS conjoint analysis. Utility: Score reflecting influential valence and degree of each beauty attribute on beauty score. Syntax: Code used to run conjoint analysis by SPSS Leximancer: Specialised software for qualitative data analysis. Concept map: A map showing the relationship between concepts identified Q1_1: Beauty score of the picture Q1_1 by the correspondent participant (i.e. survey part 1) Q2.1_1: Beauty score of the picture Q2.1_1 by the correspondent participant (i.e. survey part 2) Conjoint _1: Ranking of the picture 1 designed for conjoint analysis by the correspondent participant

    References: Becken, S., Connolly R., Stantic B., Scott N., Mandal R., Le D., (2018), Monitoring aesthetic value of the Great Barrier Reef by using innovative technologies and artificial intelligence, Griffith Institute for Tourism Research Report No 15.

    Data Location:

    This dataset is filed in the eAtlas enduring data repository at: data esp3\3.2.3_Aesthetic-value-GBR

  9. e

    Happily unmarried survey - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Apr 27, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Happily unmarried survey - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/125bd8e6-db34-5bcc-902b-ab2d3c721dec
    Explore at:
    Dataset updated
    Apr 27, 2023
    Description

    The data set comprises responses to a questionnaire survey with a wide range of items concerning finances, legal and relationship issues in non-traditional, cohabiting heterosexual couples. It is in the format of an SPSS .sav file with an N of 235 (having excluded a small number of respondents who did not meet the study criteria). The bulk of the data were obtained by means of an on-line survey with the remaining few obtained from a paper version of the questionnaire. Owing to the format imposed by the software used for the on-line version (PHPSurveyor) there are some instances where the precise response format for the items differed between the two versions. In order to merge the data into SPSS, some minor adjustments had to be made to make them compatible, such as combining 2 separate items in the on-line version on cohabitation length to obtain a single measure. To clarify, in the on-line version, two separate responses asked for the number of years of cohabitation and the number of months. These were combined in the final SPSS file into a single measure of overall cohabitation length in months. Thus, a respondent who had cohabited for 2 years and 6 months would receive a value in the final data set of 30 months’ cohabitation length. To indicate in full detail how some of the items have been combined for certain measures, an Excel file has been provided. At the top of the Excel file are the actual question items from the hard copy version of the questionnaire. Underneath in the purple band are the respective variable labels as they appear in the SPSS file. Below this, in blue, can be found the labels for the composite or recorded items that combine information from more than one of the original variables (for example, ‘household income combines information from the items asking for respondent’s own and partner’s income). The labels for the variable values can be found in the SPSS file in the conventional way. Studies of the monetary practices of (mainly) married couples have revealed gender-associated asymmetries in access to household resources. However, theory development has been restricted because gender issues are easily confounded with the ideological meaning(s) of ‘marriage’. In other words, is it being a ‘wife’ or ‘husband’ that produces such asymmetries, rather than gender per se? The proposed project aims to disentangle this conflation of ‘gender’ with ‘marriage’ by focusing on money management in non-traditional (ie unmarried cohabiting or non-cohabiting) heterosexual couples, The research will be in two phases: (1) in-depth qualitative interviews with individual partners in 15 non-traditional heterosexual (NTH) couples, including some that have specifically rejected the notion of marriage on ideological grounds, and (2) a larger scale survey of 300 NTH couples. Our main aims are to: (1) Provide a detailed analysis of how NTH couples organise their finances and compare this with existing data on married couples; (2) Develop theories of household financial management that are grounded in a more inclusive definition of ‘household’ or ‘family’; (3) Explore NTH couples’ understandings of their financial rights and responsibilities and consider the implications of their financial management practices for the proposed law reform governing financial provision on cohabitation breakdown. Our main aims are to: (1) Provide a detailed analysis of how NTH couples organise their finances and compare this with existing data on married couples; (2) Develop theories of household financial management that are grounded in a more inclusive definition of ‘household’ or ‘family’; (3) Explore NTH couples’ understandings of their financial rights and responsibilities and consider the implications of their financial management practices for the proposed law reform governing financial provision on cohabitation breakdown. Data was collected mainly via on-line questionnaire with 267 individual respondents; majority (235) were cohabiting and the rest married.

  10. f

    Data from: Analysis of Offensive Patterns After Timeouts in Critical Moments...

    • datasetcatalog.nlm.nih.gov
    • portalcientifico.uvigo.gal
    • +1more
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gutiérrez-Santiago, Alfonso; Silva-Pinto, Antonio José; Lage, Iván Prieto; Reguera-López-de-la-Osa, Xoana; Argibay-González, Juan Carlos; Vázquez-Estévez, Christopher (2025). Analysis of Offensive Patterns After Timeouts in Critical Moments in the EuroLeague 2022/23 (data files for SPSS and Theme) [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0001452535
    Explore at:
    Dataset updated
    Feb 5, 2025
    Authors
    Gutiérrez-Santiago, Alfonso; Silva-Pinto, Antonio José; Lage, Iván Prieto; Reguera-López-de-la-Osa, Xoana; Argibay-González, Juan Carlos; Vázquez-Estévez, Christopher
    Description

    Este artículo analiza los patrones ofensivos después de los tiempos muertos (ATOs) en momentos críticos de los partidos de la temporada 2022/23 de la EuroLeague masculina. Utilizando metodología observacional y herramientas estadísticas avanzadas, se evaluaron 365 ATOs de 169 partidos cerrados (diferencia final de 10 puntos o menos). Los hallazgos destacan que los equipos líderes finalizan las jugadas con mayor éxito a través de tiros libres tras faltas, mientras que los equipos perdedores tienden a emplear estrategias ofensivas más rápidas, como bandejas y triples. Estos resultados ofrecen a entrenadores y personal técnico información clave para optimizar decisiones tácticas en momentos de alta presión. Además, el estudio subraya la importancia de entrenar estas jugadas en condiciones que simulen la intensidad física y psicológica de la competición real.En el directorio se encuentran tres archivos. En el subdirectorio SPSS se incluye el archivo de la base de datos diseñado para su uso con el software IBM SPSS (Statistical Package for the Social Sciences). Por otro lado, en el subdirectorio THEME6 se encuentran dos archivos compatibles con el programa Theme 6 Edu para la búsqueda de T-Patterns. Si se utiliza Theme 5, será necesario añadir al archivo VVT el criterio "Inicio-Fin" con las categorías : y &. De no realizar esta modificación, el archivo no funcionará correctamente.---------------------------This article examines offensive patterns after timeouts (ATOs) during critical moments of the 2022/23 men's EuroLeague season. Using observational methodology and advanced statistical tools, 365 ATOs from 169 close-score games (final point difference of 10 or fewer) were analyzed. Findings highlight that leading teams successfully conclude plays through free throws following fouls, while trailing teams often rely on quicker offensive strategies like layups and three-pointers. These insights provide coaches and technical staff with critical information to optimize tactical decisions under high-pressure conditions. The study also emphasizes the importance of training these plays in scenarios that replicate the physical and psychological intensity of real competition.In the directory, three files are available. The SPSS subdirectory contains the database file for use with IBM's Statistical Package for the Social Sciences (SPSS). Additionally, the THEME6 subdirectory includes two files compatible with the Theme 6 Edu software for T-Pattern analysis. If using Theme 5, the :and & categories must be added to the "Start-End" criterion in the VVT file. Without this adjustment, the file will not function properly.

  11. S

    Experimental Dataset on the Impact of Unfair Behavior by AI and Humans on...

    • scidb.cn
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang Luo (2025). Experimental Dataset on the Impact of Unfair Behavior by AI and Humans on Trust: Evidence from Six Experimental Studies [Dataset]. http://doi.org/10.57760/sciencedb.psych.00565
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Science Data Bank
    Authors
    Yang Luo
    Description

    This dataset originates from a series of experimental studies titled “Tough on People, Tolerant to AI? Differential Effects of Human vs. AI Unfairness on Trust” The project investigates how individuals respond to unfair behavior (distributive, procedural, and interactional unfairness) enacted by artificial intelligence versus human agents, and how such behavior affects cognitive and affective trust.1 Experiment 1a: The Impact of AI vs. Human Distributive Unfairness on TrustOverview: This dataset comes from an experimental study aimed at examining how individuals respond in terms of cognitive and affective trust when distributive unfairness is enacted by either an artificial intelligence (AI) agent or a human decision-maker. Experiment 1a specifically focuses on the main effect of the “type of decision-maker” on trust.Data Generation and Processing: The data were collected through Credamo, an online survey platform. Initially, 98 responses were gathered from students at a university in China. Additional student participants were recruited via Credamo to supplement the sample. Attention check items were embedded in the questionnaire, and participants who failed were automatically excluded in real-time. Data collection continued until 202 valid responses were obtained. SPSS software was used for data cleaning and analysis.Data Structure and Format: The data file is named “Experiment1a.sav” and is in SPSS format. It contains 28 columns and 202 rows, where each row corresponds to one participant. Columns represent measured variables, including: grouping and randomization variables, one manipulation check item, four items measuring distributive fairness perception, six items on cognitive trust, five items on affective trust, three items for honesty checks, and four demographic variables (gender, age, education, and grade level). The final three columns contain computed means for distributive fairness, cognitive trust, and affective trust.Additional Information: No missing data are present. All variable names are labeled in English abbreviations to facilitate further analysis. The dataset can be directly opened in SPSS or exported to other formats.2 Experiment 1b: The Mediating Role of Perceived Ability and Benevolence (Distributive Unfairness)Overview: This dataset originates from an experimental study designed to replicate the findings of Experiment 1a and further examine the potential mediating role of perceived ability and perceived benevolence.Data Generation and Processing: Participants were recruited via the Credamo online platform. Attention check items were embedded in the survey to ensure data quality. Data were collected using a rolling recruitment method, with invalid responses removed in real time. A total of 228 valid responses were obtained.Data Structure and Format: The dataset is stored in a file named Experiment1b.sav in SPSS format and can be directly opened in SPSS software. It consists of 228 rows and 40 columns. Each row represents one participant’s data record, and each column corresponds to a different measured variable. Specifically, the dataset includes: random assignment and grouping variables; one manipulation check item; four items measuring perceived distributive fairness; six items on perceived ability; five items on perceived benevolence; six items on cognitive trust; five items on affective trust; three items for attention check; and three demographic variables (gender, age, and education). The last five columns contain the computed mean scores for perceived distributive fairness, ability, benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be analyzed directly in SPSS or exported to other formats as needed.3 Experiment 2a: Differential Effects of AI vs. Human Procedural Unfairness on TrustOverview: This dataset originates from an experimental study aimed at examining whether individuals respond differently in terms of cognitive and affective trust when procedural unfairness is enacted by artificial intelligence versus human decision-makers. Experiment 2a focuses on the main effect of the decision agent on trust outcomes.Data Generation and Processing: Participants were recruited via the Credamo online survey platform from two universities located in different regions of China. A total of 227 responses were collected. After excluding those who failed the attention check items, 204 valid responses were retained for analysis. Data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2a.sav in SPSS format and can be directly opened in SPSS software. It contains 204 rows and 30 columns. Each row represents one participant’s response record, while each column corresponds to a specific variable. Variables include: random assignment and grouping; one manipulation check item; seven items measuring perceived procedural fairness; six items on cognitive trust; five items on affective trust; three attention check items; and three demographic variables (gender, age, and education). The final three columns contain computed average scores for procedural fairness, cognitive trust, and affective trust.Additional Notes: The dataset contains no missing values. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be directly analyzed in SPSS or exported to other formats as needed.4 Experiment 2b: Mediating Role of Perceived Ability and Benevolence (Procedural Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 2a and to further examine the potential mediating roles of perceived ability and perceived benevolence in shaping trust responses under procedural unfairness.Data Generation and Processing: Participants were working adults recruited through the Credamo online platform. A rolling data collection strategy was used, where responses failing attention checks were excluded in real time. The final dataset includes 235 valid responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2b.sav, which is in SPSS format and can be directly opened using SPSS software. It contains 235 rows and 43 columns. Each row corresponds to a single participant, and each column represents a specific measured variable. These include: random assignment and group labels; one manipulation check item; seven items measuring procedural fairness; six items for perceived ability; five items for perceived benevolence; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final five columns contain the computed average scores for procedural fairness, perceived ability, perceived benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to support future reuse and secondary analysis. The dataset can be directly analyzed in SPSS and easily converted into other formats if needed.5 Experiment 3a: Effects of AI vs. Human Interactional Unfairness on TrustOverview: This dataset comes from an experimental study that investigates how interactional unfairness, when enacted by either artificial intelligence or human decision-makers, influences individuals’ cognitive and affective trust. Experiment 3a focuses on the main effect of the “decision-maker type” under interactional unfairness conditions.Data Generation and Processing: Participants were college students recruited from two universities in different regions of China through the Credamo survey platform. After excluding responses that failed attention checks, a total of 203 valid cases were retained from an initial pool of 223 responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3a.sav, in SPSS format and compatible with SPSS software. It contains 203 rows and 27 columns. Each row represents a single participant, while each column corresponds to a specific measured variable. These include: random assignment and condition labels; one manipulation check item; four items measuring interactional fairness perception; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final three columns contain computed average scores for interactional fairness, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variable names are provided using standardized English abbreviations to facilitate secondary analysis. The data can be directly analyzed using SPSS and exported to other formats as needed.6 Experiment 3b: The Mediating Role of Perceived Ability and Benevolence (Interactional Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 3a and further examine the potential mediating roles of perceived ability and perceived benevolence under conditions of interactional unfairness.Data Generation and Processing: Participants were working adults recruited via the Credamo platform. Attention check questions were embedded in the survey, and responses that failed these checks were excluded in real time. Data collection proceeded in a rolling manner until a total of 227 valid responses were obtained. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3b.sav, in SPSS format and compatible with SPSS software. It includes 227 rows and

  12. 2019 Farm to School Census v2

    • agdatacommons.nal.usda.gov
    xlsx
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA Food and Nutrition Service, Office of Policy Support (2025). 2019 Farm to School Census v2 [Dataset]. http://doi.org/10.15482/USDA.ADC/1523106
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    United States Department of Agriculturehttp://usda.gov/
    Authors
    USDA Food and Nutrition Service, Office of Policy Support
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: This version supersedes version 1: https://doi.org/10.15482/USDA.ADC/1522654. In Fall of 2019 the USDA Food and Nutrition Service (FNS) conducted the third Farm to School Census. The 2019 Census was sent via email to 18,832 school food authorities (SFAs) including all public, private, and charter SFAs, as well as residential care institutions, participating in the National School Lunch Program. The questionnaire collected data on local food purchasing, edible school gardens, other farm to school activities and policies, and evidence of economic and nutritional impacts of participating in farm to school activities. A total of 12,634 SFAs completed usable responses to the 2019 Census. Version 2 adds the weight variable, “nrweight”, which is the Non-response weight. Processing methods and equipment used The 2019 Census was administered solely via the web. The study team cleaned the raw data to ensure the data were as correct, complete, and consistent as possible. This process involved examining the data for logical errors, contacting SFAs and consulting official records to update some implausible values, and setting the remaining implausible values to missing. The study team linked the 2019 Census data to information from the National Center of Education Statistics (NCES) Common Core of Data (CCD). Records from the CCD were used to construct a measure of urbanicity, which classifies the area in which schools are located. Study date(s) and duration Data collection occurred from September 9 to December 31, 2019. Questions asked about activities prior to, during and after SY 2018-19. The 2019 Census asked SFAs whether they currently participated in, had ever participated in or planned to participate in any of 30 farm to school activities. An SFA that participated in any of the defined activities in the 2018-19 school year received further questions. Study spatial scale (size of replicates and spatial scale of study area) Respondents to the survey included SFAs from all 50 States as well as American Samoa, Guam, the Northern Mariana Islands, Puerto Rico, the U.S. Virgin Islands, and Washington, DC. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) No sampling was involved in the collection of this data. Level of subsampling (number and repeat or within-replicate sampling) No sampling was involved in the collection of this data. Study design (before–after, control–impacts, time series, before–after-control–impacts) None – Non-experimental Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains SFA-level responses to the Census questionnaire for SFAs that responded. This file includes information from only SFAs that clicked “Submit” on the questionnaire. (The dataset used to create the 2019 Farm to School Census Report includes additional SFAs that answered enough questions for their response to be considered usable.) In addition, the file contains constructed variables used for analytic purposes. The file does not include weights created to produce national estimates for the 2019 Farm to School Census Report. The dataset identified SFAs, but to protect individual privacy the file does not include any information for the individual who completed the questionnaire. Description of any gaps in the data or other limiting factors See the full 2019 Farm to School Census Report [https://www.fns.usda.gov/cfs/farm-school-census-and-comprehensive-review] for a detailed explanation of the study’s limitations. Outcome measurement methods and equipment used None Resources in this dataset:Resource Title: 2019 Farm to School Codebook with Weights. File Name: Codebook_Update_02SEP21.xlsxResource Description: 2019 Farm to School Codebook with WeightsResource Title: 2019 Farm to School Data with Weights CSV. File Name: census2019_public_use_with_weight.csvResource Description: 2019 Farm to School Data with Weights CSVResource Title: 2019 Farm to School Data with Weights SAS R Stata and SPSS Datasets. File Name: Farm_to_School_Data_AgDataCommons_SAS_SPSS_R_STATA_with_weight.zipResource Description: 2019 Farm to School Data with Weights SAS R Stata and SPSS Datasets

  13. e

    Active Lives Children and Young People Survey, 2022-2023 - Dataset - B2FIND

    • b2find.eudat.eu
    Updated Aug 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Active Lives Children and Young People Survey, 2022-2023 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/706616ec-ff6b-527c-a38d-a6a9d47f0e50
    Explore at:
    Dataset updated
    Aug 25, 2024
    Description

    Abstract copyright UK Data Service and data collection copyright owner.The Active Lives Children and Young People Survey, which was established in September 2017, provides a world-leading approach to gathering data on how children engage with sport and physical activity. This school-based survey is the first and largest established physical activity survey with children and young people in England. It gives anyone working with children aged 5-16 key insight to help understand children's attitudes and behaviours around sport and physical activity. The results will shape and influence local decision-making as well as inform government policy on the PE and Sport Premium, Childhood Obesity Plan and other cross-departmental programmes. More general information about the study can be found on the Sport England Active Lives Survey webpage and the Active Lives Online website, including reports and data tables. Due to the closure of school sites during the coronavirus pandemic, the Active Lives Children and Young People survey was adapted to allow at-home completion. This approach was retained into the academic year 2022-23 to help maximise response numbers. The at-home completion approach was actively offered for secondary school pupils, and allowed but not encouraged for primary pupils. The adaptions involved minor questionnaire changes (e.g., to ensure the wording was appropriate for those not attending school and enabling completion at home) and communication changes. For further details on the survey changes, please see the accompanying User Guide document. Academic years 2020-21, 2021-22 and 2022-23 saw a more even split of responses by term across the year, compared to 2019-20, which had a reduced proportion of summer term responses due to the disruption caused by Covid-19. The survey identifies how participation varies across different activities and sports, by regions of England, between school types and terms, and between different demographic groups in the population. The survey measures levels of activity (active, fairly active and less active), attitudes towards sport and physical activity, swimming capability, the proportion of children and young people that volunteer in sport, sports spectating, and wellbeing measures such as happiness and life satisfaction. The questionnaire was designed to enable analysis of the findings by a broad range of variables, such as gender, family affluence and school year. The following datasets have been provided: 1) Main dataset: this file includes responses from children and young people from school years 3 to 11, as well as responses from parents of children in years 1-2. The parents of children in years 1-2 provide behavioural answers about their child’s activity levels; they do not provide attitudinal information. Using this main dataset, full analyses can be carried out into sports and physical activity participation, levels of activity, volunteering (years 5 to 11), etc. Weighting is required when using this dataset (wt_gross / wt_gross - Csplan files are available for SPSS users who can utilise them). 2) Year 1-2 dataset: This file includes responses directly from children in school years 1-2, providing their attitudinal responses (e.g., whether they like playing sport and find it easy). Analysis can also be carried out into feelings towards swimming, enjoyment of being active, happiness, etc. Weighting is required when using this dataset (wt_gross / wt_gross - Csplan files are available for SPSS users who can utilise them). 3) Teacher dataset: This file includes responses from the teachers at schools selected for the survey. Analysis can be carried out to determine school facilities available, the length of PE lessons, whether swimming lessons are offered, etc. Since December 2023, Sport England has provided weighting for the teacher data (‘wt_teacher’ weighting variable). For further information, please read the supporting documentation before using the datasets.

  14. Z

    Dataset for Instagram influencers and females' consumer behaviour

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Limniou, Maria (2024). Dataset for Instagram influencers and females' consumer behaviour [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10467061
    Explore at:
    Dataset updated
    Jan 7, 2024
    Dataset provided by
    Lovatt, Ellen
    Limniou, Maria
    Graham, Harriet
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset supports research on how Instagram Influencers impact female consumer behaviour to purchase products and the role of factors such as envy, scepticism towards advertising, satisfaction with life, social comparison and maternalism on consumer behaviour. There are two different files. The SPSS and CVS spreadsheet files include the same dataset but in a different format.

  15. WIC Infant and Toddler Feeding Practices Study-2 (WIC ITFPS-2): Prenatal,...

    • agdatacommons.nal.usda.gov
    txt
    Updated Oct 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USDA FNS Office of Policy Support (2024). WIC Infant and Toddler Feeding Practices Study-2 (WIC ITFPS-2): Prenatal, Infant Year 5 Year Datasets [Dataset]. http://doi.org/10.15482/USDA.ADC/1528196
    Explore at:
    txtAvailable download formats
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    Food and Nutrition Servicehttps://www.fns.usda.gov/
    United States Department of Agriculturehttp://usda.gov/
    Authors
    USDA FNS Office of Policy Support
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    The WIC Infant and Toddler Feeding Practices Study–2 (WIC ITFPS-2) (also known as the “Feeding My Baby Study”) is a national, longitudinal study that captures data on caregivers and their children who participated in the Special Supplemental Nutrition Program for Women, Infants, and Children (WIC) around the time of the child’s birth. The study addresses a series of research questions regarding feeding practices, the effect of WIC services on those practices, and the health and nutrition outcomes of children on WIC. Additionally, the study assesses changes in behaviors and trends that may have occurred over the past 20 years by comparing findings to the WIC Infant Feeding Practices Study–1 (WIC IFPS-1), the last major study of the diets of infants on WIC. This longitudinal cohort study has generated a series of reports. These datasets include data from caregivers and their children during the prenatal period and during the children’s first five years of life (child ages 1 to 60 months). A full description of the study design and data collection methods can be found in Chapter 1 of the Second Year Report (https://www.fns.usda.gov/wic/wic-infant-and-toddler-feeding-practices-st...). A full description of the sampling and weighting procedures can be found in Appendix B-1 of the Fourth Year Report (https://fns-prod.azureedge.net/sites/default/files/resource-files/WIC-IT...). Processing methods and equipment used Data in this dataset were primarily collected via telephone interview with caregivers. Children’s length/height and weight data were objectively collected while at the WIC clinic or during visits with healthcare providers. The study team cleaned the raw data to ensure the data were as correct, complete, and consistent as possible. Study date(s) and duration Data collection occurred between 2013 and 2019. Study spatial scale (size of replicates and spatial scale of study area) Respondents were primarily the caregivers of children who received WIC services around the time of the child’s birth. Data were collected from 80 WIC sites across 27 State agencies. Level of true replication Unknown Sampling precision (within-replicate sampling or pseudoreplication) This dataset includes sampling weights that can be applied to produce national estimates. A full description of the sampling and weighting procedures can be found in Appendix B-1 of the Fourth Year Report (https://fns-prod.azureedge.net/sites/default/files/resource-files/WIC-IT...). Level of subsampling (number and repeat or within-replicate sampling) A full description of the sampling and weighting procedures can be found in Appendix B-1 of the Fourth Year Report (https://fns-prod.azureedge.net/sites/default/files/resource-files/WIC-IT...). Study design (before–after, control–impacts, time series, before–after-control–impacts) Longitudinal cohort study. Description of any data manipulation, modeling, or statistical analysis undertaken Each entry in the dataset contains caregiver-level responses to telephone interviews. Also available in the dataset are children’s length/height and weight data, which were objectively collected while at the WIC clinic or during visits with healthcare providers. In addition, the file contains derived variables used for analytic purposes. The file also includes weights created to produce national estimates. The dataset does not include any personally-identifiable information for the study children and/or for individuals who completed the telephone interviews. Description of any gaps in the data or other limiting factors Please refer to the series of annual WIC ITFPS-2 reports (https://www.fns.usda.gov/wic/infant-and-toddler-feeding-practices-study-2-fourth-year-report) for detailed explanations of the study’s limitations. Outcome measurement methods and equipment used The majority of outcomes were measured via telephone interviews with children’s caregivers. Dietary intake was assessed using the USDA Automated Multiple Pass Method (https://www.ars.usda.gov/northeast-area/beltsville-md-bhnrc/beltsville-h...). Children’s length/height and weight data were objectively collected while at the WIC clinic or during visits with healthcare providers. Resources in this dataset:Resource Title: ITFP2 Year 5 Enroll to 60 Months Public Use Data CSV. File Name: itfps2_enrollto60m_publicuse.csvResource Description: ITFP2 Year 5 Enroll to 60 Months Public Use Data CSVResource Title: ITFP2 Year 5 Enroll to 60 Months Public Use Data Codebook. File Name: ITFPS2_EnrollTo60m_PUF_Codebook.pdfResource Description: ITFP2 Year 5 Enroll to 60 Months Public Use Data CodebookResource Title: ITFP2 Year 5 Enroll to 60 Months Public Use Data SAS SPSS STATA R Data. File Name: ITFP@_Year5_Enroll60_SAS_SPSS_STATA_R.zipResource Description: ITFP2 Year 5 Enroll to 60 Months Public Use Data SAS SPSS STATA R DataResource Title: ITFP2 Year 5 Ana to 60 Months Public Use Data CSV. File Name: ampm_1to60_ana_publicuse.csvResource Description: ITFP2 Year 5 Ana to 60 Months Public Use Data CSVResource Title: ITFP2 Year 5 Tot to 60 Months Public Use Data Codebook. File Name: AMPM_1to60_Tot Codebook.pdfResource Description: ITFP2 Year 5 Tot to 60 Months Public Use Data CodebookResource Title: ITFP2 Year 5 Ana to 60 Months Public Use Data Codebook. File Name: AMPM_1to60_Ana Codebook.pdfResource Description: ITFP2 Year 5 Ana to 60 Months Public Use Data CodebookResource Title: ITFP2 Year 5 Ana to 60 Months Public Use Data SAS SPSS STATA R Data. File Name: ITFP@_Year5_Ana_60_SAS_SPSS_STATA_R.zipResource Description: ITFP2 Year 5 Ana to 60 Months Public Use Data SAS SPSS STATA R DataResource Title: ITFP2 Year 5 Tot to 60 Months Public Use Data CSV. File Name: ampm_1to60_tot_publicuse.csvResource Description: ITFP2 Year 5 Tot to 60 Months Public Use Data CSVResource Title: ITFP2 Year 5 Tot to 60 Months Public Use SAS SPSS STATA R Data. File Name: ITFP@_Year5_Tot_60_SAS_SPSS_STATA_R.zipResource Description: ITFP2 Year 5 Tot to 60 Months Public Use SAS SPSS STATA R DataResource Title: ITFP2 Year 5 Food Group to 60 Months Public Use Data CSV. File Name: ampm_foodgroup_1to60m_publicuse.csvResource Description: ITFP2 Year 5 Food Group to 60 Months Public Use Data CSVResource Title: ITFP2 Year 5 Food Group to 60 Months Public Use Data Codebook. File Name: AMPM_FoodGroup_1to60m_Codebook.pdfResource Description: ITFP2 Year 5 Food Group to 60 Months Public Use Data CodebookResource Title: ITFP2 Year 5 Food Group to 60 Months Public Use SAS SPSS STATA R Data. File Name: ITFP@_Year5_Foodgroup_60_SAS_SPSS_STATA_R.zipResource Title: WIC Infant and Toddler Feeding Practices Study-2 Data File Training Manual. File Name: WIC_ITFPS-2_DataFileTrainingManual.pdf

  16. e

    Advanced Neuropsychological Diagnostics Infrastructure (ANDI) - Dataset -...

    • b2find.eudat.eu
    Updated Nov 11, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Advanced Neuropsychological Diagnostics Infrastructure (ANDI) - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/531b26c8-b1b8-5d01-a172-5ce535603184
    Explore at:
    Dataset updated
    Nov 11, 2024
    Description

    [Dutch]ANDI is een website met neuropsychologische testgegevens van bijna 27.000 mensen. De website kan deze data bewerken met geavanceerde statistische methoden. Onderzoekers en clinici kunnen ANDI gebruiken in nieuwe onderzoeksprojecten en bij de diagnostiek van individuele patiënten. Zie www.andi.nl[English]In the Advanced Neuropsychological Diagnostics Infrastructure (ANDI), datasets of several research groups are combined into a single database, containing scores on neuropsychological tests from healthy participants. For most popular neuropsychological tests the quantity, and range of these data surpasses that of traditional normative data, thereby enabling more accurate neuropsychological assessment. Because of the unique structure of the database, it facilitates normative comparison methods that were not feasible before, in particular those in which entire profiles of scores are evaluated. In the file 'ANDI data 23-2-2017' the variable 'age' is centered at 65, and the variable 'sex' is coded as 0=male and 1=female.The depositor provided the file 'SPSS ANDI data 23-2-2017' in SAV format. DANS added the POR and DTA format of this file.The depositor provided the files 'ANDI test information' and 'ANDI data 23-2-2017' in XLSX format. DANS added the CSV format of these files.

  17. f

    Table_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A...

    • frontiersin.figshare.com
    xlsx
    Updated Jun 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Loffing (2023). Table_1_Raw Data Visualization for Common Factorial Designs Using SPSS: A Syntax Collection and Tutorial.XLSX [Dataset]. http://doi.org/10.3389/fpsyg.2022.808469.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 15, 2023
    Dataset provided by
    Frontiers
    Authors
    Florian Loffing
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Transparency in data visualization is an essential ingredient for scientific communication. The traditional approach of visualizing continuous quantitative data solely in the form of summary statistics (i.e., measures of central tendency and dispersion) has repeatedly been criticized for not revealing the underlying raw data distribution. Remarkably, however, systematic and easy-to-use solutions for raw data visualization using the most commonly reported statistical software package for data analysis, IBM SPSS Statistics, are missing. Here, a comprehensive collection of more than 100 SPSS syntax files and an SPSS dataset template is presented and made freely available that allow the creation of transparent graphs for one-sample designs, for one- and two-factorial between-subject designs, for selected one- and two-factorial within-subject designs as well as for selected two-factorial mixed designs and, with some creativity, even beyond (e.g., three-factorial mixed-designs). Depending on graph type (e.g., pure dot plot, box plot, and line plot), raw data can be displayed along with standard measures of central tendency (arithmetic mean and median) and dispersion (95% CI and SD). The free-to-use syntax can also be modified to match with individual needs. A variety of example applications of syntax are illustrated in a tutorial-like fashion along with fictitious datasets accompanying this contribution. The syntax collection is hoped to provide researchers, students, teachers, and others working with SPSS a valuable tool to move towards more transparency in data visualization.

  18. d

    Current Population Survey (CPS)

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Damico, Anthony (2023). Current Population Survey (CPS) [Dataset]. http://doi.org/10.7910/DVN/AK4FDD
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Damico, Anthony
    Description

    analyze the current population survey (cps) annual social and economic supplement (asec) with r the annual march cps-asec has been supplying the statistics for the census bureau's report on income, poverty, and health insurance coverage since 1948. wow. the us census bureau and the bureau of labor statistics ( bls) tag-team on this one. until the american community survey (acs) hit the scene in the early aughts (2000s), the current population survey had the largest sample size of all the annual general demographic data sets outside of the decennial census - about two hundred thousand respondents. this provides enough sample to conduct state- and a few large metro area-level analyses. your sample size will vanish if you start investigating subgroups b y state - consider pooling multiple years. county-level is a no-no. despite the american community survey's larger size, the cps-asec contains many more variables related to employment, sources of income, and insurance - and can be trended back to harry truman's presidency. aside from questions specifically asked about an annual experience (like income), many of the questions in this march data set should be t reated as point-in-time statistics. cps-asec generalizes to the united states non-institutional, non-active duty military population. the national bureau of economic research (nber) provides sas, spss, and stata importation scripts to create a rectangular file (rectangular data means only person-level records; household- and family-level information gets attached to each person). to import these files into r, the parse.SAScii function uses nber's sas code to determine how to import the fixed-width file, then RSQLite to put everything into a schnazzy database. you can try reading through the nber march 2012 sas importation code yourself, but it's a bit of a proc freak show. this new github repository contains three scripts: 2005-2012 asec - download all microdata.R down load the fixed-width file containing household, family, and person records import by separating this file into three tables, then merge 'em together at the person-level download the fixed-width file containing the person-level replicate weights merge the rectangular person-level file with the replicate weights, then store it in a sql database create a new variable - one - in the data table 2012 asec - analysis examples.R connect to the sql database created by the 'download all microdata' progr am create the complex sample survey object, using the replicate weights perform a boatload of analysis examples replicate census estimates - 2011.R connect to the sql database created by the 'download all microdata' program create the complex sample survey object, using the replicate weights match the sas output shown in the png file below 2011 asec replicate weight sas output.png statistic and standard error generated from the replicate-weighted example sas script contained in this census-provided person replicate weights usage instructions document. click here to view these three scripts for more detail about the current population survey - annual social and economic supplement (cps-asec), visit: the census bureau's current population survey page the bureau of labor statistics' current population survey page the current population survey's wikipedia article notes: interviews are conducted in march about experiences during the previous year. the file labeled 2012 includes information (income, work experience, health insurance) pertaining to 2011. when you use the current populat ion survey to talk about america, subract a year from the data file name. as of the 2010 file (the interview focusing on america during 2009), the cps-asec contains exciting new medical out-of-pocket spending variables most useful for supplemental (medical spending-adjusted) poverty research. confidential to sas, spss, stata, sudaan users: why are you still rubbing two sticks together after we've invented the butane lighter? time to transition to r. :D

  19. Z

    A dataset from a survey investigating disciplinary differences in data...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gregory, Kathleen (2024). A dataset from a survey investigating disciplinary differences in data citation [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7555362
    Explore at:
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Peters, Isabella
    Ninkov, Anton Boudreau
    Haustein, Stefanie
    Ripp, Chantal
    Gregory, Kathleen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    GENERAL INFORMATION

    Title of Dataset: A dataset from a survey investigating disciplinary differences in data citation

    Date of data collection: January to March 2022

    Collection instrument: SurveyMonkey

    Funding: Alfred P. Sloan Foundation

    SHARING/ACCESS INFORMATION

    Licenses/restrictions placed on the data: These data are available under a CC BY 4.0 license

    Links to publications that cite or use the data:

    Gregory, K., Ninkov, A., Ripp, C., Peters, I., & Haustein, S. (2022). Surveying practices of data citation and reuse across disciplines. Proceedings of the 26th International Conference on Science and Technology Indicators. International Conference on Science and Technology Indicators, Granada, Spain. https://doi.org/10.5281/ZENODO.6951437

    Gregory, K., Ninkov, A., Ripp, C., Roblin, E., Peters, I., & Haustein, S. (2023). Tracing data: A survey investigating disciplinary differences in data citation. Zenodo. https://doi.org/10.5281/zenodo.7555266

    DATA & FILE OVERVIEW

    File List

    Filename: MDCDatacitationReuse2021Codebookv2.pdf Codebook

    Filename: MDCDataCitationReuse2021surveydatav2.csv Dataset format in csv

    Filename: MDCDataCitationReuse2021surveydatav2.sav Dataset format in SPSS

    Filename: MDCDataCitationReuseSurvey2021QNR.pdf Questionnaire

    Additional related data collected that was not included in the current data package: Open ended questions asked to respondents

    METHODOLOGICAL INFORMATION

    Description of methods used for collection/generation of data:

    The development of the questionnaire (Gregory et al., 2022) was centered around the creation of two main branches of questions for the primary groups of interest in our study: researchers that reuse data (33 questions in total) and researchers that do not reuse data (16 questions in total). The population of interest for this survey consists of researchers from all disciplines and countries, sampled from the corresponding authors of papers indexed in the Web of Science (WoS) between 2016 and 2020.

    Received 3,632 responses, 2,509 of which were completed, representing a completion rate of 68.6%. Incomplete responses were excluded from the dataset. The final total contains 2,492 complete responses and an uncorrected response rate of 1.57%. Controlling for invalid emails, bounced emails and opt-outs (n=5,201) produced a response rate of 1.62%, similar to surveys using comparable recruitment methods (Gregory et al., 2020).

    Methods for processing the data:

    Results were downloaded from SurveyMonkey in CSV format and were prepared for analysis using Excel and SPSS by recoding ordinal and multiple choice questions and by removing missing values.

    Instrument- or software-specific information needed to interpret the data:

    The dataset is provided in SPSS format, which requires IBM SPSS Statistics. The dataset is also available in a coded format in CSV. The Codebook is required to interpret to values.

    DATA-SPECIFIC INFORMATION FOR: MDCDataCitationReuse2021surveydata

    Number of variables: 95

    Number of cases/rows: 2,492

    Missing data codes: 999 Not asked

    Refer to MDCDatacitationReuse2021Codebook.pdf for detailed variable information.

  20. e

    Cluster randomized trials with pretest and posttest measurement - Dataset -...

    • b2find.eudat.eu
    Updated Oct 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Cluster randomized trials with pretest and posttest measurement - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/63508b90-24d6-58f2-8063-bec425e35535
    Explore at:
    Dataset updated
    Oct 22, 2023
    Description

    This data set contains SPSS syntaxes and simulated and real data for a statistical paper that compares different methods for analyzing a cluster randomized trial with a pretest and a posttest of a quantitative outcome variable. There is also a pdf which states per other file its type (spss system file or syntax file) and its role in the project. Basically, there are three files (one system file, two syntaxes) for doing simulations, and nine files (three system files, six syntaxes) for analyzing real data from a published cluster randomized trial (Kraag et al., J Child Psychology and Psychiatry, 2009). The system files with real data have restricted access in view of EU privacy legislation. All other files are freely accessible.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kathleen Simon; Megan Hurst (2023). Dataset for paper: Body Positivity but not for everyone [Dataset]. http://doi.org/10.25377/sussex.9885644.v1

Dataset for paper: Body Positivity but not for everyone

Related Article
Explore at:
txtAvailable download formats
Dataset updated
May 31, 2023
Dataset provided by
University of Sussex
Authors
Kathleen Simon; Megan Hurst
License

Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically

Description

Data for a Brief Report/Short Communication published in Body Image (2021). Details of the study are included below via the abstract from the manuscript. The dataset includes online experimental data from 167 women who were recruited via social media and institutional participant pools. The experiment was completed in Qualtrics.Women viewed either neutral travel images (control), body positivity posts with an average-sized model (e.g., ~ UK size 14), or body positivity posts with a larger model (e.g., UK size 18+); which images women viewed is show in the ‘condition’ variable in the data.The data includes the age range, height, weight, calculated BMI, and Instagram use of participants. After viewing the images, women responded to the Positive and Negative Affect Schedule (PANAS), a state version of the Body Satisfaction Scale (BSS), and reported their immediate social comparison with the images (SAC items). Women then selected a lunch for themselves from a hypothetical menu; these selections are detailed in the data, as are the total calories calculated from this and the proportion of their picks which were (provided as a percentage, and as a categorical variable [as used in the paper analyses]). Women also reported whether they were on a special diet (e.g., vegan or vegetarian), had food intolerances, when they last ate, and how hungry they were.

Women also completed trait measures of Body Appreciation (BAS-2) and social comparison (PACS-R). Women also were asked to comment on what they thought the experiment was about. Items and computed scales are included within the dataset.This item includes the dataset collected for the manuscript (in SPSS and CSV formats), the variable list for the CSV file (for users working with the CSV datafile; the variable list and details are contained within the .sav file for the SPSS version), and the SPSS syntax for our analyses (.sps). Also included are the information and consent form (collected via Qualtrics) and the questions as completed by participants (both in pdf format).Please note that the survey order in the PDF is not the same as in the datafiles; users should utilise the variable list (either in CSV or SPSS formats) to identify the items in the data.The SPSS syntax can be used to replicate the analyses reported in the Results section of the paper. Annotations within the syntax file guide the user through these.

A copy of SPSS Statistics is needed to open the .sav and .sps files.

Manuscript abstract:

Body Positivity (or ‘BoPo’) social media content may be beneficial for women’s mood and body image, but concerns have been raised that it may reduce motivation for healthy behaviours. This study examines differences in women’s mood, body satisfaction, and hypothetical food choices after viewing BoPo posts (featuring average or larger women) or a neutral travel control. Women (N = 167, 81.8% aged 18-29) were randomly assigned in an online experiment to one of three conditions (BoPo-average, BoPo-larger, or Travel/Control) and viewed three Instagram posts for two minutes, before reporting their mood and body satisfaction, and selecting a meal from a hypothetical menu. Women who viewed the BoPo posts featuring average-size women reported more positive mood than the control group; women who viewed posts featuring larger women did not. There were no effects of condition on negative mood or body satisfaction. Women did not make less healthy food choices than the control in either BoPo condition; women who viewed the BoPo images of larger women showed a stronger association between hunger and calories selected. These findings suggest that concerns over BoPo promoting unhealthy behaviours may be misplaced, but further research is needed regarding women’s responses to different body sizes.

Search
Clear search
Close search
Google apps
Main menu