11 datasets found
  1. T

    United States Consumer Price Index (CPI)

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Consumer Price Index (CPI) [Dataset]. https://tradingeconomics.com/united-states/consumer-price-index-cpi
    Explore at:
    xml, csv, excel, jsonAvailable download formats
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1950 - Sep 30, 2025
    Area covered
    United States
    Description

    Consumer Price Index CPI in the United States increased to 324.80 points in September from 323.98 points in August of 2025. This dataset provides the latest reported value for - United States Consumer Price Index (CPI) - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  2. US Financial Indicators - 1974 to 2024

    • kaggle.com
    zip
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abhishek Bhatnagar (2024). US Financial Indicators - 1974 to 2024 [Dataset]. https://www.kaggle.com/datasets/abhishekb7/us-financial-indicators-1974-to-2024
    Explore at:
    zip(15336 bytes)Available download formats
    Dataset updated
    Nov 25, 2024
    Authors
    Abhishek Bhatnagar
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    U.S. Economic and Financial Dataset

    Dataset Description

    This dataset combines historical U.S. economic and financial indicators, spanning the last 50 years, to facilitate time series analysis and uncover patterns in macroeconomic trends. It is designed for exploring relationships between interest rates, inflation, economic growth, stock market performance, and industrial production.

    Key Features

    • Frequency: Monthly
    • Time Period: Last 50 years from Nov-24
    • Sources:
      • Federal Reserve Economic Data (FRED)
      • Yahoo Finance

    Dataset Feature Description

    1. Interest Rate (Interest_Rate):

      • The effective federal funds rate, representing the interest rate at which depository institutions trade federal funds overnight.
    2. Inflation (Inflation):

      • The Consumer Price Index for All Urban Consumers, an indicator of inflation trends.
    3. GDP (GDP):

      • Real GDP measures the inflation-adjusted value of goods and services produced in the U.S.
    4. Unemployment Rate (Unemployment):

      • The percentage of the labor force that is unemployed and actively seeking work.
    5. Stock Market Performance (S&P500):

      • Monthly average of the adjusted close price, representing stock market trends.
    6. Industrial Production (Ind_Prod):

      • A measure of real output in the industrial sector, including manufacturing, mining, and utilities.

    Dataset Statistics

    1. Total Entries: 599
    2. Columns: 6
    3. Memory usage: 37.54 kB
    4. Data types: float64

    Feature Overview

    • Columns:
      • Interest_Rate: Monthly Federal Funds Rate (%)
      • Inflation: CPI (All Urban Consumers, Index)
      • GDP: Real GDP (Billions of Chained 2012 Dollars)
      • Unemployment: Unemployment Rate (%)
      • Ind_Prod: Industrial Production Index (2017=100)
      • S&P500: Monthly Average of S&P 500 Adjusted Close Prices

    Executive Summary

    This project explores the interconnected dynamics of key macroeconomic indicators and financial market trends over the past 50 years, leveraging data from the Federal Reserve Economic Data (FRED) and Yahoo Finance. The dataset integrates critical variables such as the Federal Funds Rate, Inflation (CPI), Real GDP, Unemployment Rate, Industrial Production, and the S&P 500 Index, providing a holistic view of the U.S. economy and financial markets.

    The analysis focuses on uncovering relationships between these variables through time-series visualization, correlation analysis, and trend decomposition. Key findings are included in the Insights section. This project serves as a robust resource for understanding long-term economic trends, policy impacts, and market behavior. It is particularly valuable for students, researchers, policymakers, and financial analysts seeking to connect macroeconomic theory with real-world data.

    Potential Use Cases

    • Economic Analysis: Examine relationships between interest rates, inflation, GDP, and unemployment.
    • Stock Market Prediction: Study how macroeconomic indicators influence stock market trends.
    • Time Series Modeling: Perform ARIMA, VAR, or other models to forecast economic trends.
    • Cyclic Pattern Analysis: Identify how economic shocks and recoveries impact key indicators.

    Snap of Power Analysis

    imagehttps://github.com/user-attachments/assets/1b40e0ca-7d2e-4fbc-8cfd-df3f09e4fdb8">

    To ensure sufficient power, the dataset covers last 50 years of monthly data i.e., around 600 entries.

    Key Insights derived through EDA, time-series visualization, correlation analysis, and trend decomposition

    • Interest Rate and Inflation Dynamics: The interest Rate and inflation exhibit an inverse relationship, especially during periods of aggressive monetary tightening by the Federal Reserve.
    • Economic Growth and Market Performance: GDP growth and the S&P 500 Index show a positive correlation, reflecting how market performance often aligns with overall economic health.
    • Labor Market and Industrial Output: Unemployment and industrial production demonstrate a strong inverse relationship. Higher industrial output is typically associated with lower unemployment
    • Market Behavior During Economic Shocks: The S&P 500 experienced sharp declines during significant crises, such as the 2008 financial crash and the COVID-19 pandemic in 2020. These events also triggered increased unemployment and contractions in GDP, highlighting the interplay between markets and the broader economy.
    • Correlation Highlights: S&P 500 and GDP have a strong positive correlation. Interest rates negatively correlate with GDP and inflation, reflecting monetary policy impacts. Unemployment is negatively correlated with industrial production but positively correlated with interest rates.

    Link to GitHub Repo

    https:/...

  3. US Recession Dataset

    • kaggle.com
    zip
    Updated May 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shubhaansh Kumar (2023). US Recession Dataset [Dataset]. https://www.kaggle.com/datasets/shubhaanshkumar/us-recession-dataset
    Explore at:
    zip(39062 bytes)Available download formats
    Dataset updated
    May 14, 2023
    Authors
    Shubhaansh Kumar
    License

    https://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/

    Area covered
    United States
    Description

    This dataset includes various economic indicators such as stock market performance, inflation rates, GDP, interest rates, employment data, and housing index, all of which are crucial for understanding the state of the economy. By analysing this dataset, one can gain insights into the causes and effects of past recessions in the US, which can inform investment decisions and policy-making.

    There are 20 columns and 343 rows spanning 1990-04 to 2022-10

    The columns are:

    1. Price: Price column refers to the S&P 500 lot price over the years. The S&P 500 is a stock market index that measures the performance of 500 large companies listed on stock exchanges in the United States. This variable represents the value of the S&P 500 index from 1980 to present. Industrial Production: This variable measures the output of industrial establishments in the manufacturing, mining, and utilities sectors. It reflects the overall health of the manufacturing industry, which is a key component of the US economy.

    2. INDPRO: Industrial production measures the output of the manufacturing, mining, and utility sectors of the economy. It provides insights into the overall health of the economy, as a decline in industrial production can indicate a slowdown in economic activity. This data can be used by policymakers and investors to assess the state of the economy and make informed decisions.

    3. CPI: CPI stands for Consumer Price Index, which measures the change in the prices of a basket of goods and services that consumers purchase. CPI inflation represents the rate at which the prices of goods and services in the economy are increasing.

    4. Treasure Bill rate (3 month to 30 Years): Treasury bills (T-bills) are short-term debt securities issued by the US government. This variable represents the interest rates on T-bills with maturities ranging from 3 months to 30 years. It reflects the cost of borrowing money for the government and provides an indication of the overall level of interest rates in the economy.

    5. GDP: GDP stands for Gross Domestic Product, which is the value of all goods and services produced in a country. This dataset is taking into account only the Nominal GDP values. Nominal GDP represents the total value of goods and services produced in the US economy without accounting for inflation.

    6. Rate: The Federal Funds Rate is the interest rate at which depository institutions lend reserve balances to other depository institutions overnight. It is set by the Federal Reserve and is used as a tool to regulate the money supply in the economy.

    7. BBK_Index: The BBKI are maintained and produced by the Indiana Business Research Center at the Kelley School of Business at Indiana University. The BBK Coincident and Leading Indexes and Monthly GDP Growth for the U.S. are constructed from a collapsed dynamic factor analysis of a panel of 490 monthly measures of real economic activity and quarterly real GDP growth. The BBK Leading Index is the leading subcomponent of the cycle measured in standard deviation units from trend real GDP growth.

    8. Housing Index: This variable represents the value of the housing market in the US. It is calculated based on the prices of homes sold in the market and provides an indication of the overall health of the housing market.

    9. Recession binary column: This variable is a binary indicator that takes a value of 1 when the US economy is in a recession and 0 otherwise. It is based on the official business cycle dates provided by the National Bureau of Economic Research.

  4. T

    India Inflation Rate

    • tradingeconomics.com
    • fa.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). India Inflation Rate [Dataset]. https://tradingeconomics.com/india/inflation-cpi
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Nov 12, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 2012 - Oct 31, 2025
    Area covered
    India
    Description

    Inflation Rate in India decreased to 0.25 percent in October from 1.44 percent in September of 2025. This dataset provides - India Inflation Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  5. m

    Data for: Impact of consumer confidence on the expected returns of the Tokyo...

    • data.mendeley.com
    Updated Sep 22, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Javier Rojo Suárez (2020). Data for: Impact of consumer confidence on the expected returns of the Tokyo Stock Exchange: A comparative analysis of consumption and production-based asset pricing models [Dataset]. http://doi.org/10.17632/vyxt842rzg.2
    Explore at:
    Dataset updated
    Sep 22, 2020
    Authors
    Javier Rojo Suárez
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    Using all stocks listed in the Tokyo Stock Exchange and macroeconomic data for Japan, the dataset comprises the following series:

    1. Monthly returns for 25 size-book-to-market equity portfolios, following the Fama and French (1993) methodology. (Raw data source: Datastream database)
    2. Monthly returns for 20 momentum portfolios, following the Fama and French (1993) methodology. (Raw data source: Datastream database)
    3. Monthly returns for 25 price-to-cash flow-dividend yield portfolios, following the Fama and French (1993) methodology. (Raw data source: Datastream database)
    4. Fama and French three-factors (RM, SMB and HML), following the Fama and French (1993) methodology. (Raw data source: Datastream database)
    5. Fama and French five-factors (RM, SMB, HML, RMW, and CMA), following the Fama and French (2015) methodology for all factors, except for RMW, which is determined using the return on assets as sorting variable, as in Hou, Xue and Zhang (2014). (Raw data source: Datastream database)
    6. Private final consumption expenditure, in national currency and constant prices, non-seasonally adjusted, for Japan. (Raw data source: OECD)
    7. Consumer Confidence Index (CCI) for Japan. (Raw data source: OECD)
    8. Three-month interest rate of the Treasury Bill for Japan. (Raw data source: OECD)
    9. Gross Domestic Product (GDP) for Japan. (Raw data source: OECD)
    10. Consumer Price Index (CPI) growth rate for Japan. (Raw data source: OECD)

    We have produced all return series using the following data from Datastream: (i) total return index (RI series), (ii) market value (MV series), (iii) market-to-book equity (PTBV series), (iv) total assets (WC02999 series), (v) return on equity (WC08301 series), (vi) price-to-cash flow ratio (PC series), and (vii) dividend yield (DY series). We have used the generic rules suggested by Griffin, Kelly, & Nardari (2010) for excluding non-common equity securities from Datastream data. We also exclude stocks with less than twelve observations in the period from July 1992 to June 2018. Accordingly, our sample comprises a total number of 5,312 stocks.

    REFERENCES:

    Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33, 3–56. Fama, E. F. and French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116, 1–22. Griffin, J. M., Kelly, P., and Nardari, F. (2010). Do market efficiency measures yield correct inferences? A comparison of developed and emerging markets. Review of Financial Studies, 23, 3225–3277. Hou K, Xue C, Zhang L. (2014). Digesting anomalies: An investment approach. Review of Financial Studies, 28, 650-705.

  6. Global Inflation rate (1960-present)

    • kaggle.com
    zip
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Frederick Salazar Sanchez (2025). Global Inflation rate (1960-present) [Dataset]. https://www.kaggle.com/datasets/fredericksalazar/global-inflation-rate-1960-present
    Explore at:
    zip(169451 bytes)Available download formats
    Dataset updated
    Feb 4, 2025
    Authors
    Frederick Salazar Sanchez
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    Please, if you use this dataset or do you like my work please UPVOTE 👁️

    This dataset provides a comprehensive historical record of inflation rates worldwide, covering the period from 1960 to the present. It includes inflation data at the national level for multiple countries and territories, making it a valuable resource for economic analysis, financial forecasting, and macroeconomic research.

    Data Source: https://datos.bancomundial.org/indicador/FP.CPI.TOTL.ZG?end=2023&start=1960&view=chart

    Key Features:

    ✅ Global Coverage – Inflation rates for countries across all continents.

    ✅ Long-Term Data – Over 60 years of historical records, ideal for trend analysis.

    ✅ Regional Classification – Data categorized by region, sub-region, and intermediate region for in-depth geographic analysis.

    ✅ Standardized Indicators – Based on CPI (Consumer Price Index) inflation rates from reputable sources.

    Potential Use Cases:

    📊 Economic Research – Analyze inflation trends and economic cycles.

    📈 Financial Forecasting – Predict future inflation and its impact on global markets.

    🌍 Policy & Development Studies – Examine regional disparities and economic policies.

    📚 Machine Learning Applications – Train predictive models using historical inflation trends.

    This dataset is an essential tool for economists, data scientists, and financial analysts looking to explore global inflation patterns and their implications on economic stability.

  7. Walmart Dataset

    • kaggle.com
    zip
    Updated Dec 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M Yasser H (2021). Walmart Dataset [Dataset]. https://www.kaggle.com/datasets/yasserh/walmart-dataset
    Explore at:
    zip(125095 bytes)Available download formats
    Dataset updated
    Dec 26, 2021
    Authors
    M Yasser H
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://raw.githubusercontent.com/Masterx-AI/Project_Retail_Analysis_with_Walmart/main/Wallmart1.jpg" alt="">

    Description:

    One of the leading retail stores in the US, Walmart, would like to predict the sales and demand accurately. There are certain events and holidays which impact sales on each day. There are sales data available for 45 stores of Walmart. The business is facing a challenge due to unforeseen demands and runs out of stock some times, due to the inappropriate machine learning algorithm. An ideal ML algorithm will predict demand accurately and ingest factors like economic conditions including CPI, Unemployment Index, etc.

    Walmart runs several promotional markdown events throughout the year. These markdowns precede prominent holidays, the four largest of all, which are the Super Bowl, Labour Day, Thanksgiving, and Christmas. The weeks including these holidays are weighted five times higher in the evaluation than non-holiday weeks. Part of the challenge presented by this competition is modeling the effects of markdowns on these holiday weeks in the absence of complete/ideal historical data. Historical sales data for 45 Walmart stores located in different regions are available.

    Acknowledgements

    The dataset is taken from Kaggle.

    Objective:

    • Understand the Dataset & cleanup (if required).
    • Build Regression models to predict the sales w.r.t single & multiple features.
    • Also evaluate the models & compare their respective scores like R2, RMSE, etc.
  8. Economic Data (Life after Covid)

    • kaggle.com
    zip
    Updated Apr 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kenetic (2024). Economic Data (Life after Covid) [Dataset]. https://www.kaggle.com/datasets/keneticenergy/economic-data-life-after-covid/discussion?sort=undefined
    Explore at:
    zip(12898 bytes)Available download formats
    Dataset updated
    Apr 1, 2024
    Authors
    kenetic
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    https://static01.nyt.com/images/2020/11/18/nyregion/00nyblind1/merlin_179220645_b77f46ff-a503-40b6-bf2b-4922a676e61b-superJumbo.jpg" alt=""> This dataset offers a comprehensive insight into the economic trajectories of nine major economies from the onset of the COVID-19 pandemic through the beginning of 2024. It encompasses crucial economic indicators and financial market data, covering aspects such as manufacturing and services performance, consumer sentiment, monetary policies, inflation rates, unemployment rates, and overall economic output. Additionally, it includes price data for each economy, with values compared against the dollar for clarity. With data spanning this period, the dataset provides valuable insights for analysts, researchers, and stakeholders into the impact of the pandemic and other significant events on these economies, facilitating an assessment of their resilience, challenges, and opportunities.

    Countries included : Australia / Canada / China / Europe / Japan / New Zealand / Switzerland / United Kingdom / United States

    Column Descriptions:

    • Country : The name of the country.
    • Date : The date format (e.g., YYYY-MM-DD).
    • Manufacturing PMI : Purchasing Managers' Index (PMI) for the manufacturing sector, indicating the economic health and activity level of the manufacturing industry.
    • Services PMI : Purchasing Managers' Index (PMI) for the services sector, indicating the economic health and activity level of the services industry.
    • Consumer Confidence : A measure of consumer sentiment or confidence in the economy, indicating consumers' optimism or pessimism about their financial situation and the overall state of the economy.
    • Interest Rates : The prevailing interest rates set by the central bank or monetary authority, which influence borrowing costs and investment decisions.
    • CPI YoY : Consumer Price Index (CPI) Year-over-Year change, indicating the percentage change in the average price level of a basket of consumer goods and services over the previous year.
    • Core CPI : Core Consumer Price Index (CPI), which excludes volatile items such as food and energy prices, providing a measure of underlying inflation trends.
    • Unemployment Rate : The percentage of the labor force that is unemployed and actively seeking employment, indicating the health of the labor market.
    • GDP YoY : Gross Domestic Product (GDP) Year-over-Year change, indicating the percentage change in the total value of goods and services produced by a country's economy.
    • Ticker: Ticker symbol for the corresponding financial asset or index.
    • Open: The opening price of the financial asset or index on the specified date.
    • High: The highest price of the financial asset or index during the specified date.
    • Low: The lowest price of the financial asset or index during the specified date.
    • Close: The closing price of the financial asset or index on the specified date.
  9. f

    Comparison of GCPI and SIBOR.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Aug 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yang, Qiong; Zhang, Jingru; Luan, Jingdong; Ding, Shiting; Zhang, Yanming; Pan, Qintian (2023). Comparison of GCPI and SIBOR. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000970076
    Explore at:
    Dataset updated
    Aug 11, 2023
    Authors
    Yang, Qiong; Zhang, Jingru; Luan, Jingdong; Ding, Shiting; Zhang, Yanming; Pan, Qintian
    Description

    The Chinese economy has undergone a long-term transition reform, but there is still a planned economy characteristic in the financial sector, which is financial repression. Due to the existence of financial repression, China’s actual interest rate level should be lower than the Consumer Price Index (CPI). However, based on official China’s interest rates and CPI, over half of the years China’s actual interest rate remained higher than CPI by our calculation from 1999 to 2022. This is inconsistent with the financial repression that exists in China, and the main reason is the calculation methods of China’s CPI. China’s CPI measurement system originated from the planned economy era, which did not fully consider the rise in housing purchase prices, so the current CPI measurement system can be more realistically presented by taking the rise in housing prices into consider. The core idea of this study is to mining relevant official statistical data and calculate the proportion of Chinese residents’ expenditure on purchasing houses to their total expenditure. By taking the proportion of house purchases as the weight of house price factor, and taking the proportion of other consumption as the weight of official CPI, the Generalized CPI (GCPI) is formulated. The GCPI is then compared with market interest rates to determine the actual interest rate situation in China over the past 20 years. This study has found that if GCPI is used as a measure, China’s real interest rates have been negative for most years since 1999. Chinese residents have suffered the negative effects of financial repression over the past 20 years, and their property income cannot keep up with the actual losses caused by inflation. Therefore, it is believed that China’s CPI calculation method should be adjusted to take into account the rise in housing prices, so China’s actual inflation level could be more accurately reflected. In view of the above, deepening interest rate marketization reform and expand channels for financial investment are the future development goals of China’s financial system.

  10. U.S. Housing Market Factors

    • kaggle.com
    zip
    Updated Aug 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Faryar Memon (2022). U.S. Housing Market Factors [Dataset]. https://www.kaggle.com/datasets/faryarmemon/usa-housing-market-factors/discussion
    Explore at:
    zip(32990 bytes)Available download formats
    Dataset updated
    Aug 3, 2022
    Authors
    Faryar Memon
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The data in this dataset is collected from FRED.

    I decided to create this dataset while reading the research paper Factors Affecting House Prices in Cyprus: 1988-2008 by Panos Pashardes & Christos S. Savva. This research paper is extremely informative and covers a lot of details regarding the macroeconomics involved in real estate market. So I would recommend you all to go through it once.

    NOTE:

    This dataset will be updated over a period of time and include the following: - Macroeconomic factors with quarterly, monthly frequencies. - Microeconomic factors such as house type, age, location, size (BR, BA, carpet area/built-up area), facilities, view, disability functions, region, house prices, etc.

    NOTE 2:

    I recommend you all to check the file in this dataset with the title Housing_Macroeconomic_Factors_US (2).csv, it includes both the supply and demand factors associated with the housing market.

    General Defintions:

    1. Macroeconomic Factors
    • House_Price_Index: House price change according to the index base period set (you can check the date at which this value is 100).
    • Stock_Price_Index: Stock price change according to the index base period set (you can check the date at which this value is 100).
    • Consumer_Price_Index: The Consumer Price Index measures the overall change in consumer prices based on a representative basket of goods and services over time.
    • Population: Population of USA (unit: thousands).
    • Unemployment_Rate: Unemployment rate of USA (unit: percentage).
    • Real_GDP: GDP with adjusted inflation (Annual version unit: billions of chain 2012 dollars in, Monthly version unit: Annualised change).
    • Mortgage_Rate: Interest charged on mortgages (unit: percentage).
    • Real_Disposable_Income (Real Disposable Personal Income): Money left from salary after all the taxes are paid (unit: billions of chain 2012 dollars).
    • Inflation: Decline in purchasing power over time (unit: percentage). [Forgot to remove this column in Annual version since CPI is one of the measures used to determine inflation].

    What can you do with this dataset?

    • Perform statistical analysis, find significant features & find the value by which these features affect the house price index (recommend to use a percentage change instead of index).
    • Perform multivariate regression and predict the price of houses using microeconomic features (soon).

    Thanks! If you like this dataset, I'll appreciate it if you give this dataset a vote! Discussions, suggestions & doubts are always welcome. Happy Learning!!

  11. T

    Gold - Price Data

    • tradingeconomics.com
    • it.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Gold - Price Data [Dataset]. https://tradingeconomics.com/commodity/gold
    Explore at:
    excel, csv, json, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1968 - Dec 2, 2025
    Area covered
    World
    Description

    Gold fell to 4,199.97 USD/t.oz on December 2, 2025, down 0.75% from the previous day. Over the past month, Gold's price has risen 4.93%, and is up 58.92% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Gold - values, historical data, forecasts and news - updated on December of 2025.

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Consumer Price Index (CPI) [Dataset]. https://tradingeconomics.com/united-states/consumer-price-index-cpi

United States Consumer Price Index (CPI)

United States Consumer Price Index (CPI) - Historical Dataset (1950-01-31/2025-09-30)

Explore at:
20 scholarly articles cite this dataset (View in Google Scholar)
xml, csv, excel, jsonAvailable download formats
Dataset updated
Sep 15, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 31, 1950 - Sep 30, 2025
Area covered
United States
Description

Consumer Price Index CPI in the United States increased to 324.80 points in September from 323.98 points in August of 2025. This dataset provides the latest reported value for - United States Consumer Price Index (CPI) - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

Search
Clear search
Close search
Google apps
Main menu