Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.
This data set was generated through the 2020 LU/LC update mapping effort. The 2020 update is the seventh in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007, 2012, 2015 and now, 2020. This present 2020 update was created by comparing the 2015 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2020 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2020 land use directly to the base data layer. All 2015 LU/LC polygons and 2015 LU/LC coding remains in this data set, so change analysis for the period 2015-2020 can be undertaken from this one layer. The mapping was done by USGS HUC8 basins, 13 of which cover portions of New Jersey. This statewide layer is composed of the final data sets generated for each HUC8 basin. Initial QA/QC was done on each HUC8 data set as it was produced with final QA/QC and basin-to-basin edgematching done on this statewide layer. The classification system used was a modified Anderson et al., classification system. Minimum mapping unit (MMU) is 1 acre for changes to non-water and non-wetland polygons. Changes to these two categories were mapped using .25 acres as the MMU. (See entry under the Advisory section concerning additional review being done on NHD waterbody attribute coding and impervious surface estimation.) ADVISORY This data set, edition 20231120, is a statewide layer that includes updated land use/land cover data for all HUC8 basins in New Jersey. The polygon delineations and associated land use code assignments are considered the final versions for this mapping effort. Note, however, that there is continuing review being done on this layer to update several additional attributes not presently evaluated in this edition. These attributes include several from the National Hydrography Database (NHD) that are specific to the waterbodies mapped in this layer, and several attributes containing impervious surface estimates for each polygon. Evaluating the NHD codes facilitates extracting the water features mapped in this layer and using them to update the New Jersey portion of the NHD. Those NHD specific attributes are still being evaluated and may be added to a future edition of this base data set. Similarly, additional review is being done to assess the feasibility of incorporating data on impervious surface (IS) amounts generated from two independent projects, one of which was just completed by NOAA, into this base land use layer. While the NHD and IS attributes will enhance the use of this base layer in several types of analyses, this present layer can be used for doing all primary land use analyses without having those attributes evaluated. Further, evaluating these extra attributes will result in few, if any, changes to the polygon delineations and standard land use coding that are the primary features of this layer. As such, the layer is being provided in its present edition for general use. As the additional attributes are evaluated, they may be added to a future edition of this data set. The basic land use features and codes, however, as mapped in this version of the data set will serve as the base 2020 LU/LC update. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.The data for Somerset County data was extracted & processed from the latest dataset by the Somerset County Office of GIS Services (SCOGIS).
Please note that this file is large, ~550 MB, and may take a substantial amount of time to download especially on slower internet connections.Shapefile (NJ State Plane NAD 1983) download: Click "Open" or Click hereFile Geodatabase (NJ State Plane NAD 1983) download: Click hereThis data represents a "generalized" version of the 2012 LULC. To improve the performance of the web applications displaying the 2012 land use data, it was necessary to create a new simplified layer that included only the minimum number of polygons and attributes needed to represent the 2012 land use conditions. The 2012 LU/LC data set is the fifth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007 and 2012. This present 2012 update was created by comparing the 2007 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2012 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2012 land use directly to the base data layer. All 2007 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2007-2012 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2007. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2012 Land Use/Land Cover (LU/LC) data sets, which were mapped by USGS Subbasin (HU8). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.
This layer is a high-resolution tree canopy change-detection layer for Baltimore City, MD. It contains three tree-canopy classes for the period 2007-2015: (1) No Change; (2) Gain; and (3) Loss. It was created by extracting tree canopy from existing high-resolution land-cover maps for 2007 and 2015 and then comparing the mapped trees directly. Tree canopy that existed during both time periods was assigned to the No Change category while trees removed by development, storms, or disease were assigned to the Loss class. Trees planted during the interval were assigned to the Gain category, as were the edges of existing trees that expanded noticeably. Direct comparison was possible because both the 2007 and 2015 maps were created using object-based image analysis (OBIA) and included similar source datasets (LiDAR-derived surface models, multispectral imagery, and thematic GIS inputs). OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. No accuracy assessment was conducted, but the dataset will be subjected to manual review and correction. 2006 LiDAR and 2014 LiDAR data was also used to assist in tree canopy change.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)
**When using the GIS data included in these map packages, please cite all of the following:
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457
Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018
OVERVIEW OF CONTENTS
This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:
For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."
LICENSES
Code: MIT year: 2019
Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton
CONTACT
Andrew Gillreath-Brown, PhD Candidate, RPA
Department of Anthropology, Washington State University
andrew.brown1234@gmail.com – Email
andrewgillreathbrown.wordpress.com – Web
This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.
The 2015 LU/LC data set is the sixth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007, 2012 and 2015. This present 2015 update was created by comparing the 2012 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2015 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2015 land use directly to the base data layer. All 2012 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2012-2015 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2015. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2015 Land Use/Land Cover (LU/LC) data sets, which were mapped by USGS Subbasin (HU8). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
This dataset provides detailed information on road surfaces from OpenStreetMap (OSM) data, distinguishing between paved and unpaved surfaces across the region. This information is based on road surface prediction derived from hybrid deep learning approach. For more information on Methods, refer to the paper
Roughly 0.6438 million km of roads are mapped in OSM in this region. Based on AI-mapped estimates the share of paved and unpaved roads is approximately 0.0602 and 0.0169 (in million kms), corressponding to 9.344% and 2.6252% respectively of the total road length in the dataset region. 0.5667 million km or 88.0308% of road surface information is missing in OSM. In order to fill this gap, Mapillary derived road surface dataset provides an additional 0.0022 million km of information (corressponding to 0.3924% of total missing information on road surface)
It is intended for use in transportation planning, infrastructure analysis, climate emissions and geographic information system (GIS) applications.
This dataset provides comprehensive information on road and urban area features, including location, surface quality, and classification metadata. This dataset includes attributes from OpenStreetMap (OSM) data, AI predictions for road surface, and urban classifications.
AI features:
pred_class: Model-predicted class for the road surface, with values "paved" or "unpaved."
pred_label: Binary label associated with pred_class
(0 = paved, 1 = unpaved).
osm_surface_class: Classification of the surface type from OSM, categorized as "paved" or "unpaved."
combined_surface_osm_priority: Surface classification combining pred_label
and surface
(OSM) while prioritizing the OSM surface tag, classified as "paved" or "unpaved."
combined_surface_DL_priority: Surface classification combining pred_label
and surface
(OSM) while prioritizing DL prediction pred_label
, classified as "paved" or "unpaved."
n_of_predictions_used: Number of predictions used for the feature length estimation.
predicted_length: Predicted length based on the DL model’s estimations, in meters.
DL_mean_timestamp: Mean timestamp of the predictions used, for comparison.
OSM features may have these attributes(Learn what tags mean here):
name: Name of the feature, if available in OSM.
name:en: Name of the feature in English, if available in OSM.
name:* (in local language): Name of the feature in the local official language, where available.
highway: Road classification based on OSM tags (e.g., residential, motorway, footway).
surface: Description of the surface material of the road (e.g., asphalt, gravel, dirt).
smoothness: Assessment of surface smoothness (e.g., excellent, good, intermediate, bad).
width: Width of the road, where available.
lanes: Number of lanes on the road.
oneway: Indicates if the road is one-way (yes or no).
bridge: Specifies if the feature is a bridge (yes or no).
layer: Indicates the layer of the feature in cases where multiple features are stacked (e.g., bridges, tunnels).
source: Source of the data, indicating the origin or authority of specific attributes.
Urban classification features may have these attributes:
continent: The continent where the data point is located (e.g., Europe, Asia).
country_iso_a2: The ISO Alpha-2 code representing the country (e.g., "US" for the United States).
urban: Binary indicator for urban areas based on the GHSU Urban Layer 2019. (0 = rural, 1 = urban)
urban_area: Name of the urban area or city where the data point is located.
osm_id: Unique identifier assigned by OpenStreetMap (OSM) to each feature.
osm_type: Type of OSM element (e.g., node, way, relation).
The data originates from OpenStreetMap (OSM) and is augmented with model predictions using images downloaded from Mapillary in combination with the GHSU Global Human Settlement Urban Layer 2019 and AFRICAPOLIS2020 urban layer.
This dataset is one of many HeiGIT exports on HDX. See the HeiGIT website for more information.
We are looking forward to hearing about your use-case! Feel free to reach out to us and tell us about your research at communications@heigit.org – we would be happy to amplify your work.
The primary intent of this workshop is to provide practical training in using Statistics Canada geography files with the leading industry standard software: Environmental Systems Research Institute, Inc.(ESRI) ArcGIS 9x. Participants will be introduced to the key features of ArcGIS 9x, as well as to geographic concepts and principles essential to understanding and working with geographic information systems (GIS) software. The workshop will review a range of geography and attribute files available from Statistics Canada, as well as some best practices for accessing this information. A brief overview of complementary data sets available from federal and provincial agencies will be provided. There will also be an opportunity to complete a practical exercise using ArcGIS9x. (Note: Data associated with this presentation is available on the DLI FTP site under folder 1873-221.)
This collection grew out of a prototype case tracking and crime mapping application that was developed for the United States Attorney's Office (USAO), Southern District of New York (SDNY). The purpose of creating the application was to move from the traditionally episodic way of handling cases to a comprehensive and strategic method of collecting case information and linking it to specific geographic locations, and collecting information either not handled at all or not handled with sufficient enough detail by SDNY's existing case management system. The result was an end-user application designed to be run largely by SDNY's nontechnical staff. It consisted of two components, a database to capture case tracking information and a mapping component to link case and geographic data. The case tracking data were contained in a Microsoft Access database and the client application contained all of the forms, queries, reports, macros, table links, and code necessary to enter, navigate through, and query the data. The mapping application was developed using Environmental Systems Research Institute's (ESRI) ArcView 3.0a GIS. This collection shows how the user-interface of the database and the mapping component were customized to allow the staff to perform spatial queries without having to be geographic information systems (GIS) experts. Part 1 of this collection contains the Visual Basic script used to customize the user-interface of the Microsoft Access database. Part 2 contains the Avenue script used to customize ArcView to link the data maintained in the server databases, to automate the office's most common queries, and to run simple analyses.
The data was created by comparing the 1995/97 land use/land cover (LU/LC) layer from NJ DEP's geographical information systems (GIS) database to 2002 color infrared (CIR) imagery and delineating areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2002 land use directly to the base data layer. All 1986 LU/LC polygons and attribute fields were removed from this update, however, all 1995/97 LU/LC polygons remain in this data set, so change analysis can be undertaken from this one layer. The classification system used was a modified Anderson et al., 2002 classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2002 and 1995/97. Minimum mapping unit (MMU) is 1 acre.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database was collected for agriculture statistics related work by our field survey experts in Chai Badan district, Lop Buri province, Thailand, in July 2022. As the fieldwork result, 108 points were collected by windshield survey using the QField mobile application from inside a passenger vehicle. According to GT database format, our database contains 108 records of a geographic layer in shapefile format (point), and the geographic coordinate system is GCS_WGS_1984. In addition, each record corresponds to a point format with ten attributes, including a unique feature ID, the format of the feature (such as point), type of land cover of the point, type of crop of the point, name of the ground truth point when collecting in the field, date and time of the ground truth data collection, X and Y coordination of the point, and intercrop (presence or absence of intercropping [single crop, mixed crop, etc.]).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data package was produced by researchers working on the Shortgrass Steppe Long Term Ecological Research (SGS-LTER) Project, administered at Colorado State University. Long-term datasets and background information (proposals, reports, photographs, etc.) on the SGS-LTER project are contained in a comprehensive project collection within the Digital Collections of Colorado (http://digitool.library.colostate.edu/R/?func=collections&collection_id=3429). The data table and associated metadata document, which is generated in Ecological Metadata Language, may be available through other repositories serving the ecological research community and represent components of the larger SGS-LTER project collection. No Abstract Available Resources in this dataset:Resource Title: Website Pointer to html file. File Name: Web Page, url: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-sgs&identifier=812 Webpage with information and links to data files for download
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
The wetlands polygons included in this data set are extracted from the Land Use 2012 layer. Displayed are all polygons that have a TYPE12 code of 'WETLANDS'. While these wetland delineations are not regulatory lines, they represent important resource data in identifying potential wetland areas. The 2012 LU/LC data set is the fifth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007 and 2012. This present 2012 update was created by comparing the 2007 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2012 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2012 land use directly to the base data layer. All 2007 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2007-2012 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2007. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2012 Land Use/Land Cover (LU/LC) data sets, which were mapped by USGS Subbasin (HU8). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.Somerset County data extracted & processed from the latest NJDEP dataset by the Somerset County Office of GIS Services (SCOGIS) on April 05, 2024
Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.
Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.
Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.
LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.
Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset presents the historical railway network of Galicia and Austrian Silesia – two regions of the Habsburg Empire, covering more than 80 000 km2, currently divided among Czechia, Poland and Ukraine. The network covers the times of railway appearance and the most dynamic development of the 19th and beginning of the 20th century, up to 1914 – the outbreak of the First World War. The data can be characterized by unprecedented positional accuracy, as they were reconstructed based on the current railway network, which resulted in almost no shifts in space. Most of the lines were reconstructed based on OpenStreetMap data, and the lines, which were closed-down between 1914 and 2019, and are no longer available in spatial datasets, were reconstructed based on high-resolution satellite imageries and historical maps. Altogether, the network covers more than 5000 km on 127 lines. The data are accompanied by a set of attributes, i.e. year of construction, length, starting and final point, type (normal, narrow-gauge, etc.). It can be used in many different applications including historical accessibility mapping, migrations, economic development, the impact of past human activities on current environmental and socio-economic processes, like land use change drivers, landscape fragmentation, invasion of new species and many more. Data are available for download in the shp format.
Please note: Our work was focused on publicly accessible railway lines open for regular passenger traffic and hence did not contain the sidings constructed locally, e.g. to serve industrial sites or narrow gauge forest lines.
Acknowledgments This research was funded by the Ministry of Science and Higher Education, Republic of Poland under the frame of “National Programme for the Development of Humanities” 2015–2020, as a part of the GASID project (Galicia and Austrian Silesia Interactive Database 1857–1910, 1aH 15 0324 83).
Terms of Use:
Data Limitations Disclaimer
The MassDEP Estimated Sewer System Service Area Boundaries datalayer may not be complete, may contain errors, omissions, and other inaccuracies, and the data are subject to change. The user’s use of and/or reliance on the information contained in the Document (e.g. data) shall be at the user’s own risk and expense. MassDEP disclaims any responsibility for any loss or harm that may result to the user of this data or to any other person due to the user’s use of the Document.
All sewer service area delineations are estimates for broad planning purposes and should only be used as a guide. The data is not appropriate for site-specific or parcel-specific analysis. Not all properties within a sewer service area are necessarily served by the system, and some properties outside the mapped service areas could be served by the wastewater utility – please contact the relevant wastewater system. Not all service areas have been confirmed by the sewer system authorities.
This is an ongoing data development project. Attempts have been made to contact all sewer/wastewater systems, but not all have responded with information on their service area. MassDEP will continue to collect and verify this information. Some sewer service areas included in this datalayer have not been verified by the POTWs, privately-owned treatment works, GWDPs, or the municipality involved, but since many of those areas are based on information published online by the municipality, the utility, or in a publicly available report, they are included in the estimated sewer service area datalayer.
Please use the following citation to reference these data
MassDEP. Water Utility Resilience Program. 2025. Publicly-Owned Treatment Work and Non-Publicly-Owned Sewer Service Areas (PubV2024_12).
We want to learn about the data uses. If you use this dataset, please notify staff in the Water Resilience program (WURP@mass.gov).
Layers and Tables:
The MassDEP Estimated Sewer System Service Area data layer comprises two feature classes and a supporting table:
Publicly-Owned Treatment Works (POTW) Sewer Service Areas feature class SEWER_SERVICE_AREA_POTW_POLY includes polygon features for sewer service areas systems operated by publicly owned treatment works (POTWs)Non-Publicly Owned Treatment Works (NON-POTW) Sewer Service Areas feature class SEWER_SERVICE_AREA_NONPOTW_POLY includes polygon features for sewer service areas for operated by NON publicly owned treatment works (NON-POTWs)The Sewer Service Areas Unlocated Sites table SEWER_SERVICE_AREA_USL contains a list of known, unmapped active POTW and NON-POTW services areas at the time of publication.
ProductionData Universe
Effluent wastewater treatment plants in Massachusetts are permitted either through the Environmental Protection Agency’s (EPA) National Pollutant Discharge Elimination System (NPDES) surface water discharge permit program or the MassDEP Groundwater Discharge Permit Program. The WURP has delineated active service areas served by publicly and privately-owned effluent treatment works with a NPDES permit or a groundwater discharge permit.
National Pollutant Discharge Elimination System (NPDES) Permits
In the Commonwealth of Massachusetts, the EPA is the permitting authority for regulating point sources that discharge pollutants to surface waters. NPDES permits regulate wastewater discharge by limiting the quantities of pollutants to be discharged and imposing monitoring requirements and other conditions. NPDES permits are typically co-issued by EPA and the MassDEP. The limits and/or requirements in the permit ensure compliance with the Massachusetts Surface Water Quality Standards and Federal Regulations to protect public health and the aquatic environment. Areas served by effluent treatment plants with an active NPDES permit are included in this datalayer based on a master list developed by MassDEP using information sourced from the EPA’s Integrated Compliance Information System (ICIS).
Groundwater Discharge (GWD) Permits
In addition to surface water permittees, the WURP has delineated all active systems served by publicly and privately owned effluent treatment works with groundwater discharge (GWD) permits, and some inactive service areas. Groundwater discharge permits are required for systems discharging over 10,000 GPD sanitary wastewater – these include effluent treatment systems for public, district, or privately owned effluent treatment systems. Areas served by an effluent treatment plant with an active GWD permit are included in this datalayer based on lists received from MassDEP Wastewater staff.
Creation of Unique IDs for Each Service Area
The Sewer Service Area datalayer contains polygons that represent the service area of a particular wastewater system within a particular municipality. Every discharge permittee is assigned a unique NPDES permit number by EPA or a unique GWD permit identifier by MassDEP. MassDEP WURP creates a unique Sewer_ID for each service area by combining the municipal name of the municipality served with the permit number (NPDES or GWD) ascribed to the sewer that is serving that area. Some municipalities contain more than one sewer system, but each sewer system has a unique Sewer_ID. Occasionally the area served by a sewer system will overlap another town by a small amount – these small areas are generally not given a unique ID. The Estimated sewer Service Area datalayer, therefore, contains polygons with a unique Sewer_ID for each sewer service area. In addition, some municipalities will have multiple service areas being served by the same treatment plant – the Sewer_ID for these will contain additional identification, such as the name of the system, to uniquely identify each system.
Classifying System Service Areas
WURP staff reviewed the service areas for each system and, based on OWNER_TYPE, classified as either a publicly-owned treatment work (POTW) or a NON-POTW (see FAC_TYPE field). Each service area is further classified based on the population type served (see SECTOR field).
Methodologies and Data Sources
Several methodologies were used to create service area boundaries using various sources, including data received from the sewer system in response to requests for information from the MassDEP WURP project, information on file at MassDEP, and service area maps found online at municipal and wastewater system websites. When MassDEP received sewer line data rather than generalized areas, 300-foot buffers were created around the sewer lines to denote service areas and then edited to incorporate generalizations. Some municipalities submitted parcel data or address information to be used in delineating service areas. Many of the smaller GWD permitted sewer service areas were delineated using parcel boundaries related to the address on file.
Verification Process
Small-scale pdf file maps with roads and other infrastructure were sent to systems for corrections or verifications. If the system were small, such as a condominium complex or residential school, the relevant parcels were often used as the basis for the delineated service area. In towns where 97% or more of their population is served by the wastewater system and no other service area delineation was available, the town boundary was used as the service area boundary. Some towns responded to the request for information or verification of service areas by stating that the town boundary should be used since all, or nearly all, of the municipality is served by one wastewater system.
To ensure active systems are mapped, WURP staff developed two work flows. For NPDES-permitted systems, WURP staff reviewed available information on EPA’s ICIS database and created a master list of these systems. Staff will work to routinely update this master list by reviewing the ICIS database for new NPDES permits. The master list will serve as a method for identifying active systems, inactive systems, and unmapped systems. For GWD permittees, GIS staff established a direct linkage to the groundwater database, which allows for populating information into data fields and identifying active systems, inactive systems, and unmapped systems.
All unmapped systems are added to the Sewer Service Area Unlocated List (SEWER_SERVICE_AREAS_USL) for future mapping. Some service areas have not been mapped but their general location is represented by a small circle which serves as a placeholder - the location of these circles are estimated based on the general location of the treatment plant or the general estimated location of the service area - these do not represent the actual service area.
Sources of information for estimated wastewater service areas:
EEOA Water Assets Project (2005) sewer lines (these were buffered to create service areas) Horsely Witten Report 2008 Municipal Master Plans, Open Space Plans, Facilities Plans, Wastewater and Sewer System Webpages, reports and online interactive maps GIS data received from POTWs and NON-POTWs Detailed infrastructure mapping completed through the MassDEP WURP Critical Infrastructure Initiative
In the absence of other service area information, for municipalities served by a town-wide sewer system serving at least 97% of the population, the municipality’s boundary was used. Percent served information and determinations of which municipalities are 97% or more served by the wastewater system were made based on the Percent Sewer Service Map created in 2018 by MassDEP based on various sources of information including but not limited to:
The number of services as a percent of developed parcelsTaken directly from a Master Plan, Sewer Department Website, Open Space Plan, etc. found online Calculated using information from the town on population served MassDEP staff estimateHorsely Witten Report 2008 or Pioneer Institute 2004 Calculated from Sewer System Areas Mapped through MassDEP WURP Critical
Lidar Digital Elevation Models (DEMs) at 2-meter resolution have been used to derive watershed boundaries for the State of Maine. Geographic Information Systems (GIS) software was used to hydrologically enforce lidar DEMs and delineate watershed boundaries at pre-existing pour point locations (Price, 2016). The watershed boundaries are comparable in size to the 12-digit Hydrologic Unit catchments and have a 12-digit Hydrologic Unit Code (HUC12) identifier attribute field that has a one-to-one match with the national WBD dataset (https://www.usgs.gov/national-hydrography/watershed-boundary-dataset). This data release consists of a zip file containing an ESRI polygon shapefile (vector GIS dataset). This work was conducted in cooperation with Maine Department of Transportation and Maine Office of GIS. Curtis Price, 20160606, WBD HU12 Pour Points derived from NHDPlus: U.S. Geological Survey data release, https://www.sciencebase.gov/catalog/item/5762b664e4b07657d19a71ea
This physical structures points feature class represents current wastewater information in the City of Los Angeles. The maintenance hole structure is used to provide access to the sewer from the surface. The Mapping and Land Records Division of the Bureau of Engineering, Department of Public Works provides the most rigorous geographic information of the sanitary sewer system using a geometric network model, to ensure that its sewers reflect current ground conditions. The sanitary sewer system, pump plants, wyes, maintenance holes, and other structures represent the sewer infrastructure in the City of Los Angeles. Wye and sewer information is available on NavigateLA, a website hosted by the Bureau of Engineering, Department of Public Works.Associated information about the wastewater Physical_structure is entered into attributes. Principal attributes include:JUNCTION_SUBTYPE: junction subtype is the principal field that describes various types of points as either Diversion Structure, Drop or Drop Trap, Flush, Junction Chamber, Junction Structure, Maintenance, Offset, Other Structure, Siphon, Special Shallow, Special Structure, Terminal, Transition, Trap, Valve Vault, Weir. For a complete list of attribute values, please refer to (TBA Wastewater data dictionary). Wastewater Physical Structures points layer was created in geographical information systems (GIS) software to display the location of wastewater structures. The structures points layer is a feature class in the LACityWastewaterData.gdb Geodatabase dataset. The layer consists of spatial data as a points feature class and attribute data for the features. The points are entered manually based on wastewater sewer maps and BOE standard plans, and information about the points is entered into attributes. The physical structures points data layer differs from non-structures points data layer, such that physical structures points are maintenance holes. Reference the JUNCTION_SUBTYPE and MH_TYPE field for the type of structure. The STRUCTURE_ID field value is the unique ID. The wastewater structures points are inherited from a sewer spatial database originally created by the City's Wastewater program. The database was known as SIMMS, Sewer Inventory and Maintenance Management System. Structures information should only be added to the Wastewater Structures layer if documentation exists, such as a wastewater map approved by the City Engineer. Sewers plans and specifications proposed under private development are reviewed and approved by Bureau of Engineering. The Department of Public Works, Bureau of Engineering's, Brown Book (current as of 2010) outlines standard specifications for public works construction. For more information on sewer materials and structures, look at the Bureau of Engineering Manual, Part F, Sewer Design section, and a copy can be viewed at http://eng.lacity.org/techdocs/sewer-ma/f400.pdf. For more information on maintenance holes, a copy can be viewed at http://boemaps.eng.ci.la.ca.us/reports/pdf/s140-0_std_pl.pdf.List of Fields:SERVICEID: User-defined unique feature number that is automatically generated.OBJECTID: Internal feature number.FACILITY_NO: This field is currently not being edited.ENG_DIST: LA City Engineering District. The boundaries are displayed in the Engineering Districts index map. Values: • W - West LA Engineering District. • H - Harbor Engineering District. • C - Central Engineering District. • V - Valley Engineering District.CNCL_DIST: LA City Council District. Values: • (numbers 1-15) - Current City Council Member for that District can be found on the mapping website http://navigatela.lacity.org/index.cfm, click Council Districts layer name, under Boundaries layer group.CRTN_DT: Creation date of the point feature.MDIST: This value is the maintenance district identifier. Bureau of Sanitation needs to provide BOE with updated definitions. This field is currently not being edited.LAT: The value is the latitude coordinate of the point.USER_ID: The name of the user carrying out the edits of the structure data.LON: The value is the longitude coordinate of the point.NAME: This field is currently not being edited.VDATUM: This is the year of the standard plan, which contains the information the user enters into pipe data.MHMATERIAL: The value is the material that the structure is made from. This information is not specified on the standard plan. Values: • UNK - Unknown. • RCP - Reinforced Concrete Pipe. • CSP - Corrugated Steel Pipe. • CIPC - Cast in place concrete. • C - Concrete. • BRK - Brick. • PRC - Precast Reinforced Concrete. • B - Brick. • CON - Concrete. • VCP - Vitrified Clay Pipe. • O - Other. • P - Plastic.BLKNO: The value is the block number of the street on which the physical structure is located.STREET2: The value is the cross street name on which the physical structure hole is located, if applicable.COVERDIAM: The value diameter of the physical structure cover expressed in feet.BARRELDIAM: The value diameter of the inside of the physical structure expressed in feet.STATUS: This value is the active or inactive status of the structure. Values: • ABAN - Proposed Inactive. • PROP_ACT - Proposed Active. • INACT - Inactive. • ACT - Active. • ABAN - Abandoned.SEQ: The value is the sequence number of the maintenance hole.SHAPE: Feature geometry.STREET1: The value is the street name on which the physical structure is located.MH_BASE: The value is the non-structure base, used by Bureau of Sanitation to describe the direction of flow at the intersection of a pipe and a non-structure. Values: • F - F. • B - B. • G - G. • H - H. • Q - Q.MH_TYPE: The value signifies the maintenance hole type or other structure type. Values: • DMH - Drop Maintenance Hole. • CFS - Confluence Structure. • DMT - Drop trap Maintenance Hole. • ABN - Abandoned. • BPS - Bypass Structure. • DI - Diversion Structure. • SH - Shallow Maintenance Hole. • OMH - Offset Maintenance Hole. • RV - Relief Valve. • SIP - Siphon. • VV - Valve vault. • LH - Lamp Hole. • FL - Flush Station. • GV - Gate Valve. • TRP - Trap maintenance hole. This type of structure is used to prevent sewer gases from flowing upstream in the sewer line. • HD - Transition. • TRS - Transition structure. • FT - Flush Tank. • WMH - Weir maintenance hole. This type of structure is used to gauge sewer flows. Automatic recording devices may be installed for flow measurement. • INA - Inactive. • MH - Maintenance Hole. • OTH - Other structure. • FS - Flush Station. • WW - Wet well. • JT - Junction Chamber Trap. • JC - Junction Chamber. • PMH - Pressure Maintenance Hole. • PS - Pump Station. • FMH - Flush Maintenance Hole. • TMH - Terminal maintenance hole. • GS - Gauging Structure. • JS - Junction Structure.LID_ELEV: The value is the lid elevation of the structure, in decimal feet.BASIN: The value is basin number.OWNER: This value is the agency or municipality that constructed the physical structure. Values: • CTY - City of LA. • FED - Federal Facilities. • OUTLA - Adjoining cities. • COSA - LA County Sanitation. • PVT - Private.COMMENTS: This attribute contains comments of structures and structure status.MH_DEPTH: The value is the depth of the physical structure expressed in decimal feet.JUNCTION_SUBTYPE: The value is the type of physical structure. Values: • 1 - Maintenance. • 4 - Offset. • 15 - Valve Vault. • 6 - Diversion Structure. • 8 - Flush. • 9 - Junction Chamber. • 5 - Trap. • 7 - Special Shallow. • 3 - Terminal. • 10 - Siphon. • 13 - Junction Structure. • 16 - Transition. • 2 - Drop or Drop Trap. • 11 - Weir. • 12 - Special Structure. • 14 - Other Structure.LAST_UPDATE: Date of last update of the point feature.YEAR_INST: This is the year of the structure installation.ROUTE: The value is the sewer maintenance route number.ADDRESS: This field is currently not being edited.ENABLED: Internal feature number.STRUCTURE_ID: The value is the ID of the structure. It could be either the value from the UP_STRUCT or DN_STRUCT fields. This point is the structure that may be a maintenance hole, junction, siphon, etc. The field STRUCTURE_ID is a key attribute to relate the physical structures feature class to the UP_MH field or the DN_MH field in pipe lines feature class.ASSETID: User-defined unique feature number that is automatically generated.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.