Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This web map can also be accessed via the LINZ Storymap about NZ Key Datasets for Resilience and Climate Change https://storymaps.arcgis.com/stories/b4dd46f15cea4234a098b4c8caae5b3d The River Environment Classification (REC) is a database of catchment spatial attributes, summarised for every segment in New Zealand's network of rivers. The attributes were compiled for the purposes of river classification, while the river network description has been used to underpin models. Typically, models (e.g. CLUES and TopNet) would use the dendritic (branched) linkages of REC river segments to perform their calculations. Since its release and use over the last decade, some errors in the location and connectivity of these linkages have been identified. The current revision corrects those errors, and updates a number of spatial attributes with the latest data. REC2 provides a recut framework of rivers for modelling and classification. It is built on a newer version of the 30m digital elevation model, in which the original 20m contours were supplemented with, for example, more spot elevation data and a better coastline contour. Boundary errors were minimized by processing contiguous areas (such as the whole of the North Island) together, which wasn't possible when the REC was first created. Major updates include the revision of catchment land use information, by overlaying with land cover database (LCDB3, current as at 2008), and the update of river and rainfall statistics with data from 1960-2006. The river network and associated attributes have been assembled within an ArcGIS geodatabase. Topological connectivity has been established to allow upstream and downstream tracing within the network. REC2 can be downloaded as a zip file and used directly in ArcMap. Alternatively, the layers can be extracted as shape files. The three REC2 based layers contained within this web map consist of the following (metadata is contained in the Layers section below).NZ Large Catchments, are basically the local watersheds of the REC2V5 dissolved into large sea draining catchments.River Environment Classification REC2 V5 (as National and local rivers) NZ Rivers and Names is a cut down version of the REC2V5 with river and waterway names added where available.
Field Type Descriptions for all REC2 associated feature layers within this webmap.RivName The names for any waterway where available taken from original topo data ( only for the NZ Large Catchments and NZ River and Names layers)
Catarea Real Watershed area in m2 CUM_Area Real Area upstream of a reach (and including this reach area) in m2. Nzsegment Integer Reach identifier to be used with REC2 (supercedes nzreach in REC1).
Lengthdown Real The distance to coast from any reach to its outlet reach, where the river drains (m). Headwater Integer Number (0) denoting whether a stream is a “source” (headwater) stream. Non-zero for non-headwater streams.
Hydseq Integer A unique number denoting the hydrological processing order of a river segment relative to others in the network.
StreamOrder Integer A number describing the Strahler order a reach in a network of reaches.
euclid_dist Real The straight line distance of a reach from the reach “inlet” to its “outlet”. upElev Real Height (asl) of the upstream end of a reach section in a watershed (m). downElev Real Height (asl) of the downstream end of a reach section in a watershed (m).
upcoordX Real Easting of the upstream end of a river segment in m (NZTM2000). upcoordY Real Northing of the upstream end of a river segment in m (NZTM2000). downcoordX Real Easting of the downstream end of a river segment in m (NZTM2000).
downcoordY Real Northing of the downstream end of a river segment in m (NZTM2000). sinuosity Real Actual distance divided by the straight line distance giving the degree of curvature of the stream nzreach_re Integer The REC1 identifiying number for the corresponding\closest reach from REC1 (can be used to retrieve the REC management classes) headw_dist Integer Distance of the furthermost “source” or headwater reach from any reach (m). Shape_leng Real The length of the reach (vector) as calculated by ArcGIS. Segslpmean Real Mean segment slope along length of reach.
LID Integer Lake Identifier number(LID) of overlapping lake.
Reachtype
Integer A value of 2 is assigned if the segment is an outlet to the lake, otherwise 0 or null. nextdownid integer segment number of the most downstream reach
NIWA acknowledges funding from the MBIE SSIF towards the preparation of REC v2.5 River Environment Classification._Item Page Created: 2021-07-09 05:37 Item Page Last Modified: 2025-03-15 18:55Owner: steinmetzt_NIWANZ River Names (REC2)Item id: 502212e71bce4c029de8a82cd5bc6302NZ Regional Rivers (REC2)Item id: 502212e71bce4c029de8a82cd5bc6302NZ National Rivers (REC2)Item id: 3a4b6cc2c1c74fbb8ddbe25df28e410cNZ Large River CatchmentsItem id: 28d23ad94c2a4846b7634f4cdbba178f
Hydric soils are soils that form under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part of the soil. Hydric soils are poorly or very poorly drained and under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of wetland vegetation. Hydric soils are part of the legal definition for wetlands in the United States and are used to identify wetland areas that require a permit issued by the Army Corps of Engineers under Section 404 of the Clean Water Act prior to any ground disturbing activities. For more information on hydric soils see the Natural Resources Conservation Service’s publication Field Indicators of Hydric Soils in the United States.Dataset SummaryPhenomenon Mapped: Hydric soilsUnits: PercentCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Mosaic Projection: Web Mercator Auxiliary SphereExtent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Source: Natural Resources Conservation ServicePublication Date: November 2023ArcGIS Server URL: https://landscape11.arcgis.com/arcgis/Data from the gNATSGO database was used to create the layer for the for the contiguous United States and Alaska. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Puerto Rico, the U.S. Virgin Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, Republic of the Marshall Islands, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for hydric class is derived from the gSSURGO map unit aggregated attribute table field Hydric Classification - Presence (hydclprs).What can you do with this Layer? This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "hydric" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "hydric" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.Online you can filter the layer to show subsets of the data using the filter button and the layer's built-in raster functions.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.
Map InformationThis nowCOAST updating map service provides maps depicting visible, infrared, and water vapor imagery composited from NOAA/NESDIS GOES-EAST and GOES-WEST. The horizontal resolutions of the IR, visible, and water vapor composite images are approximately 1km, 4km, and 4km, respectively. The visible and IR imagery depict the location of clouds. The water vapor imagery indicates the amount of water vapor contained in the mid to upper levels of the troposphere. The darker grays indicate drier air while the brighter grays/whites indicates more saturated air. The GOES composite imagers are updated in the nowCOAST map service every 30 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updatescheduleBackground InformationThe GOES map layer displays visible (VIS) and infrared (IR4) cloud, and water vapor (WV) imagery from the NOAA/ National Environmental Satellite, Data, and Information Service (NESDIS) Geostationary Satellites (GOES-East and GOES-West). These satellites circle the Earth in a geosynchronous orbit (i.e. orbit the equatorial plane of the Earth at a speed matching the rotation of the Earth). This allows the satellites to hover continuously over one position on the surface. The geosynchronous plane is about 35,800 km (22,300 miles) above the Earth which is high enough to allow the satellites a full-disc view of the Earth. GOES-East is positioned at 75 deg W longitude and the equator. GOES-West is located at 135 deg W and the equator. The two satellites cover an area from 20 deg W to 165 deg E. The images are derived from data from GOES' Imagers. An imager is a multichannel instrument that senses radiant energy and reflected solar energy from the Earth's surface and atmosphere. The VIS, IR4, and WV images are obtained from GOES Imager Channels 1, 4, and 3, respectively. The GOES raster images are obtained from NESDIS servers in geo-referenced Tagged-Image File Format (geoTIFF).Time InformationThis map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfoReferencesNOAA, 2013: Geostationary Operational Environmental Satellites (GOES). (Available at http://www.ospo.noaa.gov/Operations/GOES/index.html)A Basic Introduction to Water Vapor Imagery. (Available at http://cimss.ssec.wisc.edu/goes/misc/wv/wv_intro.html)CIMSS, 1996: Water Vapor Imagery Tutorial (Available at http://cimss.ssec.wisc.edu/goes/misc/wv/)
Soils vary widely in their ability to retain or drain water. The rate at which water drains into the soil has a direct effect on the amount and timing of runoff, what crops can be grown, and where wetlands form. In soils with low drainage rates water will pond on the soil's surface.This layer summarizes soil drainage rates in eight classes:Excessively drained: Water is removed very rapidly. The occurrence of internal free water commonly is very rare or very deep. The soils are commonly coarse-textured and have very high hydraulic conductivity or are very shallow.Somewhat excessively drained: Water is removed from the soil rapidly. Internal free water occurrence commonly is very rare or very deep. The soils are commonly coarse-textured and have high saturated hydraulic conductivity or are very shallow.Well drained: Water is removed from the soil readily but not rapidly. Internal free water occurrence commonly is deep or very deep; annual duration is not specified. Water is available to plants throughout most of the growing season in humid regions. Wetness does not inhibit growth of roots for significant periods during most growing seasons. The soils are mainly free of the deep to redoximorphic features that are related to wetness.Moderately well drained: Water is removed from the soil somewhat slowly during some periods of the year. Internal free water occurrence commonly is moderately deep and transitory through permanent. The soils are wet for only a short time within the rooting depth during the growing season, but long enough that most mesophytic crops are affected. They commonly have a moderately low or lower saturated hydraulic conductivity in a layer within the upper 1 m, periodically receive high rainfall, or both.Somewhat poorly drained: Water is removed slowly so that the soil is wet at a shallow depth for significant periods during the growing season. The occurrence of internal free water commonly is shallow to moderately deep and transitory to permanent. Wetness markedly restricts the growth of mesophytic crops, unless artificial drainage is provided. The soils commonly have one or more of the following characteristics: low or very low saturated hydraulic conductivity, a high water table, additional water from seepage, or nearly continuous rainfall.Poorly drained: Water is removed so slowly that the soil is wet at shallow depths periodically during the growing season or remains wet for long periods. The occurrence of internal free water is shallow or very shallow and common or persistent. Free water is commonly at or near the surface long enough during the growing season so that most mesophytic crops cannot be grown, unless the soil is artificially drained. The soil, however, is not continuously wet directly below plow-depth. Free water at shallow depth is usually present. This water table is commonly the result of low or very low saturated hydraulic conductivity of nearly continuous rainfall, or of a combination of these.Very poorly drained: Water is removed from the soil so slowly that free water remains at or very near the ground surface during much of the growing season. The occurrence of internal free water is very shallow and persistent or permanent. Unless the soil is artificially drained, most mesophytic crops cannot be grown. The soils are commonly level or depressed and frequently ponded. If rainfall is high or nearly continuous, slope gradients may be greater.Subaqueous Soils: Free water is above the soil surface. Internal free water occurrence is permanent, and there is a positive water potential at the soil surface for more than 21 hours of each day. The soils have a peraquic soil moisture regime.For more information on the classifications see the Soil Survey Manual section on Soil Water.Dataset SummaryPhenomenon Mapped: Drainage Class of SoilsGeographic Extent: Contiguous United States, Alaska, Hawaii, Puerto Rico, Guam, US Virgin Islands, Northern Mariana Islands, Republic of Palau, Republic of the Marshall Islands, Federated States of Micronesia, and American Samoa.Projection: Web Mercator Auxiliary SphereData Coordinate System: WKID 5070 USA Contiguous Albers Equal Area Conic USGS version (contiguous US, Puerto Rico, US Virgin Islands), WKID 3338 WGS 1984 Albers (Alaska), WKID 4326 WGS 1984 Decimal Degrees (Guam, Republic of the Marshall Islands, Northern Mariana Islands, Republic of Palau, Federated States of Micronesia, American Samoa, and Hawaii).Units: ClassesCell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerSource: Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024Data from the gNATSGO database was used to create the layer for the for the contiguous United States and Alaska. The remaining areas were created with the gSSURGO database (Hawaii, Guam, Puerto Rico, the U.S. Virgin Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, Republic of the Marshall Islands, and American Samoa).This layer is derived from the 30m (contiguous U.S.) and 10m rasters (all other regions) produced by the Natural Resources Conservation Service (NRCS). The value for drainage class is derived from the gSSURGO map unit aggregated attribute table field Drainage Class - Dominant Condition (drclassdcd).What can you do with this layer?This layer is suitable for both visualization and analysis across the ArcGIS system. This layer can be combined with your data and other layers from the ArcGIS Living Atlas of the World in ArcGIS Online and ArcGIS Pro to create powerful web maps that can be used alone or in a story map or other application.Because this layer is part of the ArcGIS Living Atlas of the World it is easy to add to your map:In ArcGIS Online, you can add this layer to a map by selecting Add then Browse Living Atlas Layers. A window will open. Type "drainage class" in the search box and browse to the layer. Select the layer then click Add to Map.In ArcGIS Pro, open a map and select Add Data from the Map Tab. Select Data at the top of the drop down menu. The Add Data dialog box will open on the left side of the box, expand Portal if necessary, then select Living Atlas. Type "drainage class" in the search box, browse to the layer then click OK.In ArcGIS Pro you can use the built-in raster functions or create your own to create custom extracts of the data. Imagery layers provide fast, powerful inputs to geoprocessing tools, models, or Python scripts in Pro.The ArcGIS Living Atlas of the World provides an easy way to explore many other beautiful and authoritative maps on hundreds of topics like this one.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.
A showcase of artwork found around Vancouver, Washington. Interactive web map and story map sections include information, maps, detailed text, images, and videos of art in many mediums, both publicly and privately owned or maintained.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This web map can also be accessed via the LINZ Storymap about NZ Key Datasets for Resilience and Climate Change https://storymaps.arcgis.com/stories/b4dd46f15cea4234a098b4c8caae5b3d The River Environment Classification (REC) is a database of catchment spatial attributes, summarised for every segment in New Zealand's network of rivers. The attributes were compiled for the purposes of river classification, while the river network description has been used to underpin models. Typically, models (e.g. CLUES and TopNet) would use the dendritic (branched) linkages of REC river segments to perform their calculations. Since its release and use over the last decade, some errors in the location and connectivity of these linkages have been identified. The current revision corrects those errors, and updates a number of spatial attributes with the latest data. REC2 provides a recut framework of rivers for modelling and classification. It is built on a newer version of the 30m digital elevation model, in which the original 20m contours were supplemented with, for example, more spot elevation data and a better coastline contour. Boundary errors were minimized by processing contiguous areas (such as the whole of the North Island) together, which wasn't possible when the REC was first created. Major updates include the revision of catchment land use information, by overlaying with land cover database (LCDB3, current as at 2008), and the update of river and rainfall statistics with data from 1960-2006. The river network and associated attributes have been assembled within an ArcGIS geodatabase. Topological connectivity has been established to allow upstream and downstream tracing within the network. REC2 can be downloaded as a zip file and used directly in ArcMap. Alternatively, the layers can be extracted as shape files. The three REC2 based layers contained within this web map consist of the following (metadata is contained in the Layers section below).NZ Large Catchments, are basically the local watersheds of the REC2V5 dissolved into large sea draining catchments.River Environment Classification REC2 V5 (as National and local rivers) NZ Rivers and Names is a cut down version of the REC2V5 with river and waterway names added where available.
Field Type Descriptions for all REC2 associated feature layers within this webmap.RivName The names for any waterway where available taken from original topo data ( only for the NZ Large Catchments and NZ River and Names layers)
Catarea Real Watershed area in m2 CUM_Area Real Area upstream of a reach (and including this reach area) in m2. Nzsegment Integer Reach identifier to be used with REC2 (supercedes nzreach in REC1).
Lengthdown Real The distance to coast from any reach to its outlet reach, where the river drains (m). Headwater Integer Number (0) denoting whether a stream is a “source” (headwater) stream. Non-zero for non-headwater streams.
Hydseq Integer A unique number denoting the hydrological processing order of a river segment relative to others in the network.
StreamOrder Integer A number describing the Strahler order a reach in a network of reaches.
euclid_dist Real The straight line distance of a reach from the reach “inlet” to its “outlet”. upElev Real Height (asl) of the upstream end of a reach section in a watershed (m). downElev Real Height (asl) of the downstream end of a reach section in a watershed (m).
upcoordX Real Easting of the upstream end of a river segment in m (NZTM2000). upcoordY Real Northing of the upstream end of a river segment in m (NZTM2000). downcoordX Real Easting of the downstream end of a river segment in m (NZTM2000).
downcoordY Real Northing of the downstream end of a river segment in m (NZTM2000). sinuosity Real Actual distance divided by the straight line distance giving the degree of curvature of the stream nzreach_re Integer The REC1 identifiying number for the corresponding\closest reach from REC1 (can be used to retrieve the REC management classes) headw_dist Integer Distance of the furthermost “source” or headwater reach from any reach (m). Shape_leng Real The length of the reach (vector) as calculated by ArcGIS. Segslpmean Real Mean segment slope along length of reach.
LID Integer Lake Identifier number(LID) of overlapping lake.
Reachtype
Integer A value of 2 is assigned if the segment is an outlet to the lake, otherwise 0 or null. nextdownid integer segment number of the most downstream reach
NIWA acknowledges funding from the MBIE SSIF towards the preparation of REC v2.5 River Environment Classification._Item Page Created: 2021-07-09 05:37 Item Page Last Modified: 2025-03-15 18:55Owner: steinmetzt_NIWANZ River Names (REC2)Item id: 502212e71bce4c029de8a82cd5bc6302NZ Regional Rivers (REC2)Item id: 502212e71bce4c029de8a82cd5bc6302NZ National Rivers (REC2)Item id: 3a4b6cc2c1c74fbb8ddbe25df28e410cNZ Large River CatchmentsItem id: 28d23ad94c2a4846b7634f4cdbba178f