100+ datasets found
  1. D

    Data Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Data Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-analytics-market-1787
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 31, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Analytics Market size was valued at USD 41.05 USD billion in 2023 and is projected to reach USD 222.39 USD billion by 2032, exhibiting a CAGR of 27.3 % during the forecast period. Data Analytics can be defined as the rigorous process of using tools and techniques within a computational framework to analyze various forms of data for the purpose of decision-making by the concerned organization. This is used in almost all fields such as health, money matters, product promotion, and transportation in order to manage businesses, foresee upcoming events, and improve customers’ satisfaction. Some of the principal forms of data analytics include descriptive, diagnostic, prognostic, as well as prescriptive analytics. Data gathering, data manipulation, analysis, and data representation are the major subtopics under this area. There are a lot of advantages of data analytics, and some of the most prominent include better decision making, productivity, and saving costs, as well as the identification of relationships and trends that people could be unaware of. The recent trends identified in the market include the use of AI and ML technologies and their applications, the use of big data, increased focus on real-time data processing, and concerns for data privacy. These developments are shaping and propelling the advancement and proliferation of data analysis functions and uses. Key drivers for this market are: Rising Demand for Edge Computing Likely to Boost Market Growth. Potential restraints include: Data Security Concerns to Impede the Market Progress . Notable trends are: Metadata-Driven Data Fabric Solutions to Expand Market Growth.

  2. Big Data: tools used to analyze data in France 2016

    • statista.com
    Updated Jun 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2016). Big Data: tools used to analyze data in France 2016 [Dataset]. https://www.statista.com/statistics/1087760/big-data-tools-analyze-data-business-france/
    Explore at:
    Dataset updated
    Jun 1, 2016
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2016
    Area covered
    France
    Description

    This graph shows the tools used by French companies to analyze Big Data in 2016. The results show that almost 20 percent of the companies surveyed used Online Analytical Processing engines.

  3. student data analysis

    • kaggle.com
    Updated Nov 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    maira javeed (2023). student data analysis [Dataset]. https://www.kaggle.com/datasets/mairajaveed/student-data-analysis
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 17, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    maira javeed
    Description

    In this project, we aim to analyze and gain insights into the performance of students based on various factors that influence their academic achievements. We have collected data related to students' demographic information, family background, and their exam scores in different subjects.

    **********Key Objectives:*********

    1. Performance Evaluation: Evaluate and understand the academic performance of students by analyzing their scores in various subjects.

    2. Identifying Underlying Factors: Investigate factors that might contribute to variations in student performance, such as parental education, family size, and student attendance.

    3. Visualizing Insights: Create data visualizations to present the findings effectively and intuitively.

    Dataset Details:

    • The dataset used in this analysis contains information about students, including their age, gender, parental education, lunch type, and test scores in subjects like mathematics, reading, and writing.

    Analysis Highlights:

    • We will perform a comprehensive analysis of the dataset, including data cleaning, exploration, and visualization to gain insights into various aspects of student performance.

    • By employing statistical methods and machine learning techniques, we will determine the significant factors that affect student performance.

    Why This Matters:

    Understanding the factors that influence student performance is crucial for educators, policymakers, and parents. This analysis can help in making informed decisions to improve educational outcomes and provide support where it is most needed.

    Acknowledgments:

    We would like to express our gratitude to [mention any data sources or collaborators] for making this dataset available.

    Please Note:

    This project is meant for educational and analytical purposes. The dataset used is fictitious and does not represent any specific educational institution or individuals.

  4. Z

    Assessing the impact of hints in learning formal specification: Research...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Margolis, Iara (2024). Assessing the impact of hints in learning formal specification: Research artifact [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10450608
    Explore at:
    Dataset updated
    Jan 29, 2024
    Dataset provided by
    Campos, José Creissac
    Sousa, Emanuel
    Macedo, Nuno
    Margolis, Iara
    Cunha, Alcino
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This artifact accompanies the SEET@ICSE article "Assessing the impact of hints in learning formal specification", which reports on a user study to investigate the impact of different types of automated hints while learning a formal specification language, both in terms of immediate performance and learning retention, but also in the emotional response of the students. This research artifact provides all the material required to replicate this study (except for the proprietary questionnaires passed to assess the emotional response and user experience), as well as the collected data and data analysis scripts used for the discussion in the paper.

    Dataset

    The artifact contains the resources described below.

    Experiment resources

    The resources needed for replicating the experiment, namely in directory experiment:

    alloy_sheet_pt.pdf: the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment. The sheet was passed in Portuguese due to the population of the experiment.

    alloy_sheet_en.pdf: a version the 1-page Alloy sheet that participants had access to during the 2 sessions of the experiment translated into English.

    docker-compose.yml: a Docker Compose configuration file to launch Alloy4Fun populated with the tasks in directory data/experiment for the 2 sessions of the experiment.

    api and meteor: directories with source files for building and launching the Alloy4Fun platform for the study.

    Experiment data

    The task database used in our application of the experiment, namely in directory data/experiment:

    Model.json, Instance.json, and Link.json: JSON files with to populate Alloy4Fun with the tasks for the 2 sessions of the experiment.

    identifiers.txt: the list of all (104) available participant identifiers that can participate in the experiment.

    Collected data

    Data collected in the application of the experiment as a simple one-factor randomised experiment in 2 sessions involving 85 undergraduate students majoring in CSE. The experiment was validated by the Ethics Committee for Research in Social and Human Sciences of the Ethics Council of the University of Minho, where the experiment took place. Data is shared the shape of JSON and CSV files with a header row, namely in directory data/results:

    data_sessions.json: data collected from task-solving in the 2 sessions of the experiment, used to calculate variables productivity (PROD1 and PROD2, between 0 and 12 solved tasks) and efficiency (EFF1 and EFF2, between 0 and 1).

    data_socio.csv: data collected from socio-demographic questionnaire in the 1st session of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    socio-demographic information: participant's age (AGE), sex (SEX, 1 through 4 for female, male, prefer not to disclosure, and other, respectively), and average academic grade (GRADE, from 0 to 20, NA denotes preference to not disclosure).

    data_emo.csv: detailed data collected from the emotional questionnaire in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID) and the assigned treatment (column HINT, either N, L, E or D);

    detailed emotional response data: the differential in the 5-point Likert scale for each of the 14 measured emotions in the 2 sessions, ranging from -5 to -1 if decreased, 0 if maintained, from 1 to 5 if increased, or NA denoting failure to submit the questionnaire. Half of the emotions are positive (Admiration1 and Admiration2, Desire1 and Desire2, Hope1 and Hope2, Fascination1 and Fascination2, Joy1 and Joy2, Satisfaction1 and Satisfaction2, and Pride1 and Pride2), and half are negative (Anger1 and Anger2, Boredom1 and Boredom2, Contempt1 and Contempt2, Disgust1 and Disgust2, Fear1 and Fear2, Sadness1 and Sadness2, and Shame1 and Shame2). This detailed data was used to compute the aggregate data in data_emo_aggregate.csv and in the detailed discussion in Section 6 of the paper.

    data_umux.csv: data collected from the user experience questionnaires in the 2 sessions of the experiment, namely:

    participant identification: participant's unique identifier (ID);

    user experience data: summarised user experience data from the UMUX surveys (UMUX1 and UMUX2, as a usability metric ranging from 0 to 100).

    participants.txt: the list of participant identifiers that have registered for the experiment.

    Analysis scripts

    The analysis scripts required to replicate the analysis of the results of the experiment as reported in the paper, namely in directory analysis:

    analysis.r: An R script to analyse the data in the provided CSV files; each performed analysis is documented within the file itself.

    requirements.r: An R script to install the required libraries for the analysis script.

    normalize_task.r: A Python script to normalize the task JSON data from file data_sessions.json into the CSV format required by the analysis script.

    normalize_emo.r: A Python script to compute the aggregate emotional response in the CSV format required by the analysis script from the detailed emotional response data in the CSV format of data_emo.csv.

    Dockerfile: Docker script to automate the analysis script from the collected data.

    Setup

    To replicate the experiment and the analysis of the results, only Docker is required.

    If you wish to manually replicate the experiment and collect your own data, you'll need to install:

    A modified version of the Alloy4Fun platform, which is built in the Meteor web framework. This version of Alloy4Fun is publicly available in branch study of its repository at https://github.com/haslab/Alloy4Fun/tree/study.

    If you wish to manually replicate the analysis of the data collected in our experiment, you'll need to install:

    Python to manipulate the JSON data collected in the experiment. Python is freely available for download at https://www.python.org/downloads/, with distributions for most platforms.

    R software for the analysis scripts. R is freely available for download at https://cran.r-project.org/mirrors.html, with binary distributions available for Windows, Linux and Mac.

    Usage

    Experiment replication

    This section describes how to replicate our user study experiment, and collect data about how different hints impact the performance of participants.

    To launch the Alloy4Fun platform populated with tasks for each session, just run the following commands from the root directory of the artifact. The Meteor server may take a few minutes to launch, wait for the "Started your app" message to show.

    cd experimentdocker-compose up

    This will launch Alloy4Fun at http://localhost:3000. The tasks are accessed through permalinks assigned to each participant. The experiment allows for up to 104 participants, and the list of available identifiers is given in file identifiers.txt. The group of each participant is determined by the last character of the identifier, either N, L, E or D. The task database can be consulted in directory data/experiment, in Alloy4Fun JSON files.

    In the 1st session, each participant was given one permalink that gives access to 12 sequential tasks. The permalink is simply the participant's identifier, so participant 0CAN would just access http://localhost:3000/0CAN. The next task is available after a correct submission to the current task or when a time-out occurs (5mins). Each participant was assigned to a different treatment group, so depending on the permalink different kinds of hints are provided. Below are 4 permalinks, each for each hint group:

    Group N (no hints): http://localhost:3000/0CAN

    Group L (error locations): http://localhost:3000/CA0L

    Group E (counter-example): http://localhost:3000/350E

    Group D (error description): http://localhost:3000/27AD

    In the 2nd session, likewise the 1st session, each permalink gave access to 12 sequential tasks, and the next task is available after a correct submission or a time-out (5mins). The permalink is constructed by prepending the participant's identifier with P-. So participant 0CAN would just access http://localhost:3000/P-0CAN. In the 2nd sessions all participants were expected to solve the tasks without any hints provided, so the permalinks from different groups are undifferentiated.

    Before the 1st session the participants should answer the socio-demographic questionnaire, that should ask the following information: unique identifier, age, sex, familiarity with the Alloy language, and average academic grade.

    Before and after both sessions the participants should answer the standard PrEmo 2 questionnaire. PrEmo 2 is published under an Attribution-NonCommercial-NoDerivatives 4.0 International Creative Commons licence (CC BY-NC-ND 4.0). This means that you are free to use the tool for non-commercial purposes as long as you give appropriate credit, provide a link to the license, and do not modify the original material. The original material, namely the depictions of the diferent emotions, can be downloaded from https://diopd.org/premo/. The questionnaire should ask for the unique user identifier, and for the attachment with each of the depicted 14 emotions, expressed in a 5-point Likert scale.

    After both sessions the participants should also answer the standard UMUX questionnaire. This questionnaire can be used freely, and should ask for the user unique identifier and answers for the standard 4 questions in a 7-point Likert scale. For information about the questions, how to implement the questionnaire, and how to compute the usability metric ranging from 0 to 100 score from the answers, please see the original paper:

    Kraig Finstad. 2010. The usability metric for user experience. Interacting with computers 22, 5 (2010), 323–327.

    Analysis of other applications of the experiment

    This section describes how to replicate the analysis of the data collected in an application of the experiment described in Experiment replication.

    The analysis script expects data in 4 CSV files,

  5. o

    Indigenous data analysis methods for research

    • osf.io
    url
    Updated Jun 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nina Sivertsen; Tahlia Johnson; Annette Briley; Shanamae Davies; Tara Struck; Larissa Taylor; Susan Smith; Megan Cooper; Jaclyn Davey (2024). Indigenous data analysis methods for research [Dataset]. http://doi.org/10.17605/OSF.IO/VNZD9
    Explore at:
    urlAvailable download formats
    Dataset updated
    Jun 12, 2024
    Dataset provided by
    Center For Open Science
    Authors
    Nina Sivertsen; Tahlia Johnson; Annette Briley; Shanamae Davies; Tara Struck; Larissa Taylor; Susan Smith; Megan Cooper; Jaclyn Davey
    Description

    Objective: The objective of this review is to identify what is known about Indigenous data analysis methods for research. Introduction: Understanding Indigenous data analyses methods for research is crucial in health research with Indigenous participants, to support culturally appropriate interpretation of research data, and culturally inclusive analyses in cross-cultural research teams. Inclusion Criteria: This review will consider primary research studies that report on Indigenous data analysis methods for research. Method: Medline (via Ovid SP), PsycINFO (via Ovid SP), Web of Science (Clarivate Analytics), Scopus (Elsevier), Cumulated Index to Nursing and Allied Health Literature CINAHL (EBSCOhost), ProQuest Central, ProQuest Social Sciences Premium (Clarivate) will be searched. ProQuest (Theses and Dissertations) will be searched for unpublished material. Studies published from inception onwards and written in English will be assessed for inclusion. Studies meeting the inclusion criteria will be assessed for methodological quality and data will be extracted.

  6. Data Analytics In Financial Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Data Analytics In Financial Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/data-analytics-in-financial-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Oct 16, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Analytics in Financial Market Outlook



    The global data analytics in financial market size was valued at approximately USD 10.5 billion in 2023 and is projected to reach around USD 34.8 billion by 2032, growing at a robust CAGR of 14.4% during the forecast period. This remarkable growth is driven by the increasing adoption of advanced analytics technologies, the need for real-time data-driven decision-making, and the rising incidence of financial fraud.



    One of the primary growth factors for the data analytics in the financial market is the burgeoning volume of data generated from diverse sources such as transactions, social media, and online banking. Financial institutions are increasingly leveraging data analytics to process and analyze this vast amount of data to gain actionable insights. Additionally, technological advancements in artificial intelligence (AI) and machine learning (ML) are significantly enhancing the capabilities of data analytics tools, enabling more accurate predictions and efficient risk management.



    Another driving factor is the heightened focus on regulatory compliance and security management. In the wake of stringent regulations imposed by financial authorities globally, organizations are compelled to adopt robust analytics solutions to ensure compliance and mitigate risks. Moreover, with the growing threat of cyber-attacks and financial fraud, there is a heightened demand for sophisticated analytics tools capable of detecting and preventing fraudulent activities in real-time.



    Furthermore, the increasing emphasis on customer-centric strategies in the financial sector is fueling the adoption of data analytics. Financial institutions are utilizing analytics to understand customer behavior, preferences, and needs more accurately. This enables them to offer personalized services, improve customer satisfaction, and drive revenue growth. The integration of advanced analytics in customer management processes helps in enhancing customer engagement and loyalty, which is crucial in the competitive financial landscape.



    Regionally, North America has been the dominant player in the data analytics in financial market, owing to the presence of major market players, technological advancements, and a high adoption rate of analytics solutions. However, the Asia Pacific region is anticipated to witness the highest growth during the forecast period, driven by the rapid digitalization of financial services, increasing investments in analytics technologies, and the growing focus on enhancing customer experience in emerging economies like China and India.



    Component Analysis



    In the data analytics in financial market, the components segment is divided into software and services. The software segment encompasses various analytics tools and platforms designed to process and analyze financial data. This segment holds a significant share in the market owing to the continuous advancements in software capabilities and the growing need for real-time analytics. Financial institutions are increasingly investing in sophisticated software solutions to enhance their data processing and analytical capabilities. The software segment is also being propelled by the integration of AI and ML technologies, which offer enhanced predictive analytics and automation features.



    On the other hand, the services segment includes consulting, implementation, and maintenance services provided by vendors to help financial institutions effectively deploy and manage analytics solutions. With the rising complexity of financial data and analytics tools, the demand for professional services is on the rise. Organizations are seeking expert guidance to seamlessly integrate analytics solutions into their existing systems and optimize their use. The services segment is expected to grow significantly as more institutions recognize the value of professional support in maximizing the benefits of their analytics investments.



    The software segment is further categorized into various types of analytics tools such as descriptive analytics, predictive analytics, and prescriptive analytics. Descriptive analytics tools are used to summarize historical data to identify patterns and trends. Predictive analytics tools leverage historical data to forecast future outcomes, which is crucial for risk management and fraud detection. Prescriptive analytics tools provide actionable recommendations based on predictive analysis, aiding in decision-making processes. The growing need for advanced predictive and prescriptive analytics is driving the demand for specialized software solut

  7. M

    Marketing Data Analysis Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Marketing Data Analysis Software Report [Dataset]. https://www.archivemarketresearch.com/reports/marketing-data-analysis-software-40114
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global marketing data analysis software market is projected to grow from XXX million in 2023 to XXX million by 2033, with a CAGR of XX% during the forecast period. The growth of the market is attributed to the increasing adoption of data-driven marketing strategies by businesses to improve their customer engagement and sales performance. Additionally, the growing popularity of cloud-based software solutions and the availability of advanced analytical tools are driving the market growth. The market is segmented based on application, type, company, and region. The retail and e-commerce segment holds the largest market share due to the high demand for data analysis in the industry. The website analysis software segment is expected to witness significant growth during the forecast period due to the increasing need for businesses to track and analyze website traffic and behavior. The North American region dominates the market, followed by Europe and Asia Pacific. The key players in the market are HubSpot, Semrush, Looker Data Sciences (Google), Insider, LeadsRx, SharpSpring, OWOX BI, and Whatagraph BV.

  8. Big Data and Business Analytics Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Big Data and Business Analytics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/big-data-and-business-analytics-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data and Business Analytics Market Outlook



    In 2023, the global Big Data and Business Analytics market size is estimated to be valued at approximately $274 billion, and with a projected compound annual growth rate (CAGR) of 12.4%, it is anticipated to reach around $693 billion by 2032. This significant growth is driven by the escalating demand for data-driven decision-making processes across various industries, which leverage insights derived from vast data sets to enhance business efficiency, optimize operations, and drive innovation. The increasing adoption of Internet of Things (IoT) devices, coupled with the exponential growth of data generated daily, further propels the need for advanced analytics solutions to harness and interpret this information effectively.



    A critical growth factor in the Big Data and Business Analytics market is the increasing reliance on data to gain a competitive edge. Organizations are now more than ever looking to uncover hidden patterns, correlations, and insights from the data they collect to make informed decisions. This trend is especially prominent in industries such as retail, where understanding consumer behavior can lead to personalized marketing strategies, and in healthcare, where data analytics can improve patient outcomes through precision medicine. Moreover, the integration of big data analytics with artificial intelligence and machine learning technologies is enabling more accurate predictions and real-time decision-making, further enhancing the value proposition of these analytics solutions.



    Another key driver of market growth is the continuous technological advancements and innovations in data analytics tools and platforms. Companies are increasingly investing in advanced analytics capabilities, such as predictive analytics, prescriptive analytics, and real-time analytics, to gain deeper insights into their operations and market environments. The development of user-friendly and self-service analytics tools is also democratizing data access within organizations, empowering employees at all levels to leverage data in their daily decision-making processes. This democratization of data analytics is reducing the reliance on specialized data scientists, thereby accelerating the adoption of big data analytics across various business functions.



    The increasing emphasis on regulatory compliance and data privacy is also driving growth in the Big Data and Business Analytics market. Strict regulations, such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States, require organizations to manage and analyze data responsibly. This is prompting businesses to invest in robust analytics solutions that not only help them comply with these regulations but also ensure data integrity and security. Additionally, as data breaches and cybersecurity threats continue to rise, organizations are turning to analytics solutions to identify potential vulnerabilities and mitigate risks effectively.



    Regionally, North America remains a dominant player in the Big Data and Business Analytics market, benefiting from the presence of major technology companies and a high rate of digital adoption. The Asia Pacific region, however, is emerging as a significant growth area, driven by rapid industrialization, urbanization, and increasing investments in digital transformation initiatives. Europe also showcases a robust market, fueled by stringent data protection regulations and a strong focus on innovation. Meanwhile, the markets in Latin America and the Middle East & Africa are gradually gaining momentum as organizations in these regions are increasingly recognizing the value of data analytics in enhancing business outcomes and driving economic growth.



    Component Analysis



    The Big Data and Business Analytics market is segmented by components into software, services, and hardware, each playing a crucial role in the ecosystem. Software components, which include data management and analytics tools, are at the forefront, offering solutions that facilitate the collection, analysis, and visualization of large data sets. The software segment is driven by a demand for scalable solutions that can handle the increasing volume, velocity, and variety of data. As organizations strive to become more data-centric, there is a growing need for advanced analytics software that can provide actionable insights from complex data sets, leading to enhanced decision-making capabilities.



    In the services segment, businesses are increasingly seeking consultation, implementation, and support services to effective

  9. D

    Data Middle Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Feb 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Middle Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/data-middle-platform-1406277
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Feb 17, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Market Analysis for Data Middle Platform The global data middle platform market size was valued at USD 24.9 billion in 2025 and is anticipated to reach USD 76.1 billion by 2033, exhibiting a CAGR of 15.3% during the forecast period (2025-2033). Key drivers fueling market growth include the increasing adoption of cloud-based solutions, the proliferation of data, and the need for efficient data management. The rising adoption of data analytics and machine learning is also contributing to the demand for data middle platforms. The market is segmented by application (enterprise, municipal, bank, other) and type (local, cloud-based). The cloud-based segment dominates the market due to its cost-effectiveness, scalability, and flexibility. Key players in the market include Guangzhou Guangdian Information Technology Co., Ltd., Shanghai Qianjiang Network Technology Co., Ltd., Tianmian Information Technology (Shenzhen) Co., Ltd., Guangzhou Yunmi Technology Co., Ltd., Spot Technology, Xiamen Meiya Pico Information Co., Ltd., Star Ring Technology, Beijing Jiuqi Software Co., Ltd., LnData, SIE, Yusys Technology, and Sunline. The market is expected to experience significant growth in the Asia Pacific region, particularly in China, India, and Japan, due to the increasing number of data-driven businesses and the government's focus on digital transformation. The data middle platform market is a rapidly growing market, with a global value of $10.5 billion in 2021. The market is projected to grow at a CAGR of 15.7% over the next five years, reaching $24.5 billion by 2026. The growth of the market is being driven by the increasing adoption of data-driven decision-making in enterprises. As businesses become more reliant on data to improve their operations, they are increasingly investing in data middle platforms to manage and analyze their data.

  10. f

    Data from: Inflect: Optimizing Computational Workflows for Thermal Proteome...

    • acs.figshare.com
    xlsx
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neil A. McCracken; Sarah A. Peck Justice; Aruna B. Wijeratne; Amber L. Mosley (2023). Inflect: Optimizing Computational Workflows for Thermal Proteome Profiling Data Analysis [Dataset]. http://doi.org/10.1021/acs.jproteome.0c00872.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 7, 2023
    Dataset provided by
    ACS Publications
    Authors
    Neil A. McCracken; Sarah A. Peck Justice; Aruna B. Wijeratne; Amber L. Mosley
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The CETSA and Thermal Proteome Profiling (TPP) analytical methods are invaluable for the study of protein–ligand interactions and protein stability in a cellular context. These tools have increasingly been leveraged in work ranging from understanding signaling paradigms to drug discovery. Consequently, there is an important need to optimize the data analysis pipeline that is used to calculate protein melt temperatures (Tm) and relative melt shifts from proteomics abundance data. Here, we report a user-friendly analysis of the melt shift calculation workflow where we describe the impact of each individual calculation step on the final output list of stabilized and destabilized proteins. This report also includes a description of how key steps in the analysis workflow quantitatively impact the list of stabilized/destabilized proteins from an experiment. We applied our findings to develop a more optimized analysis workflow that illustrates the dramatic sensitivity of chosen calculation steps on the final list of reported proteins of interest in a study and have made the R based program Inflect available for research community use through the CRAN repository [McCracken, N. Inflect: Melt Curve Fitting and Melt Shift Analysis. R package version 1.0.3, 2021]. The Inflect outputs include melt curves for each protein which passes filtering criteria in addition to a data matrix which is directly compatible with downstream packages such as UpsetR for replicate comparisons and identification of biologically relevant changes. Overall, this work provides an essential resource for scientists as they analyze data from TPP and CETSA experiments and implement their own analysis pipelines geared toward specific applications.

  11. B

    Business Big Data Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Business Big Data Report [Dataset]. https://www.datainsightsmarket.com/reports/business-big-data-501117
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 18, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global business big data market is experiencing robust growth, driven by the increasing adoption of cloud-based solutions, the proliferation of connected devices generating massive amounts of data, and the growing need for data-driven decision-making across various industries. The market's expansion is fueled by a surge in demand for advanced analytics, predictive modeling, and real-time data processing capabilities to optimize business operations, enhance customer experiences, and gain a competitive edge. While the exact market size for 2025 is unavailable, considering a plausible CAGR of 15% (a common growth rate for rapidly expanding technology sectors) and a starting point estimated at $150 billion in 2024, the market size in 2025 could reasonably be estimated around $172.5 billion. This growth is anticipated to continue into the forecast period (2025-2033), driven by factors such as increasing digital transformation initiatives across enterprises, the rise of artificial intelligence (AI) and machine learning (ML) applications, and the growing need for regulatory compliance involving data management and analysis. The market is segmented by application (individual users and enterprise users) and type (cloud-based and local-based). The enterprise user segment is currently dominating, owing to the higher data volumes and analytical needs of large organizations. Cloud-based solutions are experiencing faster growth due to their scalability, cost-effectiveness, and accessibility. Geographic distribution shows strong growth across North America and Asia Pacific, fueled by robust technological infrastructure and high levels of digital adoption in regions like the United States and China. However, growth is also expected in emerging economies driven by increasing internet and smartphone penetration and the adoption of big data technologies by a wider range of businesses. While challenges like data security concerns and the need for skilled professionals to manage and analyze big data present restraints, the overall market outlook remains strongly positive due to the transformative potential of big data analytics across various sectors.

  12. E

    Data from: META-SAS: A Suite of SAS Programs to Analyze Multienvironment

    • data.moa.gov.et
    html
    Updated Jan 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CIMMYT Ethiopia (2025). META-SAS: A Suite of SAS Programs to Analyze Multienvironment [Dataset]. https://data.moa.gov.et/dataset/hdl-11529-10217
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    CIMMYT Ethiopia
    Description

    Multienvironment trials (METs) enable the evaluation of the same genotypes under a v ariety of environments and management conditions. We present META (Multi Environment Trial Analysis), a suite of 31 SAS programs that analyze METs with complete or incomplete block designs, with or without adjustment by a covariate. The entire program is run through a graphical user interface. The program can produce boxplots or histograms for all traits, as well as univariate statistics. It also calculates best linear unbiased estimators (BLUEs) and best linear unbiased predictors for the main response variable and BLUEs for all other traits. For all traits, it calculates variance components by restricted maximum likelihood, least significant difference, coefficient of variation, and broad-sense heritability using PROC MIXED. The program can analyze each location separately, combine the analysis by management conditions, or combine all locations. The flexibility and simplicity of use of this program makes it a valuable tool for analyzing METs in breeding and agronomy. The META program can be used by any researcher who knows only a few fundamental principles of SAS.

  13. Envestnet | Yodlee's De-Identified Consumer Transaction Data | Row/Aggregate...

    • datarade.ai
    .sql, .txt
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Envestnet | Yodlee, Envestnet | Yodlee's De-Identified Consumer Transaction Data | Row/Aggregate Level | USA Consumer Data covering 3600+ public and private corporations [Dataset]. https://datarade.ai/data-products/envestnet-yodlee-s-consumer-transaction-data-row-aggrega-envestnet-yodlee
    Explore at:
    .sql, .txtAvailable download formats
    Dataset provided by
    Envestnethttp://envestnet.com/
    Yodlee
    Authors
    Envestnet | Yodlee
    Area covered
    United States of America
    Description

    Envestnet®| Yodlee®'s Consumer Transaction Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.

    Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.

    We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.

    Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?

    Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.

    Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking

    1. Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)

    2. Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence

    3. Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis

  14. d

    Data release for solar-sensor angle analysis subset associated with the...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Data release for solar-sensor angle analysis subset associated with the journal article "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States" [Dataset]. https://catalog.data.gov/dataset/data-release-for-solar-sensor-angle-analysis-subset-associated-with-the-journal-article-so
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Western United States, United States
    Description

    This dataset provides geospatial location data and scripts used to analyze the relationship between MODIS-derived NDVI and solar and sensor angles in a pinyon-juniper ecosystem in Grand Canyon National Park. The data are provided in support of the following publication: "Solar and sensor geometry, not vegetation response, drive satellite NDVI phenology in widespread ecosystems of the western United States". The data and scripts allow users to replicate, test, or further explore results. The file GrcaScpnModisCellCenters.csv contains locations (latitude-longitude) of all the 250-m MODIS (MOD09GQ) cell centers associated with the Grand Canyon pinyon-juniper ecosystem that the Southern Colorado Plateau Network (SCPN) is monitoring through its land surface phenology and integrated upland monitoring programs. The file SolarSensorAngles.csv contains MODIS angle measurements for the pixel at the phenocam location plus a random 100 point subset of pixels within the GRCA-PJ ecosystem. The script files (folder: 'Code') consist of 1) a Google Earth Engine (GEE) script used to download MODIS data through the GEE javascript interface, and 2) a script used to calculate derived variables and to test relationships between solar and sensor angles and NDVI using the statistical software package 'R'. The file Fig_8_NdviSolarSensor.JPG shows NDVI dependence on solar and sensor geometry demonstrated for both a single pixel/year and for multiple pixels over time. (Left) MODIS NDVI versus solar-to-sensor angle for the Grand Canyon phenocam location in 2018, the year for which there is corresponding phenocam data. (Right) Modeled r-squared values by year for 100 randomly selected MODIS pixels in the SCPN-monitored Grand Canyon pinyon-juniper ecosystem. The model for forward-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle. The model for back-scatter MODIS-NDVI is log(NDVI) ~ solar-to-sensor angle + sensor zenith angle. Boxplots show interquartile ranges; whiskers extend to 10th and 90th percentiles. The horizontal line marking the average median value for forward-scatter r-squared (0.835) is nearly indistinguishable from the back-scatter line (0.833). The dataset folder also includes supplemental R-project and packrat files that allow the user to apply the workflow by opening a project that will use the same package versions used in this study (eg, .folders Rproj.user, and packrat, and files .RData, and PhenocamPR.Rproj). The empty folder GEE_DataAngles is included so that the user can save the data files from the Google Earth Engine scripts to this location, where they can then be incorporated into the r-processing scripts without needing to change folder names. To successfully use the packrat information to replicate the exact processing steps that were used, the user should refer to packrat documentation available at https://cran.r-project.org/web/packages/packrat/index.html and at https://www.rdocumentation.org/packages/packrat/versions/0.5.0. Alternatively, the user may also use the descriptive documentation phenopix package documentation, and description/references provided in the associated journal article to process the data to achieve the same results using newer packages or other software programs.

  15. The Ultimate Film Statistics Dataset - for ML🏆🎬

    • kaggle.com
    Updated Jul 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alessandro Lo Bello (2023). The Ultimate Film Statistics Dataset - for ML🏆🎬 [Dataset]. https://www.kaggle.com/datasets/alessandrolobello/the-ultimate-film-statistics-dataset-for-ml/data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 9, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Alessandro Lo Bello
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description: This dataset provides comprehensive movie statistics compiled from multiple sources, including Wikipedia, The Numbers, and IMDb. It offers a rich collection of information and insights into various aspects of movies, such as movie titles, production dates, genres, runtime minutes, director information, average ratings, number of votes, approval index, production budgets, domestic gross earnings, and worldwide gross earnings.

    The dataset combines data scraped from Wikipedia, which includes details about movie titles, production dates, genres, runtime minutes, and director information, with data from The Numbers, a reliable source for box office statistics. Additionally, IMDb data is integrated to provide information on average ratings, number of votes, and other movie-related attributes.

    With this dataset, users can analyze and explore trends in the film industry, assess the financial success of movies, identify popular genres, and investigate the relationship between average ratings and box office performance. Researchers, movie enthusiasts, and data analysts can leverage this dataset for various purposes, including data visualization, predictive modeling, and deeper understanding of the movie landscape.

    Features: - Movie_title - Production_date - Genres - Runtime_minutes - Director_name (primaryName) - Director_professions (primaryProfession) - Director_birthYear - Director_deathYear - Movie_averageRating : refers to the average rating given by online users for a particular movie - Movie_numberOfVotes : refers to the number of votes given by online users for a particular movie - Approval_Index :is a normalized indicator (on scale 0-10) calculated by multiplying the logarithm of the number of votes by the average users rating. It provides a concise measure of a movie's overall popularity and approval among online viewers, penalizing both films that got too few reviews and blockbusters that got too many. - Production_budget ( $) - Domestic_gross ($) - Worldwide_gross ($)

    Potential Applications:

    Box office analysis: Analyze the relationship between production budgets, domestic and worldwide gross earnings, and profitability. Genre analysis: Identify the most popular genres based on movie counts and analyze their performance. Rating analysis: Explore the relationship between average ratings, number of votes, and financial success. Director analysis: Investigate the impact of directors on movie ratings and financial performance. Time-based analysis: Study movie trends over different production years and observe changes in production budgets, box office earnings, and genre preferences. By utilizing this dataset, users can gain valuable insights into the movie industry and uncover patterns that can inform decision-making, market research, and creative strategies.

  16. o

    Regional YouTube Viral Content Dataset

    • opendatabay.com
    .undefined
    Updated Jul 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Datasimple (2025). Regional YouTube Viral Content Dataset [Dataset]. https://www.opendatabay.com/data/ai-ml/34cfa60b-afac-4753-9409-bc00f9e8fbec
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jul 6, 2025
    Dataset authored and provided by
    Datasimple
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    YouTube, Data Science and Analytics
    Description

    This dataset contains YouTube trending video statistics for various Mediterranean countries. Its primary purpose is to provide insights into popular video content, channels, and viewer engagement across the region over specific periods. It is valuable for analysing content trends, understanding regional audience preferences, and assessing video performance metrics on the YouTube platform.

    Columns

    • country: The nation where the video was published.
    • video_id: A unique identification number assigned to each video.
    • title: The name of the video.
    • publishedAt: The publication date of the video.
    • channelId: The unique identification number for the channel that published the video.
    • channelTitle: The name of the channel that published the video.
    • categoryId: The category identification number of the video (e.g., '10' for 'music').
    • trending_date: The date on which the video was observed to be trending.
    • tags: Keywords or phrases associated with the video.
    • view_count: The total number of views the video has accumulated.
    • comment_count: The total number of comments received on the video.
    • thumbnail_link: The URL for the image displayed before the video is played.
    • comments_disabled: A boolean indicator showing if comments are disabled for the video.
    • ratings_disabled: A boolean indicator showing if ratings (likes/dislikes) are disabled for the video.
    • description: The explanatory text provided below the video.

    Distribution

    The dataset is structured in a tabular format, typically provided as a CSV file. It consists of 15 distinct columns detailing various aspects of YouTube trending videos. While the exact total number of rows or records is not specified, the data includes trending video counts for several date ranges in 2022: * 06/04/2022 - 06/08/2022: 31 records * 06/08/2022 - 06/11/2022: 56 records * 06/11/2022 - 06/15/2022: 57 records * 06/15/2022 - 06/19/2022: 111 records * 06/19/2022 - 06/22/2022: 130 records * 06/22/2022 - 06/26/2022: 207 records * 06/26/2022 - 06/29/2022: 321 records * 06/29/2022 - 07/03/2022: 523 records * 07/03/2022 - 07/07/2022: 924 records * 07/07/2022 - 07/10/2022: 861 records The dataset features 19 unique countries and 1347 unique video IDs. View counts for videos in the dataset range from approximately 20.9 thousand to 123 million.

    Usage

    This dataset is well-suited for a variety of analytical applications and use cases: * Exploratory Data Analysis (EDA): Discovering patterns, anomalies, and relationships within YouTube trending content. * Data Manipulation and Querying: Practising data handling using libraries such as Pandas or Numpy in Python, or executing queries with SQL. * Natural Language Processing (NLP): Analysing video titles, tags, and descriptions to extract key themes, sentiment, and trending topics. * Trend Prediction: Developing models to forecast future trending videos or content categories. * Cross-Country Comparison: Examining how trending content varies across different Mediterranean nations.

    Coverage

    • Geographic Scope: The dataset covers YouTube trending video statistics for 19 specific Mediterranean countries. These include Italy (IT), Spain (ES), Greece (GR), Croatia (HR), Turkey (TR), Albania (AL), Algeria (DZ), Egypt (EG), Libya (LY), Tunisia (TN), Morocco (MA), Israel (IL), Montenegro (ME), Lebanon (LB), France (FR), Bosnia and Herzegovina (BA), Malta (MT), Slovenia (SI), Cyprus (CY), and Syria (SY).
    • Time Range: The data primarily spans from 2022-06-04 to 2022-07-10, providing detailed daily trending information. A specific snapshot of the dataset is also available for 2022-11-07.

    License

    CC0

    Who Can Use It

    • Data Scientists and Analysts: For conducting in-depth research, building predictive models, and generating insights on social media trends.
    • Researchers: Those studying online content consumption patterns, regional cultural influences, and digital media behaviour.
    • Marketing Professionals: To identify popular content types, inform content strategy, and understand audience engagement on YouTube.
    • Students: For academic projects focusing on web data analysis, natural language processing, and statistical modelling.

    Dataset Name Suggestions

    • Mediterranean YouTube Trends 2022
    • YouTube Trending Videos: Mediterranean Insights
    • Regional YouTube Viral Content
    • Mediterranean Social Media Video Data
    • YouTube Trends in Southern Europe & North Africa

    Attributes

    Original Data Source: YouTube Trending Videos of the Day

  17. Big Data as a Service (BDaaS) Market Analysis North...

    • technavio.com
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2023). Big Data as a Service (BDaaS) Market Analysis North America,APAC,Europe,South America,Middle East and Africa - US,Canada,China,Germany,UK - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/big-data-as-a-service-market-industry-analysis
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Germany, United Kingdom, China, Canada, United States, Global
    Description

    Snapshot img

    Big Data as a Service Market Size 2024-2028

    The big data as a service market size is forecast to increase by USD 41.20 billion at a CAGR of 28.45% between 2023 and 2028.

    The market is experiencing significant growth due to the increasing volume of data and the rising demand for advanced data insights. Machine learning algorithms and artificial intelligence are driving product quality and innovation in this sector. Hybrid cloud solutions are gaining popularity, offering the benefits of both private and public cloud platforms for optimal data storage and scalability. Industry standards for data privacy and security are increasingly important, as large amounts of data pose unique risks. The BDaaS market is expected to continue its expansion, providing valuable data insights to businesses across various industries.
    

    What will be the Big Data as a Service Market Size During the Forecast Period?

    Request Free Sample

    Big Data as a Service (BDaaS) has emerged as a game-changer in the business world, enabling organizations to harness the power of big data without the need for extensive infrastructure and expertise. This service model offers various components such as data management, analytics, and visualization tools, enabling businesses to derive valuable insights from their data. BDaaS encompasses several key components that drive market growth. These include Business Intelligence (BI), Data Science, Data Quality, and Data Security. BI provides organizations with the ability to analyze data and gain insights to make informed decisions.
    
    
    
    Data Science, on the other hand, focuses on extracting meaningful patterns and trends from large datasets using advanced algorithms. Data Quality is a critical component of BDaaS, ensuring that the data being analyzed is accurate, complete, and consistent. Data Security is another essential aspect, safeguarding sensitive data from cybersecurity threats and data breaches. Moreover, BDaaS offers various data pipelines, enabling seamless data integration and data lifecycle management. Network Analysis, Real-time Analytics, and Predictive Analytics are other essential components, providing businesses with actionable insights in real-time and enabling them to anticipate future trends. Data Mining, Machine Learning Algorithms, and Data Visualization Tools are other essential components of BDaaS.
    

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    Type
    
      Data analytics-as-a-Service
      Hadoop-as-a-service
      Data-as-a-service
    
    
    Deployment
    
      Public cloud
      Hybrid cloud
      Private cloud
    
    
    Geography
    
      North America
    
        Canada
        US
    
    
      APAC
    
        China
    
    
      Europe
    
        Germany
        UK
    
    
      South America
    
    
    
      Middle East and Africa
    

    By Type Insights

    The data analytics-as-a-service segment is estimated to witness significant growth during the forecast period.
    

    Big Data as a Service (BDaaS) is a significant market segment, highlighted by the availability of Hadoop-as-a-Service solutions. These offerings enable businesses to access essential datasets on-demand without the burden of expensive infrastructure. DAaaS solutions facilitate real-time data analysis, empowering organizations to make informed decisions. The DAaaS landscape is expanding rapidly as companies acknowledge its value in enhancing internal data. Integrating DAaaS with big data systems amplifies analytics capabilities, creating a vibrant market landscape. Organizations can leverage diverse datasets to gain a competitive edge, driving the growth of the global BDaaS market. In the context of digital transformation, cloud computing, IoT, and 5G technologies, BDaaS solutions offer optimal resource utilization.

    However, regulatory scrutiny poses challenges, necessitating stringent data security measures. Retail and other industries stand to benefit significantly from BDaaS, particularly with distributed computing solutions. DAaaS adoption is a strategic investment for businesses seeking to capitalize on the power of external data for valuable insights.

    Get a glance at the market report of share of various segments Request Free Sample

    The Data analytics-as-a-Service segment was valued at USD 2.59 billion in 2018 and showed a gradual increase during the forecast period.

    Regional Analysis

    North America is estimated to contribute 35% to the growth of the global market during the forecast period.
    

    Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    For more insights on the market share of various regions Request Free Sample

    Big Data as a Service Market analysis, North America is experiencing signif

  18. Big Data Analysis Platform Market Report | Global Forecast From 2025 To 2033...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Big Data Analysis Platform Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-big-data-analysis-platform-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data Analysis Platform Market Outlook



    The global market size for Big Data Analysis Platforms is projected to grow from USD 35.5 billion in 2023 to an impressive USD 110.7 billion by 2032, reflecting a CAGR of 13.5%. This substantial growth can be attributed to the increasing adoption of data-driven decision-making processes across various industries, the rapid proliferation of IoT devices, and the ever-growing volumes of data generated globally.



    One of the primary growth factors for the Big Data Analysis Platform market is the escalating need for businesses to derive actionable insights from complex and voluminous datasets. With the advent of technologies such as artificial intelligence and machine learning, organizations are increasingly leveraging big data analytics to enhance their operational efficiency, customer experience, and competitiveness. The ability to process vast amounts of data quickly and accurately is proving to be a game-changer, enabling businesses to make more informed decisions, predict market trends, and optimize their supply chains.



    Another significant driver is the rise of digital transformation initiatives across various sectors. Companies are increasingly adopting digital technologies to improve their business processes and meet changing customer expectations. Big Data Analysis Platforms are central to these initiatives, providing the necessary tools to analyze and interpret data from diverse sources, including social media, customer transactions, and sensor data. This trend is particularly pronounced in sectors such as retail, healthcare, and BFSI (banking, financial services, and insurance), where data analytics is crucial for personalizing customer experiences, managing risks, and improving operational efficiencies.



    Moreover, the growing adoption of cloud computing is significantly influencing the market. Cloud-based Big Data Analysis Platforms offer several advantages over traditional on-premises solutions, including scalability, flexibility, and cost-effectiveness. Businesses of all sizes are increasingly turning to cloud-based analytics solutions to handle their data processing needs. The ability to scale up or down based on demand, coupled with reduced infrastructure costs, makes cloud-based solutions particularly appealing to small and medium-sized enterprises (SMEs) that may not have the resources to invest in extensive on-premises infrastructure.



    Data Science and Machine-Learning Platforms play a pivotal role in the evolution of Big Data Analysis Platforms. These platforms provide the necessary tools and frameworks for processing and analyzing vast datasets, enabling organizations to uncover hidden patterns and insights. By integrating data science techniques with machine learning algorithms, businesses can automate the analysis process, leading to more accurate predictions and efficient decision-making. This integration is particularly beneficial in sectors such as finance and healthcare, where the ability to quickly analyze complex data can lead to significant competitive advantages. As the demand for data-driven insights continues to grow, the role of data science and machine-learning platforms in enhancing big data analytics capabilities is becoming increasingly critical.



    From a regional perspective, North America currently holds the largest market share, driven by the presence of major technology companies, high adoption rates of advanced technologies, and substantial investments in data analytics infrastructure. Europe and the Asia Pacific regions are also experiencing significant growth, fueled by increasing digitalization efforts and the rising importance of data analytics in business strategy. The Asia Pacific region, in particular, is expected to witness the highest CAGR during the forecast period, propelled by rapid economic growth, a burgeoning middle class, and increasing internet and smartphone penetration.



    Component Analysis



    The Big Data Analysis Platform market can be broadly categorized into three components: Software, Hardware, and Services. The software segment includes analytics software, data management software, and visualization tools, which are crucial for analyzing and interpreting large datasets. This segment is expected to dominate the market due to the continuous advancements in analytics software and the increasing need for sophisticated data analysis tools. Analytics software enables organizations to process and analyze data from multiple sources,

  19. v

    Data Visualization Tools Market By Type of Tool (Reporting Tools, Dashboard...

    • verifiedmarketresearch.com
    Updated Oct 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Data Visualization Tools Market By Type of Tool (Reporting Tools, Dashboard and Visualization Tools, Self-Service Business Intelligence Tools, Advanced Analytics Tools), Application (Business Intelligence (BI), Data Analytics, Data Science), Deployment Mode (On-Premises, Cloud-Based, Hybrid), & Region for 2024-2031 [Dataset]. https://www.verifiedmarketresearch.com/product/data-visualization-tools-market/
    Explore at:
    Dataset updated
    Oct 31, 2024
    Dataset authored and provided by
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Data Visualization Tools Market Valuation – 2024-2031

    Data Visualization Tools Market was valued at USD 7.65 Billion in 2024 and is projected to reach USD 21.22 Billion by 2031, growing at a CAGR of 13.6% during the forecast period 2024-2031.

    Global Data Visualization Tools Market Drivers

    Data Explosion: The increasing volume and complexity of data generated by various sources have made it challenging to understand and analyze data effectively. Data visualization tools provide a visual representation of data, making it easier to comprehend and extract insights.

    Enhanced Decision Making: Data visualization tools help organizations make data-driven decisions by providing clear and concise visualizations of key metrics and trends.

    Improved Communication: Visualizations can be used to communicate complex data concepts to stakeholders who may not have a technical background, facilitating better collaboration and understanding.

    Global Data Visualization Tools Market Restraints

    Data Quality and Consistency: Ensuring data quality and consistency is crucial for accurate and meaningful visualizations. Poor data quality can hinder the effectiveness of data visualization tools.

    Complexity and Cost: Some data visualization tools can be complex and expensive, making it difficult for smaller organizations to adopt them.

  20. f

    climwin: An R Toolbox for Climate Window Analysis

    • plos.figshare.com
    txt
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Liam D. Bailey; Martijn van de Pol (2023). climwin: An R Toolbox for Climate Window Analysis [Dataset]. http://doi.org/10.1371/journal.pone.0167980
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Liam D. Bailey; Martijn van de Pol
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    When studying the impacts of climate change, there is a tendency to select climate data from a small set of arbitrary time periods or climate windows (e.g., spring temperature). However, these arbitrary windows may not encompass the strongest periods of climatic sensitivity and may lead to erroneous biological interpretations. Therefore, there is a need to consider a wider range of climate windows to better predict the impacts of future climate change. We introduce the R package climwin that provides a number of methods to test the effect of different climate windows on a chosen response variable and compare these windows to identify potential climate signals. climwin extracts the relevant data for each possible climate window and uses this data to fit a statistical model, the structure of which is chosen by the user. Models are then compared using an information criteria approach. This allows users to determine how well each window explains variation in the response variable and compare model support between windows. climwin also contains methods to detect type I and II errors, which are often a problem with this type of exploratory analysis. This article presents the statistical framework and technical details behind the climwin package and demonstrates the applicability of the method with a number of worked examples.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Market Research Forecast (2024). Data Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-analytics-market-1787

Data Analytics Market Report

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
doc, ppt, pdfAvailable download formats
Dataset updated
Dec 31, 2024
Dataset authored and provided by
Market Research Forecast
License

https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The Data Analytics Market size was valued at USD 41.05 USD billion in 2023 and is projected to reach USD 222.39 USD billion by 2032, exhibiting a CAGR of 27.3 % during the forecast period. Data Analytics can be defined as the rigorous process of using tools and techniques within a computational framework to analyze various forms of data for the purpose of decision-making by the concerned organization. This is used in almost all fields such as health, money matters, product promotion, and transportation in order to manage businesses, foresee upcoming events, and improve customers’ satisfaction. Some of the principal forms of data analytics include descriptive, diagnostic, prognostic, as well as prescriptive analytics. Data gathering, data manipulation, analysis, and data representation are the major subtopics under this area. There are a lot of advantages of data analytics, and some of the most prominent include better decision making, productivity, and saving costs, as well as the identification of relationships and trends that people could be unaware of. The recent trends identified in the market include the use of AI and ML technologies and their applications, the use of big data, increased focus on real-time data processing, and concerns for data privacy. These developments are shaping and propelling the advancement and proliferation of data analysis functions and uses. Key drivers for this market are: Rising Demand for Edge Computing Likely to Boost Market Growth. Potential restraints include: Data Security Concerns to Impede the Market Progress . Notable trends are: Metadata-Driven Data Fabric Solutions to Expand Market Growth.

Search
Clear search
Close search
Google apps
Main menu