https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
This is a dataset download, not a document. The Open button will start the download.Oregon Geologic Data Compilation, release 7 (OGDC-7), compiled by Jon J. Franczyk, Ian P. Madin, Carlie J.M. Duda, and Jason D. McClaughryhttps://www.oregongeology.org/pubs/dds/p-OGDC-7.htmThis is a compressed file containing a File Geodatabase with multiple feature classes, metadata XML, and a PDF pamphlet.The Oregon Geologic Data Compilation (OGDC) is a digital data collection of geologic studies created by the Oregon Department of Geology and Mineral Industries (DOGAMI). The purpose of the compilation is to integrate and make available the best available published geologic mapping for the state by combining maps and data into a single consistent and maintainable digital database. OGDC was first released by DOGAMI in 2004, with successive releases building either geographically or qualitatively on previous releases. OGDC-6 was published in 2015 and serves as the Oregon Geologic Data Standard for the state as a data element component of the Geosciences Theme within the Oregon Framework Themes. The release of OGDC-7 builds directly from data published in OGDC-6 by migrating the database structure to the National Cooperative Geologic Mapping Program (NCGMP) Geologic Map Schema (GeMS). DOGAMI has implemented the GeMS schema as the database standard for all geologic mapping projects published from 2019 onward to meet NCGMP requirements and to support the state’s contribution to standardized nationwide geologic content. The transition to OGDC-7 required migrating the existing OGDC statewide compilation to the GeMS format for streamlining future updates, data creation, and data maintenance. Additionally, the transition to GeMS adds fundamental geologic map point data (e.g., structural data, geochronology, and geochemistry) as comprehensive geospatial datasets not included as part of previous versions of OGDC.
The USDA Forest Service (USFS) builds multiple versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass CONUS, Coastal Alaska, Hawaii, U.S. Virgin Islands and Puerto Rico. There are three versions of data within the 2016 TCC Product Suite, which include: The initial model outputs referred to as the Analytical data; A masked version of the initial output referred to as Cartographic data; And a modified version built for the National Land Cover Database and referred to as NLCD data, which includes a canopy cover change dataset derived from subtraction of datasets for the nominal years of 2011 and 2016. The Analytical data are the initial model outputs generated in the production workflow. These data are best suited for users who will carry out their own detailed statistical and uncertainty analyses on the dataset and place lower priority on the visual appearance of the dataset for cartographic purposes. Datasets for the nominal years of 2011 and 2016 are available. The Cartographic products mask the initial model outputs to improve the visual appearance of the datasets. These data are best suited for users who prioritize visual appearance of the data for cartographic and illustrative purposes. Datasets for the nominal years of 2011 and 2016 are available. The NLCD data are the result of further processing of the masked data. The goal was to generate three coordinated components. The components are (1) a dataset for the nominal year of 2011, (2) a dataset for the nominal year of 2016, and (3) a dataset that captures the change in canopy cover between the two nominal years of 2011 and 2016. For the NLCD data, the three components meet the criterion of 2011 TCC + change in TCC = 2016 TCC. These NLCD data are best suited for users who require a coordinated three-component data stack where each pixel's values meet the criterion of 2011 TCC + change in TCC = 2016 TCC. Datasets for the nominal years of 2011 and 2016 are available, as well as a dataset that captures the change (loss or gain) in canopy cover between those two nominal years of 2011 and 2016, in areas where change was identified. These tree canopy cover data are accessible for multiple user communities, through multiple channels and platforms, as listed below: Analytical USFS Tree Canopy Cover Datasets (Download) USFS Enterprise Data Warehouse (Image Service) Cartographic USFS Tree Canopy Cover Datasets (Download) USFS Enterprise Data Warehouse (Map Service) NLCD Multi-Resolution Land Characteristics (MRLC) Consortium (Download) USFS Enterprise Data Warehouse (Image Service) The Hawaii TCC 2011 cartographic dataset is comprised of a single layer. The pixel values range from 0 to 99 percent. The background is represented by the value 255. The dataset has data gaps due to consistent clouds/shadows in the Landsat images used for modeling. These data gaps are represented by the value 110.
The COVADIS Data Standard on Risk Prevention Plans includes all technical and organisational specifications for the digital storage of geographical data represented in the Risk Prevention Plans (RPPs). Major risks include the eight foreseeable main natural hazards in the national territory: floods, earthquakes, volcanic eruptions, field movements, coastal hazards, avalanches, forest fires, cyclones and storms, and four technological risks: nuclear risk, industrial risk, risk of transport of hazardous materials and risk of dam failure. The Risk Prevention Plans (RPPs) were established by the Law of 2 February 1995 on the strengthening of environmental protection. The PPR tool is part of the law of 22 July 1987 on the organisation of civil security, the protection of the forest against fire and the prevention of major risks. The development of a PPR falls within the competence of the State. It is decided by the Prefect. Whether natural, technological or multi-hazard, risk prevention plans have similarities. They contain three categories of information: • Regulatory mapping results in a geographical delimitation of the territory concerned by the risk. This delimitation defines areas in which specific regulations apply. These regulations have easement value and impose requirements varying according to the level of hazard to which the area is exposed. The areas are represented on a zoning plan that fully covers the study area. • The hazards causing the risk are included in hazard documents that can be inserted in the submission report or annexed to the RPP. These documents are used to map the different levels of intensity of each hazard considered in the risk prevention plan. • The issues identified during the development of the RPP can also be annexed to the approved document in the form of maps. These similarities between the different types of PPR and the desire to achieve a good level of standardisation of PPR data have led COVADIS to opt for a single data standard, sufficiently generic to address the different types of risk prevention plan (PPRN natural risk prevention plans, PPRT technological risk prevention plans) This data standard does not consist of a complete modeling of a risk prevention plan file. The scope of this document is limited to the geographic data contained in the RPPs, whether regulatory or non-regulatory. The PPR standard is also not intended to standardise the knowledge of hazards. The challenge is to have a description for a homogeneous storage of the geographical data of the PPRs because these data concern several occupations within the ministries responsible for agriculture, on the one hand, and ecology, and sustainable development, on the other.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. Resource contains an ArcGIS …Show full descriptionAbstract This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied. Resource contains an ArcGIS file geodatabase raster for the National Vegetation Information System (NVIS) Major Vegetation Groups - Australia-wide, present extent (FGDB_NVIS4_1_AUST_MVG_EXT). Related datasets are also included: FGDB_NVIS4_1_KEY_LAYERS_EXT - ArcGIS File Geodatabase Feature Class of the Key Datasets that make up NVIS Version 4.1 - Australia wide; and FGDB_NVIS4_1_LUT_KEY_LAYERS - Lookup table for Dataset Key Layers. This raster dataset provides the latest summary information (November 2012) on Australia's present (extant) native vegetation. It is in Albers Equal Area projection with a 100 m x 100 m (1 Ha) cell size. A comparable Estimated Pre-1750 (pre-european, pre-clearing) raster dataset is available: - NVIS4_1_AUST_MVG_PRE_ALB. State and Territory vegetation mapping agencies supplied a new version of the National Vegetation Information System (NVIS) in 2009-2011. Some agencies did not supply new data for this version but approved re-use of Version 3.1 data. Summaries were derived from the best available data in the NVIS extant theme as at June 2012. This product is derived from a compilation of data collected at different scales on different dates by different organisations. Please refer to the separate key map showing scales of the input datasets. Gaps in the NVIS database were filled by non-NVIS data, notably parts of South Australia and small areas of New South Wales such as the Curlewis area. The data represent on-ground dates of up to 2006 in Queensland, 2001 to 2005 in South Australia (depending on the region) and 2004/5 in other jurisdictions, except NSW. NVIS data was partially updated in NSW with 2001-09 data, with extensive areas of 1997 data remaining from the earlier version of NVIS. Major Vegetation Groups were identified to summarise the type and distribution of Australia's native vegetation. The classification contains different mixes of plant species within the canopy, shrub or ground layers, but are structurally similar and are often dominated by a single genus. In a mapping sense, the groups reflect the dominant vegetation occurring in a map unit where there are a mix of several vegetation types. Subdominant vegetation groups which may also be present in the map unit are not shown. For example, the dominant vegetation in an area may be mapped as dominated by eucalypt open forest, although it contains pockets of rainforest, shrubland and grassland vegetation as subdominants. The (related) Major Vegetation Subgroups represent more detail about the understorey and floristics of the Major Vegetation Groups and are available as separate raster datasets: - NVIS4_1_AUST_MVS_EXT_ALB - NVIS4_1_AUST_MVS_PRE_ALB A number of other non-vegetation and non-native vegetation land cover types are also represented as Major Vegetation Groups. These are provided for cartographic purposes, but should not be used for analyses. For further background and other NVIS products, please see the links on http://www.environment.gov.au/erin/nvis/index.html. The current NVIS data products are available from http://www.environment.gov.au/land/native-vegetation/national-vegetation-information-system. Purpose For use in Bioregional Assessment land classification analyses Dataset History NVIS Version 4.1 The input vegetation data were provided from over 100 individual projects representing the majority of Australia's regional vegetation mapping over the last 50 years. State and Territory custodians translated the vegetation descriptions from these datasets into a common attribute framework, the National Vegetation Information System (ESCAVI, 2003). Scales of input mapping ranged from 1:25,000 to 1:5,000,000. These were combined into an Australia-wide set of vector data. Non-terrestrial areas were mostly removed by the State and Territory custodians before supplying the data to the Environmental Resources Information Network (ERIN), Department of Sustainability Environment Water Population and Communities (DSEWPaC). Each NVIS vegetation description was written to the NVIS XML format file by the custodian, transferred to ERIN and loaded into the NVIS database at ERIN. A considerable number of quality checks were performed automatically by this system to ensure conformity to the NVIS attribute standards (ESCAVI, 2003) and consistency between levels of the NVIS Information Hierarchy within each description. Descriptions for non-vegetation and non-native vegetation mapping codes were transferred via CSV files. The NVIS vector (polygon) data for Australia comprised a series of jig-saw pieces, eachup to approx 500,000 polygons - the maximum tractable size for routine geoprocesssing. The spatial data was processed to conform to the NVIS spatial format (ESCAVI, 2003; other papers). Spatial processing and attribute additions were done mostly in ESRI File Geodatabases. Topology and minor geometric corrections were also performed at this stage. These datasets were then loaded into ESRI Spatial Database Engine as per the ERIN standard. NVIS attributes were then populated using Oracle database tables provided by custodians, mostly using PL/SQL Developer or in ArcGIS using the field calculator (where simple). Each spatial dataset was joined to and checked against a lookup table for the relevant State/Territory to ensure that all mapping codes in the dominant vegetation type of each polygon (NVISDSC1) had a valid lookup description, including an allocated MVG. Minor vegetation components of each map unit (NVISDSC2-6) were not checked, but could be considered mostly complete. Each NVIS vegetation description was allocated to a Major Vegetation Group (MVG) by manual interpretation at ERIN. The Australian Natural Resources Atlas (http://www.anra.gov.au/topics/vegetation/pubs/native_vegetation/vegfsheet.html) provides detailed descriptions of most Major Vegetation Groups. Three new MVGs were created for version 4.1 to better represent open woodland formations and forests (in the NT) with no further data available. NVIS vegetation descriptions were reallocated into these classes, if appropriate: Unclassified Forest Other Open Woodlands Mallee Open Woodlands and Sparse Mallee Shublands (Thus there are a total of 33 MVGs existing as at June 2012). Data values defined as cleared or non-native by data custodians were attributed specific MVG values such as 25 - Cleared or non native, 27 - naturally bare, 28 - seas & estuaries, and 99 - Unknown. As part of the process to fill gaps in NVIS, the descriptive data from non-NVIS sources was also referenced in the NVIS database, but with blank vegetation descriptions. In general. the gap-fill data comprised (a) fine scale (1:250K or better) State/Territory vegetation maps for which NVIS descriptions were unavailable and (b) coarse-scale (1:1M) maps from Commonwealth and other sources. MVGs were then allocated to each description from the available desciptions in accompanying publications and other sources. Parts of New South Wales, South Australia, QLD and the ACT have extensive areas of vector "NoData", thus appearing as an inland sea. The No Data areas were dealt with differently by state. In the ACT and SA, the vector data was 'gap-filled' and attributed using satellite imagery as a guide prior to rasterising. Most of these areas comprised a mixture of MVG 24 (inland water) and 25 (cleared), and in some case 99 (Unknown). The NSW & QLD 'No Data' areas were filled using a raster mask to fill the 'holes'. These areas were attributed with MVG 24, 26 (water & unclassified veg), MVG 25 (cleared); or MVG 99 Unknown/no data, where these areas were a mixture of unknown proportions. Each spatial dataset with joined lookup table (including MVG_NUMBER linked to NVISDSC1) was exported to a File Geodatabase as a feature class. These were reprojected into Albers Equal Area projection (Central_Meridian: 132.000000, Standard_Parallel_1: -18.000000, Standard_Parallel_2: -36.000000, Linear Unit: Meter (1.000000), Datum GDA94, other parameters 0). Each feature class was then rasterised to a 100m raster with extents to a multiple of 1000 m, to ensure alignment. In some instances, areas of 'NoData' had to be modelled in raster. For example, in NSW where non-native areas (cleared, water bodies etc) have not been mapped. The rasters were then merged into a 'state wide' raster. State rasters were then merged into this 'Australia wide' raster dataset. November 2012 Corrections Closer inspection of the original 4.1 MVG Extant raster dataset highlighted some issues with the raster creation process which meant that raster pixels in some areas did not align as intended. These were corrected, and the new properly aligned rasters released in November 2012. Dataset Citation Department of the Environment (2012) Australia - Present Major Vegetation Groups - NVIS Version 4.1 (Albers 100m analysis product). Bioregional Assessment Source Dataset. Viewed 10 July 2017, http://data.bioregionalassessments.gov.au/dataset/57c8ee5c-43e5-4e9c-9e41-fd5012536374.
This dataset and its metadata statement were supplied to the Bioregional Assessment Programme by a third party and are presented here as originally supplied.
This layer contains sun-shaded images of depth, isopach and two way time grids generated from seismic interpretation to the following horizons:
Top Winton Formation, Base of Tertiary, Top Cadnaowie Formation, Top Hutton Sandstone, Base Eromanga Basin (also referred to as Top Cooper Basin), Top Nappamerri Group, Top or near Top Permian Sediments, Toolachee Formation, Top Daralingie Unconformity & Correlative Unconformities level, Top Daralingie Sandstone Sediments, Top Patchawarra Formation, Base Patchawarra Formation, Glacial Sediments of Tirrawarra Sandstone or Merrimelia Formation and Basement or Top Warburton Basin in the Cooper Basin area in the north-east of South Australia. These grids form part of a database of seismically mapped subsurface depth, isopach and time grids, contours, faults and polygons interpreted from seismic mapping over the Cooper Basin area.
The sun-shaded seismic mapping images in this layer were created from Petrosys grids using ERMapper software. The image files (Georeferenced - TIFF format) are in GDA94 Geodetic projection. Depths are in metres below MSL datum.
These data sets are derived from well tops, seismic sections and some open file industry interpretations. Petrosys mapping and interpretation software were utilised for the entire project. Interpretations derived from basic seismic data, with some reference to open file industry and other data. Interpreted, compiled and edited by DMITRE. Final files produced by Energy Resources Division, DMITRE.
"SA Department for Manufacturing, Innovation, Trade, Resources and Energy" (2010) Cooper Basin Seismic Mapping Grids, South Australia. Bioregional Assessment Source Dataset. Viewed 27 November 2017, http://data.bioregionalassessments.gov.au/dataset/cdd1625e-64e1-41da-bff4-2e26d0fd4ad1.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
This dataset captures in digital form previously published maps showing the inferred extent and subsurface elevation of several Paleozoic consolidated rock units in the northern Midwest of the United States. Data released here were published as figures within a U.S. Geological Survey (USGS) Water Mission Area report documenting results from a study of the regional hydrogeology and ground-water quality of the Cambrian-Ordovician aquifer system in the northern Midwest. This study was part of the USGS national Regional Aquifer-System Analysis (RASA) Program. Sandstone and carbonate rocks of Cambrian and Ordovician age compose much of the sedimentary rocks overlying the Precambrian basement in the northern Midwest and form the major aquifer system of that area, named the Cambrian-Ordovician aquifer system by the USGS RASA Program. This aquifer system underlies about 161,000 mi2 (square miles) in northern Illinois, northwestern Indiana, Iowa, southeastern Minnesota, northern Missouri, and Wisconsin. The published USGS RASA investigation defined the subsurface extent and altitude of the top of eight stratigraphic intervals within the lower Paleozoic consolidated rocks, typically including a major named formation or group plus its regional stratigraphic equivalents. Major mapped intervals include, from lowest to highest, the Upper Cambrian Mount Simon Sandstone, Eau Claire Formation, Ironton and Galesville Sandstones, and St. Lawrence and Franconia Formations, Lower Ordovician Prairie du Chien Group, Middle Ordovician St. Peter Sandstone and Galena Dolomite, and the Upper Ordovician Maquoketa Shale. The USGS RASA study also included maps of the contoured top of Precambrian rocks, top of combined Middle Devonian through Silurian rocks, and top of combined Pennsylvanian, Mississippian, and Upper Devonian rocks; these maps were also digitized and are included in this data release. This dataset includes vector structure contour data digitized from page-sized figures in USGS Professional Paper 1405-B (Young, 1992). Some maps from this report had previously been digitized by a USGS saline groundwater assessment project and released as digital datasets on the USGS Water Mission Area’s National Spatial Data Infrastructure (NSDI) node (U.S. Geological Survey, 2015). For consistency and completeness, those data have been reformatted, attributed, and assembled with additional data digitized from the source RASA report for this data release. The dataset includes a geographic information system geodatabase that contain digital structure contour data as polyline feature classes for all of the geologic units contoured in USGS Professional Paper 1405-B (Young, 1992). Vector data are attributed according to the USGS National Cooperative Geologic Mapping Program’s GeMS digital geologic map schema. The geodatabase includes non-spatial tables that describe the sources of geologic information, a glossary of terms, a description of units, and a geomaterials dictionary. Also included is a Data Dictionary that duplicates the Entity and Attribute information contained in the metadata file. To maximize usability, spatial data are also distributed as shapefiles and tabular data are distributed as ascii text files in comma separated values (CSV) format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This package contains data on five text analysis types (term extraction, contract analysis, topic modeling, network mapping), based on the survey data where researchers selected research output that are related to the 17 Sustainable Development Goals (SDGs). This is used as input to improve the current SDG classification model v4.0 to v5.0
Sustainable Development Goals are the 17 global challenges set by the United Nations. Within each of the goals specific targets and indicators are mentioned to monitor the progress of reaching those goals by 2030. In an effort to capture how research is contributing to move the needle on those challenges, we earlier have made an initial classification model than enables to quickly identify what research output is related to what SDG. (This Aurora SDG dashboard is the initial outcome as proof of practice.)
The initiative started from the Aurora Universities Network in 2017, in the working group "Societal Impact and Relevance of Research", to investigate and to make visible 1. what research is done that are relevant to topics or challenges that live in society (for the proof of practice this has been scoped down to the SDGs), and 2. what the effect or impact is of implementing those research outcomes to those societal challenges (this also have been scoped down to research output being cited in policy documents from national and local governments an NGO's).
Context of this dataset | classification model improvement workflow
The classification model we have used are 17 different search queries on the Scopus database.
SDG search queries version 4.0 (SQv4) have been created, Published here:
Search Queries for "Mapping Research Output to the Sustainable Development Goals (SDGs)" v4.0 by Aurora Universities Network (AUR) doi:10.5281/zenodo.3817443
A survey has been distributed to senior researchers to test the robustness of SQv4. Published here:
Survey data of "Mapping Research output to the Sustainable Development Goals SDGs" by Aurora Universities Network (AUR) doi:10.5281/zenodo.3798385
This text analysis has been made as one of the inputs to improve the classification model. Published here:
Text Analyses of Survey Data on "Mapping Research Output to the Sustainable Development Goals SDGs" by Aurora Universities Network (AUR) doi:10.5281/zenodo.3832090
Improved SDG search queries version 5.0 (SQv5) have been created, Published here:
Search Queries for "Mapping Research Output to the Sustainable Development Goals (SDGs)" v5.0 by Aurora Universities Network (AUR) doi:10.5281/zenodo.3817445
Methods used to do the text analysis
Term Extraction: after text normalisation (stemming, etc) we extracted 2 terms in bigrams and trigrams that co-occurred the most per document, in the title, abstract and keyword
Contrast analysis: the co-occurring terms in publications (title, abstract, keywords), of the papers that respondents have indicated relate to this SDG (y-axis: True), and that have been rejected (x-axis: False). In the top left you'll see term co-occurrences that a clearly relate to this SDG. The bottom-right are terms that are appear in papers that have been rejected for this SDG. The top-right terms appear frequently in both and cannot be used to discriminate between the two groups.
Network map: This diagram shows the cluster-network of terms co-occurring in the publications related to this SDG, selected by the respondents (accepted publications only).
Topic model: This diagram shows the topics, and the related terms that make up that topic. The number of topics is related to the number of of targets of this SDG.
Contingency matrix: This diagram shows the top 10 of co-occurring terms that correlate the most.
Software used to do the text analyses
CorTexT: The CorTexT Platform is the digital platform of LISIS Unit and a project launched and sustained by IFRIS and INRAE. This platform aims at empowering open research and studies in humanities about the dynamic of science, technology, innovation and knowledge production.
Resource with interactive visualisations
Based on the text analysis data we have created a website that puts all the SDG interactive diagrams together. For you to scrall through. https://sites.google.com/vu.nl/sdg-survey-analysis-results/
Data set content
In the dataset root you'll find the following folders and files:
/sdg01-17/
This contains the text analysis for all the individual SDG surveys.
/methods/
This contains the step-by-step explanations of the text analysis methods using Cortext.
/images/
images of the results used in this README.md.
LICENSE.md
terms and conditions for reusing this data.
README.md
description of the dataset; each subfolders contains a README.md file to futher describe the content of each sub-folder.
Inside an /sdg01-17/-folder you'll find the following:
This contains the step-by-step explanations of the text analysis methods using Cortext.
/sdg01-17/sdg04-sdg-survey-selected-publications-combined.db
his contains the title, abstract, keywords, fo the publications in the survey, including the and accept or rejection status and the number of respondents
/sdg01-17/sdg04-sdg-survey-selected-publications-combined-accepted-accepted-custom-filtered.db
same as above, but only the accepted papers
/sdg01-17/extracted-terms-list-top1000.csv
the aggregated list of co-occuring terms (bigrams and trigrams) extracted per paper.
/sdg01-17/contrast-analysis/
This contains the data and visualisation of the terms appearing in papers that have been accepted (true) and rejected (false) to be relating to this SDG.
/sdg01-17/topic-modelling/
This contains the data and visualisation of the terms clustered in the same number of topics as there are 'targets' within that SDG.
/sdg01-17/network-mapping/
This contains the data and visualisation of the terms clustered in co-occuring proximation of appearance in papers
/sdg01-17/contingency-matrix/
This contains the data and visualisation of the top 10 terms co-occuring
note: the .csv files are actually tab-separated.
Contribute and improve the SDG Search Queries
We welcome you to join the Github community and to fork, branch, improve and make a pull request to add your improvements to the new version of the SDG queries. https://github.com/Aurora-Network-Global/sdg-queries
Important Note: This item is in mature support as of April 2024 and will be retired in December 2026. Please use the following layers at replacements: World Soils 250m Percent Sand, World Soils 250m Percent Silt, World Soils 250m Percent Clay. Esri recommends updating your maps and apps to use the new version. Soil is a key natural resource that provides the foundation of basic ecosystem services. Soil determines the types of farms and forests that can grow on a landscape. Soil filters water. Soil helps regulate the Earth's climate by storing large amounts of carbon. Activities that degrade soils reduce the value of the ecosystem services that soil provides. For example, since 1850 35% of human caused green house gas emissions are linked to land use change. The Soil Science Society of America is a good source of of additional information.Soil texture is an important factor determining which kinds of plants can be grown in a particular location. Texture determines a soil's susceptibility to erosion or compaction and how well a soil holds nutrients and water. For example sandy soils tend to be well drained and dry quickly often holding few nutrients while clay soils may hold much more water and many more plant nutrients.Dataset SummaryThis layer provides access to a 30 arc-second (roughly 1 km) cell-sized raster with attributes related to soil texture derived from the Harmonized World Soil Database v 1.2. The values in this layer are for the dominant soil in each mapping unit (sequence field = 1).Fields for topsoil (0-30 cm) and subsoil (30-100 cm) are available for each of these attributes related to soil texture:USDA Texture ClassGravel - % volumeSand - % weightSilt - % weightClay - % weightThe layer is symbolized with the topsoil texture class.The document Harmonized World Soil Database Version 1.2 provides more detail on the soil texture attributes contained in this layer.Other attributes contained in this layer include:Soil Mapping Unit Name - the name of the spatially dominant major soil groupSoil Mapping Unit Symbol - a two letter code for labeling the spatially dominant major soil group in thematic mapsData Source - the HWSD is an aggregation of datasets. The data sources are the European Soil Database (ESDB), the 1:1 million soil map of China (CHINA), the Soil and Terrain Database Program (SOTWIS), and the Digital Soil Map of the World (DSMW).Percentage of Mapping Unit covered by dominant componentMore information on the Harmonized World Soil Database is available here.Other layers created from the Harmonized World Soil Database are available on ArcGIS Online:World Soils Harmonized World Soil Database - Bulk DensityWorld Soils Harmonized World Soil Database – ChemistryWorld Soils Harmonized World Soil Database - Exchange CapacityWorld Soils Harmonized World Soil Database – GeneralWorld Soils Harmonized World Soil Database – HydricThe authors of this data set request that projects using these data include the following citation:FAO/IIASA/ISRIC/ISSCAS/JRC, 2012. Harmonized World Soil Database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, Austria.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. The source data for this layer are available here.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
The USDA Forest Service (USFS) builds multiple versions of percent tree canopy cover data, in order to serve needs of multiple user communities. These datasets encompass CONUS, Coastal Alaska, Hawaii, U.S. Virgin Islands and Puerto Rico. There are three versions of data within the 2016 TCC Product Suite, which include: The initial model outputs referred to as the Analytical data; A masked version of the initial output referred to as Cartographic data; And a modified version built for the National Land Cover Database and referred to as NLCD data, which includes a canopy cover change dataset derived from subtraction of datasets for the nominal years of 2011 and 2016. The Analytical data are the initial model outputs generated in the production workflow. These data are best suited for users who will carry out their own detailed statistical and uncertainty analyses on the dataset and place lower priority on the visual appearance of the dataset for cartographic purposes. Datasets for the nominal years of 2011 and 2016 are available. The Cartographic products mask the initial model outputs to improve the visual appearance of the datasets. These data are best suited for users who prioritize visual appearance of the data for cartographic and illustrative purposes. Datasets for the nominal years of 2011 and 2016 are available. The NLCD data are the result of further processing of the masked data. The goal was to generate three coordinated components. The components are (1) a dataset for the nominal year of 2011, (2) a dataset for the nominal year of 2016, and (3) a dataset that captures the change in canopy cover between the two nominal years of 2011 and 2016. For the NLCD data, the three components meet the criterion of 2011 TCC + change in TCC = 2016 TCC. These NLCD data are best suited for users who require a coordinated three-component data stack where each pixel's values meet the criterion of 2011 TCC + change in TCC = 2016 TCC. Datasets for the nominal years of 2011 and 2016 are available, as well as a dataset that captures the change (loss or gain) in canopy cover between those two nominal years of 2011 and 2016, in areas where change was identified. These tree canopy cover data are accessible for multiple user communities, through multiple channels and platforms, as listed below: Analytical USFS Tree Canopy Cover Datasets (Download) USFS Enterprise Data Warehouse (Image Service) Cartographic USFS Tree Canopy Cover Datasets (Download) USFS Enterprise Data Warehouse (Map Service) NLCD Multi-Resolution Land Characteristics (MRLC) Consortium (Download) USFS Enterprise Data Warehouse (Image Service) The Hawaii TCC 2011 cartographic dataset is comprised of a single layer. The pixel values range from 0 to 99 percent. The background is represented by the value 255. The dataset has data gaps due to consistent clouds/shadows in the Landsat images used for modeling. These data gaps are represented by the value 110.
This dataset comprises road centerlines for all roads in San Diego County. Road centerline information is collected from recorded documents (subdivision and parcel maps) and information provided by local jurisidictions (Cities in San Diego County, County of San Diego). Road names and address ranges are as designated by the official address coordinator for each jurisidcition. Jurisdictional information is created from spatial overlays with other data layers (e.g. Jurisdiction, Census Tract).The layer contains both public and private roads. Not all roads are shown on official, recorded documents. Centerlines may be included for dedicated public roads even if they have not been constructed. Public road names are the official names as maintained by the addressing authority for the jurisdiction in which the road is located. Official road names may not match the common or local name used to identify the road (e.g. State Route 94 is the official name of certain road segments commonly referred to as Campo Road).Private roads are either named or unnamed. Named private roads are as shown on official recorded documents or as directed by the addressing authority for the jurisdiction in which the road is located. Unnamed private roads are included where requested by the local jurisidiction or by SanGIS JPA members (primarily emergency response dispatch agencies). Roads are comprised of road segments that are individually identified by a unique, and persistent, ID (ROADSEGID). Roads segments are terminated where they intersect with each other, at jurisdictional boundaries (i.e. city limits), certain census tract and law beat boundaries, at locations where road names change, and at other locations as required by SanGIS JPA members. Each road segment terminates at an intersection point that can be found in the ROADS_INTERSECTION layer.Road centerlines do not necessarily follow the centerline of dedicated rights-of-way (ROW). Centerlines are adjusted as needed to fit the actual, constructed roadway. However, many road centerline segments are created intially based on record documents prior to construction and may not have been updated to meet as-built locations. Please notify SanGIS if the actual location differs from that shown. See the SanGIS website for contact information and reporting problems (http://www.sangis.org/contact/problem.html).Note, the road speeds in this layer are based on road segment class and were published as part of an agreement between San Diego Fire-Rescue, the San Diego County Sheriff's Department, and SanGIS. The average speed is based on heavy fire vehicles and may not represent the posted speed limit.
ABSTRACT: A global data set of soil types is available at 0.5-degree latitude by 0.5-degree longitude resolution. There are 106 soil units, based on Zobler�s (1986) assessment of the FAO/UNESCO Soil Map of the World. This data set is a conversion of the Zobler 1-degree resolution version to a 0.5-degree resolution. The resolution of the data set was not actually increased. Rather, the 1-degree squares were divided into four 0.5-degree squares with the necessary adjustment of continental boundaries and islands. The computer code used to convert the original 1-degree data to 0.5-degree is provided as a companion file. A JPG image of the data is provided in this document. The Zobler data (1-degree resolution) as distributed by Webb et al. (1993) [http://www.ngdc.noaa.gov/seg/eco/cdroms/gedii_a/datasets/a12/wr.htm#top] contains two columns, one column for continent and one column for soil type. The Soil Map of the World consists of 9 maps that represent parts of the world. The texture data that Webb et al.(1993) provided allowed for the fact that a soil type in one part of the world may have different properties than the same soil in a different part of the world. This continent-specific information is retained in this 0.5-degree resolution data set, as well as the soil type information which is the second column. A code was written (one2half.c) to take the file CONTIZOB.LER distributed by Webb et al. (1993) [http://www.ngdc.noaa.gov/seg/eco/cdroms/gedii_a/datasets/a12/wr.htm#top] and simply divide the 1-degree cells into quarters. This code also reads in a land/water file (land.wave) that specifies the cells that are land at 0.5 degrees. The code checks for consistency between the newly quartered map and the land/water map to which the quartered map is to be registered. If there is a discrepancy between the two, an attempt was made to make the two consistent using the following logic. If the cell is supposed to be water, it is forced to be water. If it is supposed to be land but was resolved to water at 1 degree, the code looks at the surrounding 8 cells and picks the most frequent soil type and assigns it to the cell. If there are no surrounding land cells then it is kept as water in the hopes that on the next pass one or more of the surrounding cells might be converted from water to a soil type. The whole map is iterated 5 times. The remaining cells that should be land but couldn't be determined from surrounding cells (mostly islands that are resolved at 0.5 degree but not at 1 degree) are printed out with coordinate information. A temporary map is output with -9 indicating where data is required. This is repeated for the continent code in CONTIZOB.LER as well. A separate map of the temporary continent codes is produced with -9 indicating required data. A nearly identical code (one2half.c) does the same for the continent codes. The printout allows one to consult the printed versions of the soil map and look up the soil type with the largest coverage in the 0.5-degree cell. The program manfix.c then will go through the temporary map and prompt for input to correct both the soil codes and the continent codes for the map. This can be done manually or by preparing a file of changes (new_fix.dat) and redirecting stdin. A new complete version of the map is outputted. This is in the form of the original CONTIZOB.LER file (contizob.half) but four times larger. Original documentation and computer codes prepared by Post et al. (1996) are provided as companion files with this data set. Image of 106 global soil types available at 0.5-degree by 0.5-degree resolution. Additional documentation from Zobler�s assessment of FAO soil units is available from the NASA Center for Scientific Information.
This is a dataset download, not a document. The Open Document button will start the download.This data layer is an element of the Oregon GIS Framework. This data layer represents the Existing Vegetation data element. This statewide grid was created by combining four independently-generated datasets: one for western Oregon (USGS zones 2 and 7), and two for eastern Oregon (USGS zones 8 and 9; forested and non-forested lands), and selected wetland types from the Oregon Wetlands geodatabase. The landcover grid for zones 2 and 7 was produced using a modification of Breiman's Random Forest classifier to model landcover. Multi-season satellite imagery (Landsat ETM+, 1999-2003) and digital elevation model (DEM) derived datasets (e.g. elevation, landform, aspect, etc.) were utilized to build two predictive models for the forested landcover classes, and the nonforested landcover classes. The grids resulting from the models were then modified to improve the distribution of the following classes: volcanic systems and wetland vegetation. Along the eastern edge, the sagebrush systems were modified to help match with the map for the adjacent region. Additional classes were then layered on top of the modified models from other sources. These include disturbed classes (harvested and burned), cliffs, riparian, and NLCD's developed, agriculture, and water classes. A validation for forest classes was performed on a withheld of the sample data to assess model performance. Due to data limitations, the nonforest classes were evaluated using the same data that were used to build the original nonforest model. Two independent grids were combined to map landcover in adjacent zones 8 and 9. Tree canopy greater than 10% (from NLCD 2001), complemented with a disturbance grid, served as a mask to delineate forested areas. A grid of non-forested areas was extracted from a larger, regional grid (Sagemap) created using decision tree classifier and other techniques. Multi-season satellite imagery (Landsat ETM+, 1999-2003) and digital elevation model (DEM) derived datasets (e.g. elevation, landform, aspect, etc.) were utilized to derive rule sets for the various landcover classes. Eleven mapping areas, each characterized by similar ecological and spectral characteristics, were modeled independently of one another and mosaicked. An internal validation for modeled classes was performed on a withheld 20% of the sample data to assess model performance. The portion of this original grid corresponding to USGS map zones 8 and 9 was extracted and split into three mapping areas (one for USGS zone 8, two for USGS zone 9: Northern Basin and Range in the south, Blue Mountains in the north) and modified to improve the distribution of the following classes: cliffs, subalpine zone, dunes, lava flows, silver sagebrush, ash beds, playas, scabland, and riparian vegetation. Agriculture and urban areas were extracted from NLCD 2001. A forest grid was generated using Gradient Nearest Neighbor (GNN) imputation process. GNN uses multivariate gradient modeling to integrate data from regional grids of field plots with satellite imagery and mapped environmental data. A suite of fine-scale plot variables is imputed to each pixel in a digital map, and regional maps can be created for most of the same vegetation attributes available from the field plots. However, due to lack of sampling plots in the southern half of zone 9, the GNN model proved unreliable there; forest data from Landfire were used instead. To compensate for known under-representation of wetlands, selected wetland types from the Oregon Wetlands Geodatabase (version 2009-1030) were converted to raster and overlaid (replaced) pixel value assignments from the previous steps just detailed. See Process Steps for more information. The ecological systems were crosswalked to landcover (based on Oregon landcover standard, modified from NLCD 2001) and to wildlife habitats (based on integrated habitats used in the Oreg
This map presents transportation data, including highways, roads, railroads, and airports for the world.
The map was developed by Esri using Esri highway data; Garmin basemap layers; HERE street data for North America, Europe, Australia, New Zealand, South America and Central America, India, most of the Middle East and Asia, and select countries in Africa. Data for Pacific Island nations and the remaining countries of Africa was sourced from OpenStreetMap contributors. Specific country list and documentation of Esri's process for including OSM data is available to view.
You can add this layer on top of any imagery, such as the Esri World Imagery map service, to provide a useful reference overlay that also includes street labels at the largest scales. (At the largest scales, the line symbols representing the streets and roads are automatically hidden and only the labels showing the names of streets and roads are shown). Imagery With Labels basemap in the basemap dropdown in the ArcGIS web and mobile clients does not include this World Transportation map. If you use the Imagery With Labels basemap in your map and you want to have road and street names, simply add this World Transportation layer into your map. It is designed to be drawn underneath the labels in the Imagery With Labels basemap, and that is how it will be drawn if you manually add it into your web map.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets used in the creation of the predicted Habitat Suitability models includes the CWHR range maps of Californias regularly-occurring vertebrates which were digitized as GIS layers to support the predictions of the CWHR System software. These vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.The models also used the CALFIRE-FRAP compiled "best available" land cover data known as Fveg. This compilation dataset was created as a single data layer, to support the various analyses required for the Forest and Rangeland Assessment, a legislatively mandated function. These data are being updated to support on-going analyses and to prepare for the next FRAP assessment in 2015. An accurate depiction of the spatial distribution of habitat types within California is required for a variety of legislatively-mandated government functions. The California Department of Forestry and Fire Protections CALFIRE Fire and Resource Assessment Program (FRAP), in cooperation with California Department of Fish and Wildlife VegCamp program and extensive use of USDA Forest Service Region 5 Remote Sensing Laboratory (RSL) data, has compiled the "best available" land cover data available for California into a single comprehensive statewide data set. The data span a period from approximately 1990 to 2014. Typically the most current, detailed and consistent data were collected for various regions of the state. Decision rules were developed that controlled which layers were given priority in areas of overlap. Cross-walks were used to compile the various sources into the common classification scheme, the California Wildlife Habitat Relationships (CWHR) system.CWHR range data was used together with the FVEG vegetation maps and CWHR habitat suitability ranks to create Predicted Habitat Suitability maps for species. The Predicted Habitat Suitability maps show the mean habitat suitability score for the species, as defined in CWHR. CWHR defines habitat suitability as NO SUITABILITY (0), LOW (0.33), MEDIUM (0.66), or HIGH (1) for reproduction, cover, and feeding for each species in each habitat stage (habitat type, size, and density combination). The mean is the average of the reproduction, cover, and feeding scores, and can be interpreted as LOW (less than 0.34), MEDIUM (0.34-0.66), and HIGH (greater than 0.66) suitability. Note that habitat suitability ranks were developed based on habitat patch sizes >40 acres in size, and are best interpreted for habitat patches >200 acres in size. The CWHR Predicted Habitat Suitability rasters are named according to the 4 digit alpha-numeric species CWHR ID code. The CWHR Species Lookup Table contains a record for each species including its CWHR ID, scientific name, common name, and range map revision history (available for download at https://www.wildlife.ca.gov/Data/CWHR).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is outcome of a paper "Floating Car Data Map-matching Utilizing the Dijkstra Algorithm" accepted for 3rd International Conference on Data Management, Analytics & Innovation held in Kuala Lumpur, Malaysia in 2019.
The floating car data (FCD representing movement of cars with their position in time) is produced by the traffic simulator software (further referred to as Simulator) published in [1] and can be used as an input for data processing and benchmarking. The dataset contains FCD of various quality levels based on the routing graph of the Czech Republic derived from Open Street Map openstreetmap.org.
Should the dataset be exploited in scientific or other way, any acknowledgement or references to our paper [1] and dataset are welcomed and highly appreciated.
Archive contents
The archive contains following folders.
city_oneway and city_roadtrip - FCD from the city of Brno, Czech Republic where FCD is based on Origin-Destination in case of oneway and Origin-Destination-Origin in case of a road trip
intercity_oneway and intercity_roadtrip - FCD from cities of Brno, Ostrava, Olomouc and Zlin, all Czech Republic where FCD is based on Origin-Destination in case of oneway and Origin-Destination-Origin in case of a road trip
Content explanation
All four of mentioned folders contain raw FCD as they come from our Simulator, post-processed FCD enriching Simulator FCD, and obfuscated raw FCD (of both low and high obfuscation level). In the both obfuscated data sets, each measured point was moved in a random direction a number of meters given by drawing a number from a Gaussian distribution. We utilized two Gaussian distributions, one for the roads outside the city (N(0,10) for the lower and N(0,20) for the higher obfuscation level) and one for the roads inside the city (N(0,15) and N(0,30) respectively). Then some predefined number of randomly chosen points were removed (3% in our case). This approach should roughly represent real conditions encountered by FCD data as described by El Abbous and Samanta [2].
In case of post-processed road trip data, there is one extra dataset with "cache" suffix representing the very same dataset limited to a 5-minute session memoization. This folder also contains a picture of processed FCD represented on a map.
Data format Standard UTF-8 encoded CSV files, separated by a semicolon with the following columns:
RAW
Header
session_id;timestamp;lat;lon;speed;bearing;segment_id
Data
session_id: (Type: unsigned INT) - session (car) identifier timestamp: (Type: datetime) - timestamp in UTC lat: (Type: unsigned long) - latitude as used in Google maps lon: (Type: unsigned long) - longitude as used in Google maps speed: (Type: unsigned INT) - actual speed in kmh bearing: (Type: unsigned INT) - actual bearing in angles 0-360 segment_id: (Type: unsigned long) - unique edge identifier
POST-PROCESSED
Header
gid;car_id;point_time;lat;lon;segment_id;speed_kmh;speed_avg_kmh;distance_delta_m;distance_total_m;speedup_ratio;duration;segment_changed;duration_segment;moved;duration_move;good;duration_good;bearing;interpolated
Data
gid: (Type: unsigned long) - global identifier of a record car_id: (Type: unsigned INT) - session (car) identifier point_time: (Type: datetime) - timestamp with timezone lat: (Type: unsigned long) - latitude as used in Google maps lon: (Type: unsigned long) - longitude as used in Google maps segment_id: (Type: unsigned long) - unique edge identifier speed: (Type: unsigned INT) - actual speed in kmh speed_avg_kmh: (Type: unsigned long) - actual average speed of a car in kmh distance_delta_m: (Type: unsigned long) - actual distance delta in metres distance_total_m: (Type: unsigned long) - actual total distance of a car in metres speedup_ratio: (Type: unsigned long) - actual speed-up ratio of a car duration: (Type: time) - actual duration of a car segment_changed: (Type: boolean) - signals if actual segment of a car differs from the previous one duration_segment: (Type: time) - actual duration on a segment of a car moved: (Type: boolean) - signals if actual position of a car differs from the previous one duration_move:(Type: time) - actual duration of a car since moving good: signals if actual record values satisfies all data constraints (all true as derived from Simulator) duration_good: actual duration of a car since when all constraints conditions satisfied bearing: (Type: unsigned INT) - actual bearing in angles 0-360 interpolated: (Type: boolean) - signals if actual segment identifier is calculated (all false as derived from Simulator)
References
[1] V. Ptošek, J. Ševčík, J. Martinovič, K. Slaninová, L. Rapant, and R. Cmar, Real-time traffic simulator for self-adaptive navigation system validation, Proceedings of EMSS-HMS: Modeling & Simulation in Logistics, Traffic & Transportation, 2018.
[2] A. El Abbous and N. Samanta. A modeling of GPS error distri-butions, In proceedings of 2017 European Navigation Conference (ENC), 2017.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)