CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Nepal Number Dataset is an index of Nepal contact numbers that are 100% accurate and valid. We always double-check to make sure that this record is correct. So, when you use this number library, you can trust that Nepal contact numbers work. And if you ever get an incorrect number, you get a replacement guarantee. This means that if a phone number doesn’t work, they will give you a new number at no extra cost. Moreover, the Nepal Number Dataset is very reliable. Use it with confidence, knowing that you are following the right steps for a smooth, successful outreach effort. The people on the list have agreed to share their mobile numbers. So, you are not breaking any rules when you use this database. And, getting the customer’s consent makes contacting them more welcoming and effective. Nepal phone data is detailed information about Nepal contact numbers. Trusted sources collect this phone data to ensure its reliability. The sources from which this library comes may include websites, government records, and phone service providers. We verify each source, and you can check the URLs where we got the data. This ensures that the mobile data is accurate and reliable. Also, Nepal phone data providers offer 24/7 support. Also, Nepal phone data follows an opt-in policy. This means that people can share their numbers. This is good because it ensures that people know they are using their information. You won’t get in trouble for using contact details without permission. List to Data helps you to find Nepal contact data for your business. Nepal phone number list is a collection of phone numbers of people living in Nepal. You can sort these contact numbers by gender, age, and relationship status. This means that you can only see the amount that matches your needs. For example, if you want to contact young and single people, you can do so. Also, this contact list follows GDPR rules. Also, the Nepal phone number list helps you remove invalid data. Sometimes, contact numbers may change or stop working. This list checks this and removes those numbers, so you don’t waste time calling people who don’t answer. Using the Nepal phone number list, you reach the right people. Therefore, you get accurate, current information.
Obtain the Complete WRQS DatasetClick the link below to download the dataset in a geodatabase format:
WRQS (Geodatabase)
Please note, the complete dataset is too large for shapefile format due to the 2GB size limitation of shapefiles. The geodatabase format allows for larger file sizes, making it ideal for the complete WRQS dataset.
If you only need a portion of the WRQS dataset (less than 2,000 records), use the interactive map interface in DNRC's Open Data Portal to filter and select specific features and download your selected data in various available formats. This method is ideal for users who require only specific regions or feature types or prefer working with smaller, more manageable file sizes.Details
The Montana Water Right Query System Dataset contains water rights information for the state of Montana. It comprises 10 datasets. The spatial datasets include Points of Diversion (Estimated locations of water right diversion points), Places of Use (Polygons representing areas where water rights are utilized), Reservoirs (Point locations of water storage facilities). Additionally, the dataset includes 7 associated tables: Public Versions, Owners, Change Authorization Scanned Docs, Geocodes, Other Versions, Cases, and Water Right Types.
This comprehensive dataset is derived from the Department of Natural Resources and Conservation (DNRC) Water Rights Query Systems Database. It provides spatial and tabular information crucial for understanding water rights distribution and management in Montana.
For the most up-to-date version of the water rights database or detailed reference information, users should contact the DNRC Water Resources Division at https://dnrc.mt.gov/Water-Resources/Water-Rights/ or call 406-444-6610.
Attitudes towards climate change, climate protection and energy transition. Topics: 1. Climate change and climate protection in general: Most important problem worldwide; change vs. no change in the global climate; man-made climate change; assessment of climate protection worldwide and in Germany compared to other economically strong countries. 2. Political measures in the field of climate protection and options for action: Most sensible political measures for climate protection in Germany; actor who would have to do the most for climate protection (politics, industry, electricity producers or consumers); second in line for climate protection; contribution that various sectors can make to climate protection (transport and mobility, energy supply, construction, agriculture); importance of various contributions that each individual can make to climate protection (e.g. eat less meat, fly or drive less, etc.). 3. Attitude towards various measures in the field of climate protection: Awareness of various government climate protection measures and their assessment (subsidies for energy advice for homeowners, subsidies for energy-efficient building renovation and heating systems, purchase premiums for electric cars, tax incentives for electric vehicles, promotion of the expansion of charging stations for electric cars, obligation for renters to present energy certificates for buildings, promotion of ecological agriculture, tightening of CO2 limits for cars) ; awareness of the Climate Cabinet and expectations of its decisions; driving bans on older diesel vehicles are justified; opinion on the introduction of a CO2 tax; expected effects of a CO2 tax on electricity and fuel consumption; opinion on a speed limit on motorways; opinion on the introduction of a kerosene tax; opinion on an increase in VAT on meat to 19%. 4. Energy transition: Assessment of the progress made in energy system transformation; confidence in the federal government with regard to a successful energy transition; expected major problems in implementing the energy transition; assessment of the coal phase-out by 2038; too much vs. too little consideration of the interests of those affected in the expansion of power lines; opinion on greater citizen participation in the planning of new power lines; expected future security of supply for electricity from renewable energies; assessment of the own electricity price; expected price development for electricity from renewable energies; expected financial burden on the own budget due to rising electricity prices. Demography: Sex; age (categorized); school leaving certificate or desired school leaving certificate; university degree; gainful employment; job security; occupational status; household size; number of persons in the household aged 18 and over; German citizenship; party affiliation; federal state. Additionally coded: respondent ID; federal state; Berlin East/West; city size; weighting factor; reached via mobile or fixed line; only mobile: reached at home or elsewhere; reached via an additional fixed line number (homezone or home option) on the mobile phone; fixed line connection in the household; additional mobile number; total number of mobile phone numbers; fixed line: number of fixed line numbers via which one can be reached; mobile phone ownership. Einstellungen zu Klimawandel, Klimaschutz und zur Energiewende. Themen: 1. Klimawandel und Klimaschutz allgemein: Wichtigstes Problem weltweit; Veränderung vs. keine Veränderung des Weltklimas; Klimawandel vom Menschen verursacht; Beurteilung des Klimaschutzes weltweit und in Deutschland im Vergleich zu anderen wirtschaftlich starken Ländern. 2. Politische Maßnahmen im Bereich Klimaschutz und Handlungsmöglichkeiten: Sinnvollste politische Maßnahmen für den Klimaschutz in Deutschland; Akteur, der am meisten für den Klimaschutz tun müsste (Politik, Industrie, Stromerzeuger oder Verbraucher); an zweiter Stelle für den Klimaschutz in der Pflicht; Beitrag, den verschiedene Bereiche für den Klimaschutz leisten können (Verkehr und Mobilität, Energieversorgung, Bauwesen, Landwirtschaft); Wichtigkeit verschiedener Beiträge, die jeder Einzelne zum Klimaschutz leisten kann (z.B. weniger Fleisch essen, weniger fliegen bzw. Auto fahren, etc.). 3. Einstellung zu verschiedenen Maßnahmen im Bereich Klimaschutz: Bekanntheit diverser staatlicher Klimaschutz-Maßnahmen und deren Beurteilung (Zuschüsse für Energieberatung für Eigenheimbesitzer, Zuschüsse für energieeffiziente Gebäudesanierung und Heizungsanlagen, Kaufprämien für Elektroautos, Steueranreize für Elektrofahrzeuge, Förderung des Ausbaus von Ladestationen für Elektroautos, Pflicht für Vermieter, Energieausweis für Gebäude vorzulegen, Förderung ökologischer Landwirtschaft, Verschärfung der CO2-Grenzwerte für PKW); Bekanntheit des Klimakabinetts und Erwartungen an dessen Entscheidungen; Fahrverbote für ältere Dieselfahrzeuge sind gerechtfertigt; Meinung zur Einführung einer CO2-Steuer; erwartete Auswirkungen einer CO2-Steuer auf den Strom- und Kraftstoffverbrauch; Meinung zu einem Tempolimit auf Autobahnen; Meinung zur Einführung einer Kerosin-Steuer; Meinung zu einer Erhöhung der Mehrwertsteuer für Fleisch auf 19%. 4. Energiewende: Beurteilung der Fortschritte bei der Energiewende; Vertrauen in die Bundesregierung im Hinblick auf eine erfolgreiche Energiewende; erwartete größte Probleme bei der Umsetzung der Energiewende; Beurteilung des Kohleausstiegs bis zum Jahr 2038; zu viel vs. zu wenig Rücksichtnahme auf Betroffenen-Interessen beim Ausbau von Stromtrassen; Meinung zu einer stärkeren Bürgerbeteiligung bei der Planung neuer Stromtrassen; erwartete zukünftige Versorgungssicherheit für Strom aus erneuerbaren Energien; Beurteilung des eigenen Strompreises; erwartete Preisentwicklung für Strom aus erneuerbaren Energien; erwartete finanzielle Belastung des eigenen Haushalts durch steigende Strompreise. Demographie: Geschlecht; Alter (kategorisiert); Schulabschluss bzw. angestrebter Schulabschluss; Hochschulabschluss; Erwerbstätigkeit; Sicherheit des Arbeitsplatzes; berufliche Stellung; Haushaltsgröße; Anzahl Personen im Haushalt ab 18 Jahren; deutsche Staatsbürgerschaft; Parteisympathie; Bundesland. Zusätzlich verkodet wurde: Befragten-ID; Bundesland; Berlin Ost/West; Ortsgröße; Gewichtungsfaktor; erreicht über Mobilfunk oder Festnetz; nur Mobil: zuhause oder woanders erreicht; über eine zusätzliche Festnetznummer (Homezone oder ZuhauseOption) auf dem Handy erreichbar; Festnetzanschluss im Haushalt; weitere Handynummer; Anzahl der Handynummern insgesamt; Festnetz: Anzahl der Festnetznummern über die man erreichbar ist; Handybesitz.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
COVID-19 or Corona Virus is on anyone's lips, since it has affected (and still affecting) a lot of aspects in our lives. From when the virus was first considered a pandemic until now, it has driven the markets crazy, having one of the most significant effects on the past years. No one was able to predict this and none of the financial models was prepared for the huge change the market has suffered. This dataset aims to explain the market evolution before and after the COVID-19
Financial historical data from the World Major Indices, including: Shanghai, FTSE MIB, S&P 500, Nasdaq, Dow 30, Euro Stoxx 50, and much more. The dataset contains: OHLC values, the Volume and the Currency.
Note that the dataset has been generated using investpy an open-source Python package to extract financial data from Investing.com, and you can find all the usage information and documentation at: https://github.com/alvarobartt/investpy.
This dataset aims to explain the market evolution before and after the COVID-19 so as to extract conclusions based on just market data or maybe aggregating external data such as news reports, tweets, etc. so feel free to use this dataset and combine it with others so that we, the community, can develop useful kernels so as to analyse and understand this situation and its impacts. So it is also an open call to researchers, data scientists, financial analysts, etc. so to collaborate together in a market study on the impacts of COVID-19.
This dataset been created by Álvaro Bartolomé del Canto using investpy so as to retrieve the historical data from Investing.com. Also, the banner image is property of Investing.com since it is an Investing.com Weekly Comic.
The short survey on current issues relating to government spending and public debt was conducted by the opinion research institute forsa on behalf of the Press and Information Office of the Federal Government. In the survey period from 18.03.2024 to 20.03.2024, the German-speaking population aged 14 and over was asked in telephone interviews (CATI) about their attitudes to government spending and government debt. In particular, the focus is on the assessment of the debt brake and various options for reforming it. Respondents were selected using a multi-stage random sample as part of a multi-topic survey (policy BUS) including landline and mobile phone numbers (dual-frame sample). Assessment of Germany´s overall financial situation in terms of income and expenditure; assessment of Germany´s debt burden compared to most other industrialized countries; opinion on government debt (government debt should generally be avoided, is generally not a problem, only makes sense if it is used for investments for the future); government spends too much vs. too little money on various political and social tasks (health and care, defense, social affairs, climate protection, housing, integration of immigrants, pensions); opinion on the state only taking out new larger loans in exceptional emergency situations such as natural disasters (debt brake should remain as it is, it should be reformed or it should be abolished completely); evaluation of various proposals for reforming the debt regulation (change the debt limit so that the state can generally take on more debt than before, create a transitional rule so that even in the year following an emergency situation it is still possible to take on slightly more debt than usual, allow higher debt to be taken on if the economic situation is worse than expected, allow higher debt to be taken on for defense spending, allow higher debt to be taken on for investments in climate protection, allow higher debt to be taken on for investments in infrastructure such as roads and railways). Demography: sex; age; education; income level low, medium, high (net equivalent income); city size; party preference in the next federal election; voting behavior in the last federal election. Additionally coded were: Respondent ID; region west/east; weighting factor. Die Kurzumfrage über aktuelle Fragen zu Staatsausgaben und Staatsschulden wurde vom Meinungsforschungsinstitut forsa im Auftrag des Presse- und Informationsamtes der Bundesregierung durchgeführt. Im Erhebungszeitraum 18.03.2024 bis 20.03.2024 wurde die deutschsprachige Bevölkerung ab 14 Jahren in telefonischen Interviews (CATI) zu ihren Einstellungen zu Staatsausgaben und Staatsschulden befragt. Insbesondere geht es um die Bewertung der Schuldenbremse bzw. um verschiedene Möglichkeiten, sie zu reformieren. Die Auswahl der Befragten erfolgte durch eine mehrstufige Zufallsstichprobe im Rahmen einer Mehrthemenbefragung (Politik-BUS) unter Einschluss von Festnetz- und Mobilfunknummern (Dual-Frame Stichprobe). Bewertung der finanziellen Lage Deutschlands insgesamt bezogen auf Einnahmen und Ausgaben; Einschätzung der Schuldenlast Deutschlands im Vergleich zu den meisten anderen Industriestaaten; Meinung zu Staatsschulden (Schulden des Staates sollten grundsätzlich vermieden werden, sind grundsätzlich kein Problem, sind nur dann sinnvoll, wenn sie für Investitionen für die Zukunft eingesetzt werden); Staat gibt zu viel vs. zu wenig Geld aus für verschiedene politische und gesellschaftliche Aufgaben (Gesundheit und Pflege, Verteidigung, Soziales, Klimaschutz, Wohnungsbau, Integration von Zugewanderten, Renten); Meinung zur Neuaufnahme größerer Kredite durch den Staat nur in außergewöhnlichen Notsituationen wie z.B. Naturkatastrophen (Schuldenbremse sollte so bestehen bleiben wie sie ist, sie sollte reformiert werden oder sie sollte vollständig abgeschafft werden); Bewertung verschiedener Vorschläge zur Reform der Schuldenregelung (die Schuldengrenze verändern, damit der Staat generell mehr Schulden aufnehmen kann als bisher, eine Übergangsregel schaffen, sodass man auch im Jahr nach einer Notsituation noch etwas mehr Kredite aufnehmen kann als gewöhnlich, die Aufnahme höherer Schulden erlauben, wenn die Wirtschaftslage schlechter ist als erwartet, die Aufnahme höherer Schulden erlauben für Verteidigungsausgaben, die Aufnahme höherer Schulden erlauben für Investitionen in den Klimaschutz, die Aufnahme höherer Schulden erlauben für Investitionen in die Infrastruktur wie Straßen und Schienen). Demographie: Geschlecht; Alter; Bildung; Einkommenslage niedrig, mittel, hoch (Nettoäquivalenzeinkommen); Ortsgröße; Parteipräferenz bei der nächsten Bundestagswahl; Wahlverhalten bei der letzten Bundestagswahl. Zusätzlich verkodet wurde: Befragten ID; Region West/Ost; Gewichtungsfaktor.
Tutkimuksessa kartoitettiin journalistien kokemuksia omasta työstään, työhön liittyvistä toimintatavoista ja käsityksiä suomalaisesta yhteiskunnasta. Kyselyn eri osa-alueita olivat nykyiset työtehtävät, työtehtävien muutokset ja niiden seuraukset sekä työtapojen muutokset. Lisäksi esitettiin asenneväittämiä, jotka käsittelivät Suomalaista yhteiskuntaa, sen kehitysnäkymiä ja erilaisia arvoja. Nykyisiä työtehtäviä koskevia kysymyksiä olivat mm. nykyinen tehtäväkuva, työpaikka, työsuhteen laatu, esimiesasema sekä toimeksiantajat ja niiden lukumäärä vuonna 2006. Vastaajilta tiedusteltiin myös mitkä asiat merkitsevät heille eniten nykyisessä työssä, millaisia ja miten suuria ongelmia työpaikalla esiintyy ja mitä asioita vastaaja haluaisi parantaa työpaikallaan. Työtehtävissä tapahtuneita muutoksia kartoitettiin kysymällä, ovatko tietyt työhön liittyvät asiat vähentyneet tai kasvaneet vuoden 2005 alun jälkeen. Nämä kysymykset käsittelivät mm. juttujen pituutta ja kestoa sekä tehtyjen juttujen ja toimitushenkilöstön määrää. Lisäksi kysyttiin joidenkin tekijöiden aiheuttaman kuormituksen muutosta viimeisen vuoden aikana. Kuormitusta mitattiin kysymällä miten paljon työaikaa kuluu mm. kokouksiin, puheluihin, sähköpostiin ja tapaamisiin. Kuormitusta tiedusteltiin myös työrauhan, byrokratian, tulosvastuun ja ylitöiden osalta. Vastaajilta kysyttiin myös kuinka paljon harmia ja/tai iloa ja tyydytystä tietyt työn piirteet aiheuttavat. Työtapojen muutoksia käsiteltiin kysymällä sitoutumisesta ja samastumisesta ammatti-identiteettiin, työosastoon, työyhteisöön ja koko yritykseen. Lisäksi tiedusteltiin tiettyihin työvaiheisiin käytetyn ajan muutoksesta suhteessa kokonaisaikaan. Kysyttiin myös kuinka paljon palautetta vastaaja saa työstään eri henkilöiltä tai ryhmiltä. Vastaajilta tiedusteltiin heidän vahvuuksiaan sekä sitä, millä toimilla kyseisiä vahvuuksia voitaisiin ylläpitää. Yhdellä kysymyspatterilla kartoitettiin vastaajien kokonaiskuvaa nykyisestä suomalaisesta mediasta. Taustamuuttujina olivat mm. sukupuoli, ikäryhmä, koulutus, ammattikoulutus ja työpaikkakunta. Taustamuuttujia olivat myös aika, jonka vastaaja on toiminut nykyisessä työtehtävässä sekä aika, jonka hän on työskennellyt toimitustyössä. Lisäksi tiedusteltiin tuloluokkaa, ammattiryhmää, työpaikkaa, työsuhteen laatua ja esimiesasemaa. The survey studied how Finnish journalists view their own work and working conditions, the changing media environment, multimedia journalism, and Finnish society. The respondents were asked about their present job duties and whether their job included supervisory status or responsibility for some special area. Freelancers were asked about the number of employers they had had in 2006 and from what media sector. Respondent opinions were charted on how important certain job issues were to them (e.g. challenging work, career prospects, control over working hours, work diversity, wage level, security of job, workplace relations, possibility to have an impact in society). Further questions covered general job satisfaction and possible problems at work such as increased stress over deadlines, insufficient pay compared to tasks, authoritarian management style, competition and distrust between colleagues, lack of control over working hours or content of work etc. The respondents were also asked how they would like to improve their workplace. Change in work was charted by asking whether a number of things had increased or decreased since the beginning of the year 2005. Things mentioned included, for example, the length/duration of stories/features/items, the number of stories/features/items produced per week per staff member, multimedia working, the use of the same story/feature/item for different media within the same media company or between media companies. Another question explored whether the number of meetings, phone calls or e-mails, or pressure to work overtime etc. had increased or decreased during the past year. The respondents were asked whether certain job characteristics caused them harm or brought joy and satisfaction. The characteristics mentioned included the amount of work, travelling for work, learning new technologies or work methods, workplace relations, being in the public eye etc. Commitment to the workplace, the media company, and to the professional identity of journalists was studied. Change in time spent on different phases of work (e.g. planning, data gathering, writing/shooting of footage) was charted, likewise the change in average time spent on one story/feature/item and on multimedia journalism. The respondents were asked whether they receive feedback on their work and from whom. Views on what will happen in the media world in the future and the consequences to the quality and ethics of journalism in Finland were probed. The respondents were also asked how well a number of statements relating to the Finnish media corresponded to their own ideas of it. A set of statements explored opinions on various aspects of Finnish society, its politics and values. Finally, the respondents were asked whether they thought certain bodies (e.g. the police, citizen organisations, trade unions, Parliament, the EU, local decision-makers, the church, banks, political parties, big companies) have too much or too little power. Background variables included the respondent's gender, age group, highest level of education, vocational education for journalism, type of municipality where the workplace is located, length of current employment, time working as a journalist, income, and type of contract. Todennäköisyysotanta: ositettu otantaProbability.Stratified Probability: StratifiedProbability.Stratified Itsetäytettävä lomake: verkkolomakeSelfAdministeredQuestionnaire.CAWI Itsetäytettävä lomake: paperinen lomakeSelfAdministeredQuestionnaire.Paper Self-administered questionnaire: PaperSelfAdministeredQuestionnaire.Paper Self-administered questionnaire: Web-based (CAWI)SelfAdministeredQuestionnaire.CAWI
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Nigeria number dataset is a precious source for your telemarketing at this time. In other words, you need to do marketing to make people aware of your services. Also, without proper marketing, your business won’t be able to reach its maximum potential. Similarly, to ensure the maximum reach of any services or products you need to promote them in all possible mediums. The Nigeria number dataset from List To Data can be the best buy of all. We all know that in this digital era, actually, it is difficult to sell anything without marketing. So, this contact directory can change the whole scenario for anyone. Nigeria phone data will come in handy and at an affordable price. In fact, it will help promote products to a huge audience through the telephone. As we all know, a total of 55.64 million cellular mobile connections were active in this country, so it would be foolish not to use this list for marketing. Hence, with this authentic Nigeria phone data, you can hope to get the best possible outcome. In short, your business will see massive growth with the country’s mobile number database. Nigeria phone data can be used in any of your preferred CRM systems smoothly and you can analyze the results of your campaigns more easily. Besides, we add basic info about the people on our list, so anyone can use them to segment your leads. It will make your marketing more targeted and increase the prospect of success. Nigeria phone number list will be a useful marketing resource. Also, telemarketing costs less than other traditional methods, so it will save you capital. Thus, your business will progress smoothly with a high return on investment [ROI]. Not only that, but the Nigeria phone number list will also have an effect on your branding. Even, take all the business to the next level with our most updated and active number data. Nigeria phone number list is a cost-friendly resource that you can buy now from List To Data. Likewise, our team guarantees a high accuracy rate for this list as well as a high delivery rate for your messages. Finally, you can be sure of the advantages that your business will get from this database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update — December 7, 2014. – Evidence-based medicine (EBM) is not working for many reasons, for example: 1. Incorrect in their foundations (paradox): hierarchical levels of evidence are supported by opinions (i.e., lowest strength of evidence according to EBM) instead of real data collected from different types of study designs (i.e., evidence). http://dx.doi.org/10.6084/m9.figshare.1122534 2. The effect of criminal practices by pharmaceutical companies is only possible because of the complicity of others: healthcare systems, professional associations, governmental and academic institutions. Pharmaceutical companies also corrupt at the personal level, politicians and political parties are on their payroll, medical professionals seduced by different types of gifts in exchange of prescriptions (i.e., bribery) which very likely results in patients not receiving the proper treatment for their disease, many times there is no such thing: healthy persons not needing pharmacological treatments of any kind are constantly misdiagnosed and treated with unnecessary drugs. Some medical professionals are converted in K.O.L. which is only a puppet appearing on stage to spread lies to their peers, a person supposedly trained to improve the well-being of others, now deceits on behalf of pharmaceutical companies. Probably the saddest thing is that many honest doctors are being misled by these lies created by the rules of pharmaceutical marketing instead of scientific, medical, and ethical principles. Interpretation of EBM in this context was not anticipated by their creators. “The main reason we take so many drugs is that drug companies don’t sell drugs, they sell lies about drugs.” ―Peter C. Gøtzsche “doctors and their organisations should recognise that it is unethical to receive money that has been earned in part through crimes that have harmed those people whose interests doctors are expected to take care of. Many crimes would be impossible to carry out if doctors weren’t willing to participate in them.” —Peter C Gøtzsche, The BMJ, 2012, Big pharma often commits corporate crime, and this must be stopped. Pending (Colombia): Health Promoter Entities (In Spanish: EPS ―Empresas Promotoras de Salud).
This repository contains all of the scripts and data necessary to reproduce the analyses and figures in Lanfear, Hua, and Warren (2016): Assessing tree topologies from Bayesian phylogenetic analyses: autocorrelation plots and the approximate Effective Sample Size.QuickStart----------1. Unzip the tree_ESS.zip file2. Run the /R/analysis.r script (you will need to change the setwd, number of processors, and various calls to specific directories in the script first)Note that this will run a lot of simulations and may take many hours.Contents of tree_ESS.zip------------------------# /R folderThis contains the scripts to do the simulations and data analyses. To reproduce our analyses in full. To run an R script, the easiest thing is to open the script in R, and then on the "Edit" menu, click "Execute". ## functions.rContains functions used in analysis.r. You should not need to change anything in this file, and you do not need to run it (analysis.r just looks here for the functions).## analyses.rPerforms the simulations of trees, calculates the ESS values and data for the autocorrelation plots from the simulated and empirical datasets, and draws all the figures (which are saved to /Figures). Data from all of these analyses is written to the /output folder. Note that this folder contains the data we generated from running this script. Your data may not be identical (because the simulations are stochastic), but they should be comparable. You will need to set a couple of things at the top of this script, as well as changing some calls to specific directories within the script itself. Please check all 'read' and 'write' commands and edit directories appropriately for your machine.# /output folderThis cotains .csv files with the output from the /analysis.r script. It also contains nexus files of simulated datasets from analysis 1, but not from analysis 3, because that would be too many nexus files. Of note in here are the fig5.csv and fig7.csv files, which contain the approximate and pseudo-ESS values calculated on all of the simulated datasets. These data form figures 5-7. I didn't store the simulated tree files, because they are big and numerous. Thus, you may not get identical results if you re-simulate the trees using the analyses.r script, but your results should certainly be qualitatively very similar. # /empirical_datasets folderThis contains the trees from the DataDryad repo here: http://datadryad.org/resource/doi:10.5061/dryad.r1hk5Specifically, this folder contains a single folder (/Scantlebury_2013), in which there is a subfolder of tree files from BEAST. This subfolder can be obtained directly from dryad, by unzipping the file from this link: http://datadryad.org/bitstream/handle/10255/dryad.50848/rawtrees.zip?sequence=1. The files in this folder are used in the analysis.r script. # /Figures folderThis contains all of our edited figures for the manuscript. If you run the analysis.r script, it will recreate the figures in R and save them in this folder with '_raw' appended to the filename.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Short tandem repeats (STRs) are genomic regions consisting of repeated sequences of 1-6bp in succession. Single nucleotide polymorphism (SNP) based genome-wide association studies (GWAS) do not fully capture STR effects. To study these effects, we imputed 445,720 STRs into genotype arrays from 408,153 White British UK Biobank participants and tested for association with 44 blood phenotypes. Using two fine-mapping methods, we identify 119 candidate causal STR-trait associations and estimate that STRs account for 5.2–7.6% of causal variants identifiable from GWAS for these traits. These are among the strongest associations for multiple phenotypes, including a coding CTG repeat associated with apolipoprotein B levels, a promoter CGG repeat with platelet traits and an intronic poly-A repeat with mean platelet volume. Our study suggests that STRs make widespread contributions to complex traits, provides stringently selected candidate causal STRs, and demonstrates the need to consider a more complete view of genetic variation in GWAS. Methods Please see the Cell Genomics article or biorXiv preprint for detailed methods. Alternatively, the relevant portion of the methods from the paper have been pasted below, but lacking references and with some distortions due to the difficulty of copying mathematical formulae. For references to tables, figures, notes and the key resources table, please refer to the paper. Selection of UK Biobank participants We downloaded the fam file and sample file for version 2 of the phased SNP array data (referred to in the UKB documentation as the ‘haplotype’ dataset) using the ukbgene utility (ver Jan 28 2019 14:09:15 - using Glibc2.28(stable)) described in UKB Data Showcase Resource ID 664 (see Key Resources Table). The IDs from the sample file already excluded 968 individuals previously identified as having excessive principal component-adjusted SNP array heterozygosity or excessive SNP array missingness after call-level filtering indicating potential DNA contamination. We further removed withdrawn participants, indicated by non-positive IDs in the sample file as well as by IDs in email communications from the UKB access management team. After the additional filtering, data for 487,279 individuals remained. We downloaded the sample quality control (QC) file (described in the sample QC section of UKB Data Showcase Resource ID 531 (see Key Resources Table)) from the European Genome-Phenome Archive (accession EGAF00001844707) using pyEGA3. We subsetted the non-withdrawn individuals above to the 408,870 (83.91%) participants identified as White-British by column in.white.British.ancestry.subset of the sample QC file. This field was computed by the UKB team to only include individuals whose self-reported ethnic background was White British and whose genetic principal components were not outliers compared to the other individuals in that group. In concordance with previous analyses of this cohort we additionally removed data for: ● 2 individuals with an excessive number of inferred relatives, removed due to plausible SNP array contamination (participants listed in sample QC file column excluded.from.kinship.inference that had not already been removed by the UKB team prior to phasing) ● 308 individuals whose self-reported sex did not match the genetically inferred sex, removed due to concern for sample mislabeling (participants where sample QC file columns Submitted.Gender and Inferred.Gender did not match) ● 407 additional individuals with putative sex chromosome aneuploidies removed as their genetic signals might differ significantly from the rest of the population (listed in sample QC file column putative.sex.chromosome.aneuploidy) Following these additional filters the data for 408,153 individuals remained (99.82% of the White British individuals considered above). SNP and indel dataset preprocessing We obtained both phased hard-called and imputed SNP and short indel genotypes made available by the UKB. These variants were provided in reference genome hg19 coordinates, and all analyses in this study, unless otherwise specified, were performed with hg19 coordinates. Phased hard-called genotypes: We downloaded the bgen files containing the hard-called SNP and indel haplotypes (release version 2) and the corresponding sample and fam files using the ukbgene utility (UKB Data Showcase Resource 664 (see Key Resources Table)). These variants had been genotyped using microarrays and phased using SHAPEIT3 with the 1000 genomes phase 3 reference panel. Variants genotyped on the microarray were excluded from phasing and downstream analyses if they failed QC on more than one microarray genotyping batch, had overall call-missingness rate greater than 5% or had minor allele frequency less than 0.01%. Of the resulting 658,720 variants, 99.5% were single nucleotide variants, 0.2% were short indels (average length 1.9bp, maximal length 26bp), and 0.2% were short deletions (average length 1.9bp, maximal length 29bp). Imputed genotypes: We similarly downloaded imputed SNP data using the ukbgene utility (release version 3). Variants had been imputed with IMPUTE4 using the Haplotype Reference Consortium panel, with additional variants from the UK10K and 1000 Genomes phase 3 reference panels. The resulting imputed variants contain 93,095,623 variants, consisting of 96.0% single nucleotide variants, 1.3% short insertions (average length 2.5bp, maximum length 661bp), 2.6% short deletions (average length 3.1bp, maximum length 129bp). This set does not include the 11 classic human leukocyte antigen alleles imputed separately. We used bgen-reader 4.0.8 to access the downloaded bgen files in python. We used plink2 v2.00a3LM (build AVX2 Intel 28 Oct 2020) to convert bgen files from both hard-called and imputed SNPs to the plink2 format for downstream analyses. For hard-called genotypes, we used plink to set the first allele to match the hg19 reference genome. Imputed genotypes already matched the reference. Unless otherwise noted, our pipeline worked with imputed genotypes as non-reference allele dosages, i.e. for each individual. STR imputation We previously published a reference panel containing phased haplotypes of SNP variants alongside 445,720 autosomal STR variants in 2,504 individuals from the 1000 Genomes Project (see Key Resources Table). This panel focuses on STRs ascertained to be highly polymorphic and well-imputed in European individuals. Notably, this excludes many STRs known to be implicated in repeat expansion diseases, STRs that are primarily polymorphic only in non-European populations, or STRs that are too mutable to be in strong linkage disequilibrium (LD) with nearby SNPs. The IDs listed in the ‘str’ column of Supplemental Table 2 at that URL describe which variants in the reference panel are STRs and which are other types of variants. That produces a list of 445,715 unique variant IDs and 5 IDs which are each assigned to four separate variants in the reference panel VCFs. For the IDs with multiple assignments, we selected the variant that appeared first in the VCF and discarded the others, leaving 445,720 unique STR variants each with unique IDs. While our analyses with these STRs were performed using hg19 coordinates unless otherwise stated, we also provide hg38 reference coordinates for these STRs in the supplemental tables. We obtained those coordinates using LiftOver which resulted in identical coordinates as in HipSTR’s hg38 STR reference panel (see Key Resources Table). All STRs successfully lifted over to hg38 coordinates. To select shared variants for imputation, we note that 641,582 (97.4%) of SNP and indel variants that were hard-called and phased in the UKB participants were present in our SNP-STR reference panel. As a quality control step, we filtered variants that had highly discordant minor allele frequencies between the 1000 Genomes European subpopulations (see Key Resources Table) and White British individuals from the UKB. We first took a maximal unrelated set of the White British individuals (see Phenotype Methods below) and then visually inspected the alternate allele frequency of the overlapping variants (Figure S1) and chose to remove the 110 variants with an alternate allele frequency difference of more than 12%. We used Beagle v5.1 (build 25Nov19.28d) with the tool’s provided human genetic maps (see Key Resources Table) and non-default flag ap=true to impute STRs into the remaining 641,472 SNPs and indels from the SNP-STR panel into the hard-called SNP haplotypes. Though we performed the above comparison between reference panel Europeans and UKB White British individuals, we performed this STR imputation into all UKB participants using all the individuals in the reference panel. We chose Beagle because it can handle multi-allelic loci. Due to computational constraints, we ran Beagle per chromosome on batches of 1000 participants at a time with roughly 18GB of memory. We merged the resulting VCFs across batches and extracted only the STR variants. Lastly, we added back the INFO fields present in the SNP-STR reference panel that Beagle removed during imputation.
Estimated allele frequencies (Figure 1b) were computed as follows: for each allele length for each STR, we summed the imputed probability of the STR on that chromosome to have length over both chromosomes of all unrelated participants. That sum is divided by the total number of chromosomes considered to obtain the estimated frequency of each allele. Inferring repeat units Each STR in the SNP-STR reference panel was previously annotated with a repeat period - the length of its repeat unit - but not the repeat unit itself. We inferred the repeat unit of each STR in the panel as follows: we considered the STR’s reference allele and given period. We then took each k-mer in the reference allele where k is the repeat period, standardized those k-mers, and took their counts. We
Preparations of Estonian enterprises for the changeover to euro. Topics: self-rated knowledge on the euro changeover; preferred source of information about the introduction of the euro; satisfaction with information about euro changeover; preferred areas to get more information on; awareness of the following information sources on the changeover: Tere euro handbook, national website on the euro, free governmental phone line, seminars; usefulness of the aforementioned sources of information for own changeover preparations; use of the national website on the euro and usefulness; assessment of the long term impact of the introduction of the euro on own enterprise; preparations for the changeover; time of the beginning of the enterprise‘s preparations; approval of the following statements on the company’s activities regarding the changeover: has identified the impact in the different areas of the enterprise, has defined the necessary computer adaptation, has informed its staff, has evaluated the training needs, has set up a detailed action plan, has appointed a person in charge of coordinating preparations; proceeding regarding the adaptation of computer systems: executed by own staff, outsourcing, both; readiness of accounting system, invoicing system, and payroll system in time and reasons if not; enterprise is a retail enterprise or has other direct financial relations with consumers; supply of the company with euro coins and banknotes before January 2011 by the bank; reasons for not being supplied; intention to give change: in euro, in Eesti kroon, both; knowledge of the duration of the dual circulation period of EEK and euro; awareness of the obligation to dual price display during changeover period; problems concerning dual price display: calculation errors by the staff, consumer complaints, too time consuming, too costly, technical problems. Demography: position of respondent at the company; company sector; number of employees; annual turnover. Additionally coded was: interview ID; interviewer ID; language of the interview; country; date of interview; time of the beginning of the interview; duration of the interview; call history; region. Euro-Umstellung in Estland. Meinungen von Managern zum Verlauf der Euro-Umstellung. Verlauf der Euro-Umstellung in Unternehmen. Themen: Selbsteinschätzung der Informiertheit über die Euro-Umstellung; präferierte Informationsquelle zur Umstellung auf den Euro; Zulänglichkeit der Informationen; gewünschte zusätzliche Informationen über: wichtige Daten der Euro-Umstellung, Wechselkurse, Vorgaben bei der Umrechnung von Währungen, Auswirkungen der Euro-Umstellung auf Verträge und Löhne, duale Preisauszeichnung, Sicherheitsmerkmale, Stückelung der Münzen und Banknoten, Dauer des gleichzeitigen Umlaufs beider Währungen, Abkommen über faire Preise; Kenntnis der folgenden Informationsquellen: Handbuch für Unternehmer, nationale Internetseite mit Informationen über den Euro, Telefon-Hotline der Regierung, Seminare zur Vorbereitung auf die Einführung des Euros; Einschätzung des Nutzens dieser Informationsquellen; Besuch der offiziellen Euro-Internetseite; Nutzen der Internetseite für die Vorbereitung auf die Umstellung; erwartete Konsequenzen der Euro-Umstellung für das Unternehmen; bereits mit Vorbereitungen des Unternehmens für die Euro-Umstellung begonnen; geplanter Beginn der Vorbereitungen; Zeitpunkt des Beginns der Vorbereitungen; bereits getroffene Vorbereitungen: Ermittlung des Einflusses auf verschiedene Bereiche des Unternehmens, Identifizierung der nötigen Computer-Adaptionen, Information der Angestellten, Evaluation der benötigten Schulungsmaßnahmen, Erstellung eines Aktionsplans für das Unternehmen, Bestimmung eines Euro-Koordinators; Anpassung der Computersysteme mit internen oder externen Kräften; erwartete Probleme bei der Umstellung der Computer; Gründe für die erwarteten Probleme; Handelsunternehmen (wie Supermärkte) wurden gefragt: pünktliche Versorgung mit Euro-Münzen und Banknoten erwartet; Gründe für eine unpünktliche Versorgung: Möglichkeit der frühzeitigen Versorgung ist nicht bekannt, kein Bedarf, mangelnde Bereitschaft Geld für eine frühzeitige Versorgung vorzustrecken, Sicherheits- oder Aufbewahrungsprobleme; finanzielle Probleme; beabsichtigte Auszahlung des Wechselgeldes in Euro oder Estnische Krone; Kenntnis der Dauer des parallelen Umlaufs von Landeswährung und Euro; Kenntnis der Pflicht zur dualen Preisauszeichnung; erwartete Probleme mit der dualen Preisauszeichnung: Rechenfehler verursacht durch das Personal, Kundenbeschwerden, zu zeitintensiv bzw. sehr teuer, Kassensystem kann duale Preise nicht anzeigen, technische Probleme. Demographie: Position des Befragten im Unternehmen; Branche; Anzahl der Mitarbeitenden; jährlicher Umsatz. Zusätzlich verkodet wurde: Befragten-ID; Interviewer-ID; Interviewsprache; Land; Interviewdatum; Interviewdauer (Interviewbeginn und Interviewende); Anzahl der Kontaktversuche; Region.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Nepal Number Dataset is an index of Nepal contact numbers that are 100% accurate and valid. We always double-check to make sure that this record is correct. So, when you use this number library, you can trust that Nepal contact numbers work. And if you ever get an incorrect number, you get a replacement guarantee. This means that if a phone number doesn’t work, they will give you a new number at no extra cost. Moreover, the Nepal Number Dataset is very reliable. Use it with confidence, knowing that you are following the right steps for a smooth, successful outreach effort. The people on the list have agreed to share their mobile numbers. So, you are not breaking any rules when you use this database. And, getting the customer’s consent makes contacting them more welcoming and effective. Nepal phone data is detailed information about Nepal contact numbers. Trusted sources collect this phone data to ensure its reliability. The sources from which this library comes may include websites, government records, and phone service providers. We verify each source, and you can check the URLs where we got the data. This ensures that the mobile data is accurate and reliable. Also, Nepal phone data providers offer 24/7 support. Also, Nepal phone data follows an opt-in policy. This means that people can share their numbers. This is good because it ensures that people know they are using their information. You won’t get in trouble for using contact details without permission. List to Data helps you to find Nepal contact data for your business. Nepal phone number list is a collection of phone numbers of people living in Nepal. You can sort these contact numbers by gender, age, and relationship status. This means that you can only see the amount that matches your needs. For example, if you want to contact young and single people, you can do so. Also, this contact list follows GDPR rules. Also, the Nepal phone number list helps you remove invalid data. Sometimes, contact numbers may change or stop working. This list checks this and removes those numbers, so you don’t waste time calling people who don’t answer. Using the Nepal phone number list, you reach the right people. Therefore, you get accurate, current information.