Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Each pixel value corresponds to the actual number (count) of valid Best-quality Max-NDVI values used to calculate the mean weekly values for that pixel. Since 2020, the maximum number of possible observations used to create the Mean Best-Quality Max-NDVI for the 2000-2014 period is n=20. However, because data quality varies both temporally and geographically (e.g. cloud cover and snow cover in spring; cloud near large water bodies all year), the actual number (count) of observations used to create baselines can vary significantly for any given week and year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Mean Of Transportation is a dataset for object detection tasks - it contains Words annotations for 1,646 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data DescriptionWater Quality Parameters: Ammonia, BOD, DO, Orthophosphate, pH, Temperature, Nitrogen, Nitrate.Countries/Regions: United States, Canada, Ireland, England, China.Years Covered: 1940-2023.Data Records: 2.82 million.Definition of ColumnsCountry: Name of the water-body region.Area: Name of the area in the region.Waterbody Type: Type of the water-body source.Date: Date of the sample collection (dd-mm-yyyy).Ammonia (mg/l): Ammonia concentration.Biochemical Oxygen Demand (BOD) (mg/l): Oxygen demand measurement.Dissolved Oxygen (DO) (mg/l): Concentration of dissolved oxygen.Orthophosphate (mg/l): Orthophosphate concentration.pH (pH units): pH level of water.Temperature (°C): Temperature in Celsius.Nitrogen (mg/l): Total nitrogen concentration.Nitrate (mg/l): Nitrate concentration.CCME_Values: Calculated water quality index values using the CCME WQI model.CCME_WQI: Water Quality Index classification based on CCME_Values.Data Directory Description:Category 1: DatasetCombined Data: This folder contains two CSV files: Combined_dataset.csv and Summary.xlsx. The Combined_dataset.csv file includes all eight water quality parameter readings across five countries, with additional data for initial preprocessing steps like missing value handling, outlier detection, and other operations. It also contains the CCME Water Quality Index calculation for empirical analysis and ML-based research. The Summary.xlsx provides a brief description of the datasets, including data distributions (e.g., maximum, minimum, mean, standard deviation).Combined_dataset.csvSummary.xlsxCountry-wise Data: This folder contains separate country-based datasets in CSV files. Each file includes the eight water quality parameters for regional analysis. The Summary_country.xlsx file presents country-wise dataset descriptions with data distributions (e.g., maximum, minimum, mean, standard deviation).England_dataset.csvCanada_dataset.csvUSA_dataset.csvIreland_dataset.csvChina_dataset.csvSummary_country.xlsxCategory 2: CodeData processing and harmonization code (e.g., Language Conversion, Date Conversion, Parameter Naming and Unit Conversion, Missing Value Handling, WQI Measurement and Classification).Data_Processing_Harmonnization.ipynbThe code used for Technical Validation (e.g., assessing the Data Distribution, Outlier Detection, Water Quality Trend Analysis, and Vrifying the Application of the Dataset for the ML Models).Technical_Validation.ipynbCategory 3: Data Collection SourcesThis category includes links to the selected dataset sources, which were used to create the dataset and are provided for further reconstruction or data formation. It contains links to various data collection sources.DataCollectionSources.xlsxOriginal Paper Title: A Comprehensive Dataset of Surface Water Quality Spanning 1940-2023 for Empirical and ML Adopted ResearchAbstractAssessment and monitoring of surface water quality are essential for food security, public health, and ecosystem protection. Although water quality monitoring is a known phenomenon, little effort has been made to offer a comprehensive and harmonized dataset for surface water at the global scale. This study presents a comprehensive surface water quality dataset that preserves spatio-temporal variability, integrity, consistency, and depth of the data to facilitate empirical and data-driven evaluation, prediction, and forecasting. The dataset is assembled from a range of sources, including regional and global water quality databases, water management organizations, and individual research projects from five prominent countries in the world, e.g., the USA, Canada, Ireland, England, and China. The resulting dataset consists of 2.82 million measurements of eight water quality parameters that span 1940 - 2023. This dataset can support meta-analysis of water quality models and can facilitate Machine Learning (ML) based data and model-driven investigation of the spatial and temporal drivers and patterns of surface water quality at a cross-regional to global scale.Note: Cite this repository and the original paper when using this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from multiple datasets. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
The dataset has following components:
This includes the climate variable grids (rainfall and temperature), associated rmse grids and relative error grids.
To display the climatology of BA subregions
This dataset was created from BoM 5km grids using IDL scripts to create mean monthly and decadal and longterm relative errors for each subregion.
Bioregional Assessment Programme (2015) BILO Climate Relative Error Grids V01. Bioregional Assessment Derived Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/c0c139f5-3648-4e0f-9acf-a884b7cc859b.
Derived From Bioregional Assessment areas v02
Derived From Natural Resource Management (NRM) Regions 2010
Derived From BILO Gridded Climate Data: Daily Climate Data for each year from 1900 to 2012
Derived From Bioregional Assessment areas v01
Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb)
Derived From GEODATA TOPO 250K Series 3
Derived From NSW Catchment Management Authority Boundaries 20130917
Derived From Geological Provinces - Full Extent
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Each pixel value corresponds to the actual number (count) of valid Best-quality Max-NDVI values used to calculate the mean weekly values for that pixel. Since 2020, the maximum number of possible observations used to create the Mean Best-Quality Max-NDVI for the 2000-2014 period is n=20. However, because data quality varies both temporally and geographically (e.g. cloud cover and snow cover in spring; cloud near large water bodies all year), the actual number (count) of observations used to create baselines can vary significantly for any given week and year.