4 datasets found
  1. G

    Count of Mean Weekly Best-Quality Maximum-NDVI

    • ouvert.canada.ca
    • datasets.ai
    • +2more
    geotif, pdf
    Updated Mar 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agriculture and Agri-Food Canada (2024). Count of Mean Weekly Best-Quality Maximum-NDVI [Dataset]. https://ouvert.canada.ca/data/dataset/6550ecc3-fbe7-4f93-8bd5-2b27ad19a2a4
    Explore at:
    pdf, geotifAvailable download formats
    Dataset updated
    Mar 5, 2024
    Dataset provided by
    Agriculture and Agri-Food Canada
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Each pixel value corresponds to the actual number (count) of valid Best-quality Max-NDVI values used to calculate the mean weekly values for that pixel. Since 2020, the maximum number of possible observations used to create the Mean Best-Quality Max-NDVI for the 2000-2014 period is n=20. However, because data quality varies both temporally and geographically (e.g. cloud cover and snow cover in spring; cloud near large water bodies all year), the actual number (count) of observations used to create baselines can vary significantly for any given week and year.

  2. R

    Mean Of Transportation Dataset

    • universe.roboflow.com
    zip
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LabelTraffic (2025). Mean Of Transportation Dataset [Dataset]. https://universe.roboflow.com/labeltraffic/mean-of-transportation/dataset/1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    LabelTraffic
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Words Bounding Boxes
    Description

    Mean Of Transportation

    ## Overview
    
    Mean Of Transportation is a dataset for object detection tasks - it contains Words annotations for 1,646 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  3. f

    A Comprehensive Surface Water Quality Monitoring Dataset (1940-2023):...

    • figshare.com
    csv
    Updated Feb 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Md. Rajaul Karim; Mahbubul Syeed; Ashifur Rahman; Khondkar Ayaz Rabbani; Kaniz Fatema; Razib Hayat Khan; Md Shakhawat Hossain; Mohammad Faisal Uddin (2025). A Comprehensive Surface Water Quality Monitoring Dataset (1940-2023): 2.82Million Record Resource for Empirical and ML-Based Research [Dataset]. http://doi.org/10.6084/m9.figshare.27800394.v2
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 23, 2025
    Dataset provided by
    figshare
    Authors
    Md. Rajaul Karim; Mahbubul Syeed; Ashifur Rahman; Khondkar Ayaz Rabbani; Kaniz Fatema; Razib Hayat Khan; Md Shakhawat Hossain; Mohammad Faisal Uddin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data DescriptionWater Quality Parameters: Ammonia, BOD, DO, Orthophosphate, pH, Temperature, Nitrogen, Nitrate.Countries/Regions: United States, Canada, Ireland, England, China.Years Covered: 1940-2023.Data Records: 2.82 million.Definition of ColumnsCountry: Name of the water-body region.Area: Name of the area in the region.Waterbody Type: Type of the water-body source.Date: Date of the sample collection (dd-mm-yyyy).Ammonia (mg/l): Ammonia concentration.Biochemical Oxygen Demand (BOD) (mg/l): Oxygen demand measurement.Dissolved Oxygen (DO) (mg/l): Concentration of dissolved oxygen.Orthophosphate (mg/l): Orthophosphate concentration.pH (pH units): pH level of water.Temperature (°C): Temperature in Celsius.Nitrogen (mg/l): Total nitrogen concentration.Nitrate (mg/l): Nitrate concentration.CCME_Values: Calculated water quality index values using the CCME WQI model.CCME_WQI: Water Quality Index classification based on CCME_Values.Data Directory Description:Category 1: DatasetCombined Data: This folder contains two CSV files: Combined_dataset.csv and Summary.xlsx. The Combined_dataset.csv file includes all eight water quality parameter readings across five countries, with additional data for initial preprocessing steps like missing value handling, outlier detection, and other operations. It also contains the CCME Water Quality Index calculation for empirical analysis and ML-based research. The Summary.xlsx provides a brief description of the datasets, including data distributions (e.g., maximum, minimum, mean, standard deviation).Combined_dataset.csvSummary.xlsxCountry-wise Data: This folder contains separate country-based datasets in CSV files. Each file includes the eight water quality parameters for regional analysis. The Summary_country.xlsx file presents country-wise dataset descriptions with data distributions (e.g., maximum, minimum, mean, standard deviation).England_dataset.csvCanada_dataset.csvUSA_dataset.csvIreland_dataset.csvChina_dataset.csvSummary_country.xlsxCategory 2: CodeData processing and harmonization code (e.g., Language Conversion, Date Conversion, Parameter Naming and Unit Conversion, Missing Value Handling, WQI Measurement and Classification).Data_Processing_Harmonnization.ipynbThe code used for Technical Validation (e.g., assessing the Data Distribution, Outlier Detection, Water Quality Trend Analysis, and Vrifying the Application of the Dataset for the ML Models).Technical_Validation.ipynbCategory 3: Data Collection SourcesThis category includes links to the selected dataset sources, which were used to create the dataset and are provided for further reconstruction or data formation. It contains links to various data collection sources.DataCollectionSources.xlsxOriginal Paper Title: A Comprehensive Dataset of Surface Water Quality Spanning 1940-2023 for Empirical and ML Adopted ResearchAbstractAssessment and monitoring of surface water quality are essential for food security, public health, and ecosystem protection. Although water quality monitoring is a known phenomenon, little effort has been made to offer a comprehensive and harmonized dataset for surface water at the global scale. This study presents a comprehensive surface water quality dataset that preserves spatio-temporal variability, integrity, consistency, and depth of the data to facilitate empirical and data-driven evaluation, prediction, and forecasting. The dataset is assembled from a range of sources, including regional and global water quality databases, water management organizations, and individual research projects from five prominent countries in the world, e.g., the USA, Canada, Ireland, England, and China. The resulting dataset consists of 2.82 million measurements of eight water quality parameters that span 1940 - 2023. This dataset can support meta-analysis of water quality models and can facilitate Machine Learning (ML) based data and model-driven investigation of the spatial and temporal drivers and patterns of surface water quality at a cross-regional to global scale.Note: Cite this repository and the original paper when using this dataset.

  4. d

    BILO Climate Relative Error Grids V01

    • data.gov.au
    • researchdata.edu.au
    • +1more
    zip
    Updated Apr 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2022). BILO Climate Relative Error Grids V01 [Dataset]. https://data.gov.au/data/dataset/c0c139f5-3648-4e0f-9acf-a884b7cc859b
    Explore at:
    zip(67003896)Available download formats
    Dataset updated
    Apr 13, 2022
    Dataset authored and provided by
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from multiple datasets. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    The dataset has following components:

    1. average monthly grids of BAWAP rain, Tmax and Tmin of last 3 decades (1980- 2009), and every decade (1980-1989, 1990-1999, 2000 - 2009)

    This includes the climate variable grids (rainfall and temperature), associated rmse grids and relative error grids.

    1. Max, Min, Mean and Stdev values of the average grid, rmse grid and relative error grid of last 3 decades for each BA subregion.

    Purpose

    To display the climatology of BA subregions

    Dataset History

    This dataset was created from BoM 5km grids using IDL scripts to create mean monthly and decadal and longterm relative errors for each subregion.

    Dataset Citation

    Bioregional Assessment Programme (2015) BILO Climate Relative Error Grids V01. Bioregional Assessment Derived Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/c0c139f5-3648-4e0f-9acf-a884b7cc859b.

    Dataset Ancestors

  5. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Agriculture and Agri-Food Canada (2024). Count of Mean Weekly Best-Quality Maximum-NDVI [Dataset]. https://ouvert.canada.ca/data/dataset/6550ecc3-fbe7-4f93-8bd5-2b27ad19a2a4

Count of Mean Weekly Best-Quality Maximum-NDVI

Explore at:
pdf, geotifAvailable download formats
Dataset updated
Mar 5, 2024
Dataset provided by
Agriculture and Agri-Food Canada
License

Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically

Description

Each pixel value corresponds to the actual number (count) of valid Best-quality Max-NDVI values used to calculate the mean weekly values for that pixel. Since 2020, the maximum number of possible observations used to create the Mean Best-Quality Max-NDVI for the 2000-2014 period is n=20. However, because data quality varies both temporally and geographically (e.g. cloud cover and snow cover in spring; cloud near large water bodies all year), the actual number (count) of observations used to create baselines can vary significantly for any given week and year.

Search
Clear search
Close search
Google apps
Main menu