100+ datasets found
  1. e

    INSPIRE Priority Data Set (Compliant) - Species range

    • inspire-geoportal.ec.europa.eu
    • inspire-geoportal.lt
    • +1more
    Updated Aug 26, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Construction Sector Development Agency (2020). INSPIRE Priority Data Set (Compliant) - Species range [Dataset]. https://inspire-geoportal.ec.europa.eu/srv/api/records/bfcc7a93-dd66-453b-b7f5-9fc4a868e69f
    Explore at:
    www:download-1.0-http--download, www:link-1.0-http--link, ogc:wms-1.3.0-http-get-mapAvailable download formats
    Dataset updated
    Aug 26, 2020
    Dataset provided by
    State Service for Protected Areas under the Ministry of Environment
    Construction Sector Development Agency
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

    Area covered
    Description

    INSPIRE Priority Data Set (Compliant) - Species range

  2. N

    Grass Range, MT Population Breakdown by Gender Dataset: Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT Population Breakdown by Gender Dataset: Male and Female Population Distribution // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/b235d521-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Male Population, Female Population, Male Population as Percent of Total Population, Female Population as Percent of Total Population
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender, including both male and female populations. This dataset can be utilized to understand the population distribution of Grass Range across both sexes and to determine which sex constitutes the majority.

    Key observations

    There is a considerable majority of female population, with 71.13% of total population being female. Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis. No further analysis is done on the data reported from the Census Bureau.

    Variables / Data Columns

    • Gender: This column displays the Gender (Male / Female)
    • Population: The population of the gender in the Grass Range is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each gender as a proportion of Grass Range total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Race & Ethnicity. You can refer the same here

  3. Simulation Data Set

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Simulation Data Set [Dataset]. https://catalog.data.gov/dataset/simulation-data-set
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: File format: R workspace file; “Simulated_Dataset.RData”. Metadata (including data dictionary) • y: Vector of binary responses (1: adverse outcome, 0: control) • x: Matrix of covariates; one row for each simulated individual • z: Matrix of standardized pollution exposures • n: Number of simulated individuals • m: Number of exposure time periods (e.g., weeks of pregnancy) • p: Number of columns in the covariate design matrix • alpha_true: Vector of “true” critical window locations/magnitudes (i.e., the ground truth that we want to estimate) Code Abstract We provide R statistical software code (“CWVS_LMC.txt”) to fit the linear model of coregionalization (LMC) version of the Critical Window Variable Selection (CWVS) method developed in the manuscript. We also provide R code (“Results_Summary.txt”) to summarize/plot the estimated critical windows and posterior marginal inclusion probabilities. Description “CWVS_LMC.txt”: This code is delivered to the user in the form of a .txt file that contains R statistical software code. Once the “Simulated_Dataset.RData” workspace has been loaded into R, the text in the file can be used to identify/estimate critical windows of susceptibility and posterior marginal inclusion probabilities. “Results_Summary.txt”: This code is also delivered to the user in the form of a .txt file that contains R statistical software code. Once the “CWVS_LMC.txt” code is applied to the simulated dataset and the program has completed, this code can be used to summarize and plot the identified/estimated critical windows and posterior marginal inclusion probabilities (similar to the plots shown in the manuscript). Optional Information (complete as necessary) Required R packages: • For running “CWVS_LMC.txt”: • msm: Sampling from the truncated normal distribution • mnormt: Sampling from the multivariate normal distribution • BayesLogit: Sampling from the Polya-Gamma distribution • For running “Results_Summary.txt”: • plotrix: Plotting the posterior means and credible intervals Instructions for Use Reproducibility (Mandatory) What can be reproduced: The data and code can be used to identify/estimate critical windows from one of the actual simulated datasets generated under setting E4 from the presented simulation study. How to use the information: • Load the “Simulated_Dataset.RData” workspace • Run the code contained in “CWVS_LMC.txt” • Once the “CWVS_LMC.txt” code is complete, run “Results_Summary.txt”. Format: Below is the replication procedure for the attached data set for the portion of the analyses using a simulated data set: Data The data used in the application section of the manuscript consist of geocoded birth records from the North Carolina State Center for Health Statistics, 2005-2008. In the simulation study section of the manuscript, we simulate synthetic data that closely match some of the key features of the birth certificate data while maintaining confidentiality of any actual pregnant women. Availability Due to the highly sensitive and identifying information contained in the birth certificate data (including latitude/longitude and address of residence at delivery), we are unable to make the data from the application section publically available. However, we will make one of the simulated datasets available for any reader interested in applying the method to realistic simulated birth records data. This will also allow the user to become familiar with the required inputs of the model, how the data should be structured, and what type of output is obtained. While we cannot provide the application data here, access to the North Carolina birth records can be requested through the North Carolina State Center for Health Statistics, and requires an appropriate data use agreement. Description Permissions: These are simulated data without any identifying information or informative birth-level covariates. We also standardize the pollution exposures on each week by subtracting off the median exposure amount on a given week and dividing by the interquartile range (IQR) (as in the actual application to the true NC birth records data). The dataset that we provide includes weekly average pregnancy exposures that have already been standardized in this way while the medians and IQRs are not given. This further protects identifiability of the spatial locations used in the analysis. This dataset is associated with the following publication: Warren, J., W. Kong, T. Luben, and H. Chang. Critical Window Variable Selection: Estimating the Impact of Air Pollution on Very Preterm Birth. Biostatistics. Oxford University Press, OXFORD, UK, 1-30, (2019).

  4. d

    Geospatial Database of Hydroclimate Variables, Spring Mountains and Sheep...

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Sep 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geospatial Database of Hydroclimate Variables, Spring Mountains and Sheep Range, Clark County, Nevada [Dataset]. https://catalog.data.gov/dataset/geospatial-database-of-hydroclimate-variables-spring-mountains-and-sheep-range-clark-count
    Explore at:
    Dataset updated
    Sep 18, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Clark County, Spring Mountains, Nevada, Sheep Range
    Description

    This point feature class contains 81,481 points arranged in a 270-meter spaced grid that covers the Spring Mountains and Sheep Range in Clark County, Nevada. Points are attributed with hydroclimate variables and ancillary data compiled to support efforts to characterize ecological zones.

  5. a

    Range: KeyArea

    • usfs-test-dcdev.hub.arcgis.com
    • agdatacommons.nal.usda.gov
    • +4more
    Updated Apr 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Range: KeyArea [Dataset]. https://usfs-test-dcdev.hub.arcgis.com/datasets/usfs::range-keyarea-1
    Explore at:
    Dataset updated
    Apr 5, 2025
    Dataset authored and provided by
    U.S. Forest Service
    Area covered
    Description

    Key area is a feature class in the Rangeland Management data set. It represents an area where short term monitoring occurs within a pasture. The area corresponds to tabular data in the RIMS (Rangeland Information Management System).

  6. o

    Caribou Range Boundary

    • data.ontario.ca
    • catalogue.arctic-sdi.org
    • +2more
    pdf, shp
    Updated Jul 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment, Conservation and Parks (2024). Caribou Range Boundary [Dataset]. https://data.ontario.ca/dataset/caribou-range-boundary
    Explore at:
    shp(None), pdf(None)Available download formats
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Ministry of the Environment, Conservation and Parkshttp://www.ontario.ca/ministry-environment-and-climate-change
    Authors
    Environment, Conservation and Parks
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Time period covered
    Aug 29, 2019
    Area covered
    Ontario
    Description

    Shows areas where the health and prevalence of caribou can be linked to the attributes of the land that supports them.

    Ontario's Woodland Caribou Recovery Strategy (2008) provides advice and recommendations on the approaches needed for the recovery of Woodland Caribou.

    The strategy recommends the identification of ranges and local populations to:

    • maintain existing, self-sustaining, genetically-connected local populations of caribou
    • ensure security for and (reproductive) connections among currently isolated mainland caribou
    • re-establish caribou in strategic areas to create self-sustaining local populations and ensure connectivity

    Instructions for downloading this dataset:

    • select the link below and scroll down the metadata record page until you find Transfer Options in the Distribution Information section,
    • select the link beside the Data for download label,
    • you must provide your name, organization and email address in order to access the dataset

    This product requires the use of GIS software.

    *[GIS]: geographic information system

  7. Big Free-Tailed Bat Range - CWHR M041 [ds1836]

    • data.ca.gov
    • data.cnra.ca.gov
    • +5more
    Updated Mar 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). Big Free-Tailed Bat Range - CWHR M041 [ds1836] [Dataset]. https://data.ca.gov/dataset/big-free-tailed-bat-range-cwhr-m041-ds1836
    Explore at:
    arcgis geoservices rest api, kml, geojson, csv, zip, htmlAvailable download formats
    Dataset updated
    Mar 9, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  8. b

    Home range and body size data compiled from the literature for marine and...

    • bco-dmo.org
    • search.dataone.org
    • +1more
    csv
    Updated Jan 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malin Pinsky; Doug McCauley (2019). Home range and body size data compiled from the literature for marine and terrestrial vertebrates [Dataset]. http://doi.org/10.1575/1912/bco-dmo.752795.1
    Explore at:
    csv(32.17 KB)Available download formats
    Dataset updated
    Jan 31, 2019
    Dataset provided by
    Biological and Chemical Data Management Office
    Authors
    Malin Pinsky; Doug McCauley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    BM, HR, Refs, Group, System, Species
    Description

    Home range and body size data compiled from the literature for marine and terrestrial vertebrates.

    These data were published in McCauley et al. (2015) Table S2.

  9. d

    Data from: Range size, local abundance and effect inform species...

    • catalog.data.gov
    • agdatacommons.nal.usda.gov
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Range size, local abundance and effect inform species descriptions at scales relevant for local conservation practice [Dataset]. https://catalog.data.gov/dataset/data-from-range-size-local-abundance-and-effect-inform-species-descriptions-at-scales-rele-108d2
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    Understanding species abundances and distributions, especially at local to landscape scales, is critical for land managers and conservationists to prioritize management decisions and informs the effort and expense that may be required. The metrics of range size and local abundance reflect aspects of the biology and ecology of a given species, and together with its per capita (or per unit area) effects on other members of the community comprise a well-accepted theoretical paradigm describing invasive species. Although these metrics are readily calculated from vegetation monitoring data, they have not generally (and effect in particular) been applied to native species. We describe how metrics defining invasions may be more broadly applied to both native and invasive species in vegetation management, supporting their relevance to local scales of species conservation and management. We then use a sample monitoring dataset to compare range size, local abundance and effect as well as summary calculations of landscape penetration (range size × local abundance) and impact (landscape penetration × effect) for native and invasive species in the mixed-grass plant community of western North Dakota, USA. This paper uses these summary statistics to quantify the impact for 13 of 56 commonly encountered species, with statistical support for effects of 6 of the 13 species. Our results agree with knowledge of invasion severity and natural history of native species in the region. We contend that when managers are using invasion metrics in monitoring, extending them to common native species is biologically and ecologically informative, with little additional investment. Resources in this dataset:Resource Title: Supporting Data (xlsx). File Name: Espeland-Sylvain-BiodivConserv-2019-raw-data.xlsxResource Description: Occurrence data per quadrangle, site, and transect. Species Codes and habitat identifiers are defined in a separate sheet.Resource Title: Data Dictionary. File Name: Espeland-Sylvain-BiodivConserv-2019-data-dictionary.csvResource Description: Details Species and Habitat codes for abundance data collected.Resource Title: Supporting Data (csv). File Name: Espeland-Sylvain-BiodivConserv-2019-raw-data.csvResource Description: Occurrence data per quadrangle, site, and transect.Resource Title: Supplementary Table S1.1. File Name: 10531_2019_1701_MOESM1_ESM.docxResource Description: Scientific name, common name, life history group, family, status (N= native, I= introduced), percent of plots present, and average cover when present of 56 vascular plant species recorded in 1196 undisturbed plots in federally-managed grasslands of western North Dakota. Life history groups: C3 = cool season perennial grass, C4 = warm season perennial grass, SE = sedge, SH = shrub, PF= perennial forb, BF = biennial forb, APF = annual, biennial, or perennial forb.

  10. d

    Data from: HomeRange: A global database of mammalian home ranges

    • datadryad.org
    • data.niaid.nih.gov
    zip
    Updated Dec 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maarten Broekman; Selwyn Hoeks; Rosa Freriks; Merel Langendoen; Katharina Runge; Ecaterina Savenco; Ruben ter Harmsel; Mark Huijbregts; Marlee Tucker (2022). HomeRange: A global database of mammalian home ranges [Dataset]. http://doi.org/10.5061/dryad.d2547d85x
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 5, 2022
    Dataset provided by
    Dryad
    Authors
    Maarten Broekman; Selwyn Hoeks; Rosa Freriks; Merel Langendoen; Katharina Runge; Ecaterina Savenco; Ruben ter Harmsel; Mark Huijbregts; Marlee Tucker
    Time period covered
    2022
    Description

    Title of Dataset: HomeRange: A global database of mammalian home ranges

    Mammalian home range papers were compiled via an extensive literature search. All home range values were extracted from the literature including individual, group and population-level home range values. Associated values were also compiled including species names, methodological information on data collection, home-range estimation method, period of data collection, study coordinates and name of location, as well as species traits derived from the studies, such as body mass, life stage, reproductive status and locomotor habit.

    We also provide an R package, which can be installed from https://github.com/SHoeks/HomeRange. The HomeRange R package provides functions for downloading the latest version of the HomeRange database and loading it as a standard dataframe into R, plotting several statistics of the database and finally attaching species traits (e.g. species average body mass, trophic level). from the CO...

  11. Z

    Fused Image dataset for convolutional neural Network-based crack Detection...

    • data.niaid.nih.gov
    • explore.openaire.eu
    • +1more
    Updated Apr 20, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wei Song (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6383043
    Explore at:
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Carlos Canchila
    Wei Song
    Shanglian Zhou
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

    The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

    If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

    In addition, an image dataset for crack classification has also been published at [6].

    References:

    [1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

    [2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

    [3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

    [4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

    5 Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

    [6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

  12. d

    New Mexico Mountain Ranges

    • catalog.data.gov
    • gstore.unm.edu
    • +2more
    Updated Dec 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Earth Data Analysis Center (Point of Contact) (2020). New Mexico Mountain Ranges [Dataset]. https://catalog.data.gov/dataset/new-mexico-mountain-ranges
    Explore at:
    Dataset updated
    Dec 2, 2020
    Dataset provided by
    Earth Data Analysis Center (Point of Contact)
    Area covered
    New Mexico
    Description

    The Geographic Names Information System (GNIS) actively seeks data from and partnerships with Government agencies at all levels and other interested organizations. The GNIS is the Federal standard for geographic nomenclature. The U.S. Geological Survey developed the GNIS for the U.S. Board on Geographic Names, a Federal inter-agency body chartered by public law to maintain uniform feature name usage throughout the Government and to promulgate standard names to the public. The GNIS is the official repository of domestic geographic names data; the official vehicle for geographic names use by all departments of the Federal Government; and the source for applying geographic names to Federal electronic and printed products of all types. See http://geonames.usgs.gov for additional information.

  13. Data from: FISBe: A real-world benchmark dataset for instance segmentation...

    • zenodo.org
    • data.niaid.nih.gov
    bin, json +3
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa (2024). FISBe: A real-world benchmark dataset for instance segmentation of long-range thin filamentous structures [Dataset]. http://doi.org/10.5281/zenodo.10875063
    Explore at:
    zip, text/x-python, bin, json, txtAvailable download formats
    Dataset updated
    Apr 2, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lisa Mais; Lisa Mais; Peter Hirsch; Peter Hirsch; Claire Managan; Claire Managan; Ramya Kandarpa; Josef Lorenz Rumberger; Josef Lorenz Rumberger; Annika Reinke; Annika Reinke; Lena Maier-Hein; Lena Maier-Hein; Gudrun Ihrke; Gudrun Ihrke; Dagmar Kainmueller; Dagmar Kainmueller; Ramya Kandarpa
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 26, 2024
    Description

    General

    For more details and the most up-to-date information please consult our project page: https://kainmueller-lab.github.io/fisbe.

    Summary

    • A new dataset for neuron instance segmentation in 3d multicolor light microscopy data of fruit fly brains
      • 30 completely labeled (segmented) images
      • 71 partly labeled images
      • altogether comprising ∼600 expert-labeled neuron instances (labeling a single neuron takes between 30-60 min on average, yet a difficult one can take up to 4 hours)
    • To the best of our knowledge, the first real-world benchmark dataset for instance segmentation of long thin filamentous objects
    • A set of metrics and a novel ranking score for respective meaningful method benchmarking
    • An evaluation of three baseline methods in terms of the above metrics and score

    Abstract

    Instance segmentation of neurons in volumetric light microscopy images of nervous systems enables groundbreaking research in neuroscience by facilitating joint functional and morphological analyses of neural circuits at cellular resolution. Yet said multi-neuron light microscopy data exhibits extremely challenging properties for the task of instance segmentation: Individual neurons have long-ranging, thin filamentous and widely branching morphologies, multiple neurons are tightly inter-weaved, and partial volume effects, uneven illumination and noise inherent to light microscopy severely impede local disentangling as well as long-range tracing of individual neurons. These properties reflect a current key challenge in machine learning research, namely to effectively capture long-range dependencies in the data. While respective methodological research is buzzing, to date methods are typically benchmarked on synthetic datasets. To address this gap, we release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, the first publicly available multi-neuron light microscopy dataset with pixel-wise annotations. In addition, we define a set of instance segmentation metrics for benchmarking that we designed to be meaningful with regard to downstream analyses. Lastly, we provide three baselines to kick off a competition that we envision to both advance the field of machine learning regarding methodology for capturing long-range data dependencies, and facilitate scientific discovery in basic neuroscience.

    Dataset documentation:

    We provide a detailed documentation of our dataset, following the Datasheet for Datasets questionnaire:

    >> FISBe Datasheet

    Our dataset originates from the FlyLight project, where the authors released a large image collection of nervous systems of ~74,000 flies, available for download under CC BY 4.0 license.

    Files

    • fisbe_v1.0_{completely,partly}.zip
      • contains the image and ground truth segmentation data; there is one zarr file per sample, see below for more information on how to access zarr files.
    • fisbe_v1.0_mips.zip
      • maximum intensity projections of all samples, for convenience.
    • sample_list_per_split.txt
      • a simple list of all samples and the subset they are in, for convenience.
    • view_data.py
      • a simple python script to visualize samples, see below for more information on how to use it.
    • dim_neurons_val_and_test_sets.json
      • a list of instance ids per sample that are considered to be of low intensity/dim; can be used for extended evaluation.
    • Readme.md
      • general information

    How to work with the image files

    Each sample consists of a single 3d MCFO image of neurons of the fruit fly.
    For each image, we provide a pixel-wise instance segmentation for all separable neurons.
    Each sample is stored as a separate zarr file (zarr is a file storage format for chunked, compressed, N-dimensional arrays based on an open-source specification.").
    The image data ("raw") and the segmentation ("gt_instances") are stored as two arrays within a single zarr file.
    The segmentation mask for each neuron is stored in a separate channel.
    The order of dimensions is CZYX.

    We recommend to work in a virtual environment, e.g., by using conda:

    conda create -y -n flylight-env -c conda-forge python=3.9
    conda activate flylight-env

    How to open zarr files

    1. Install the python zarr package:
      pip install zarr
    2. Opened a zarr file with:

      import zarr
      raw = zarr.open(
      seg = zarr.open(

      # optional:
      import numpy as np
      raw_np = np.array(raw)

    Zarr arrays are read lazily on-demand.
    Many functions that expect numpy arrays also work with zarr arrays.
    Optionally, the arrays can also explicitly be converted to numpy arrays.

    How to view zarr image files

    We recommend to use napari to view the image data.

    1. Install napari:
      pip install "napari[all]"
    2. Save the following Python script:

      import zarr, sys, napari

      raw = zarr.load(sys.argv[1], mode='r', path="volumes/raw")
      gts = zarr.load(sys.argv[1], mode='r', path="volumes/gt_instances")

      viewer = napari.Viewer(ndisplay=3)
      for idx, gt in enumerate(gts):
      viewer.add_labels(
      gt, rendering='translucent', blending='additive', name=f'gt_{idx}')
      viewer.add_image(raw[0], colormap="red", name='raw_r', blending='additive')
      viewer.add_image(raw[1], colormap="green", name='raw_g', blending='additive')
      viewer.add_image(raw[2], colormap="blue", name='raw_b', blending='additive')
      napari.run()

    3. Execute:
      python view_data.py 

    Metrics

    • S: Average of avF1 and C
    • avF1: Average F1 Score
    • C: Average ground truth coverage
    • clDice_TP: Average true positives clDice
    • FS: Number of false splits
    • FM: Number of false merges
    • tp: Relative number of true positives

    For more information on our selected metrics and formal definitions please see our paper.

    Baseline

    To showcase the FISBe dataset together with our selection of metrics, we provide evaluation results for three baseline methods, namely PatchPerPix (ppp), Flood Filling Networks (FFN) and a non-learnt application-specific color clustering from Duan et al..
    For detailed information on the methods and the quantitative results please see our paper.

    License

    The FlyLight Instance Segmentation Benchmark (FISBe) dataset is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    Citation

    If you use FISBe in your research, please use the following BibTeX entry:

    @misc{mais2024fisbe,
     title =    {FISBe: A real-world benchmark dataset for instance
             segmentation of long-range thin filamentous structures},
     author =    {Lisa Mais and Peter Hirsch and Claire Managan and Ramya
             Kandarpa and Josef Lorenz Rumberger and Annika Reinke and Lena
             Maier-Hein and Gudrun Ihrke and Dagmar Kainmueller},
     year =     2024,
     eprint =    {2404.00130},
     archivePrefix ={arXiv},
     primaryClass = {cs.CV}
    }

    Acknowledgments

    We thank Aljoscha Nern for providing unpublished MCFO images as well as Geoffrey W. Meissner and the entire FlyLight Project Team for valuable
    discussions.
    P.H., L.M. and D.K. were supported by the HHMI Janelia Visiting Scientist Program.
    This work was co-funded by Helmholtz Imaging.

    Changelog

    There have been no changes to the dataset so far.
    All future change will be listed on the changelog page.

    Contributing

    If you would like to contribute, have encountered any issues or have any suggestions, please open an issue for the FISBe dataset in the accompanying github repository.

    All contributions are welcome!

  14. A

    Range: Pasture (Feature Layer)

    • data.amerigeoss.org
    • datadiscoverystudio.org
    • +4more
    csv, esri rest +6
    Updated Jul 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States[old] (2019). Range: Pasture (Feature Layer) [Dataset]. https://data.amerigeoss.org/dataset/range-pasture-feature-layer
    Explore at:
    ogc wfs, geojson, csv, zip, html, esri rest, kml, ogc wmsAvailable download formats
    Dataset updated
    Jul 26, 2019
    Dataset provided by
    United States[old]
    Description

    Designates boundaries to establish extent of livestock distribution and management within pastures. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.

  15. Ferruginous Hawk Range - CWHR B124 [ds1449]

    • data.cnra.ca.gov
    • data.ca.gov
    • +4more
    Updated Feb 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). Ferruginous Hawk Range - CWHR B124 [ds1449] [Dataset]. https://data.cnra.ca.gov/dataset/ferruginous-hawk-range-cwhr-b124-ds1449
    Explore at:
    kml, zip, geojson, arcgis geoservices rest api, csv, htmlAvailable download formats
    Dataset updated
    Feb 14, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  16. a

    Range WildHorseBurro

    • hamhanding-dcdev.opendata.arcgis.com
    • agdatacommons.nal.usda.gov
    • +5more
    Updated Apr 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Range WildHorseBurro [Dataset]. https://hamhanding-dcdev.opendata.arcgis.com/datasets/usfs::range-wildhorseburro
    Explore at:
    Dataset updated
    Apr 5, 2025
    Dataset authored and provided by
    U.S. Forest Service
    Area covered
    Description

    This feature class depicts area boundaries of Wild Horse and Burro Territories to correspond to tabular data in the RIMS (Rangeland Information Management System).

  17. Z

    Data from: WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kampel, Martin (2024). WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32 [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8021098
    Explore at:
    Dataset updated
    Apr 5, 2024
    Dataset provided by
    Strohmayer, Julian
    Kampel, Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32

    This repository contains the WiFi CSI human presence detection and activity recognition datasets proposed in [1].

    Datasets

    DP_LOS - Line-of-sight (LOS) presence detection dataset, comprised of 392 CSI amplitude spectrograms.

    DP_NLOS - Non-line-of-sight (NLOS) presence detection dataset, comprised of 384 CSI amplitude spectrograms.

    DA_LOS - LOS activity recognition dataset, comprised of 392 CSI amplitude spectrograms.

    DA_NLOS - NLOS activity recognition dataset, comprised of 384 CSI amplitude spectrograms.

    Table 1: Characteristics of presence detection and activity recognition datasets.

    Dataset Scenario

    Rooms

    Persons

    Classes

    Packet Sending Rate Interval

    Spectrograms

    DP_LOS LOS 1 1 6 100Hz 4s (400 packets) 392

    DP_NLOS NLOS 5 1 6 100Hz 4s (400 packets) 384

    DA_LOS LOS 1 1 3 100Hz 4s (400 packets) 392

    DA_NLOS NLOS 5 1 3 100Hz 4s (400 packets) 384

    Data Format

    Each dataset employs an 8:1:1 training-validation-test split, defined in the provided label files trainLabels.csv, validationLabels.csv, and testLabels.csv. Label files use the sample format [i c], with i corresponding to the spectrogram index (i.png) and c corresponding to the class. For presence detection datasets (DP_LOS , DP_NLOS), c in {0 = "no presence", 1 = "presence in room 1", ..., 5 = "presence in room 5"}. For activity recognition datasets (DA_LOS , DA_NLOS), c in {0="no activity", 1="walking", and 2="walking + arm-waving"}. Furthermore, the mean and standard deviation of a given dataset are provided in meanStd.csv.

    Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to our paper [1].

    [1] Strohmayer, Julian, and Martin Kampel. "WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32" International Conference on Computer Vision Systems. Cham: Springer Nature Switzerland, 2023.

    BibTeX citation:

    @inproceedings{strohmayer2023wifi, title={WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32}, author={Strohmayer, Julian and Kampel, Martin}, booktitle={International Conference on Computer Vision Systems}, pages={41--50}, year={2023}, organization={Springer} }

  18. BLM ID Range Improvements Poly

    • catalog.data.gov
    • datasets.ai
    • +2more
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bureau of Land Management (2025). BLM ID Range Improvements Poly [Dataset]. https://catalog.data.gov/dataset/blm-id-range-improvements-poly-hub
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Bureau of Land Managementhttp://www.blm.gov/
    Description

    This geodatabase of point, line and polygon features is an effort to consolidate all of the range improvement locations on BLM-managed land in Idaho into one database. Currently, the polygon feature class has some data for all of the BLM field offices except the Coeur d'Alene and Cottonwood field offices. Range improvements are structures intended to enhance rangeland resources, including wildlife, watershed, and livestock management. Examples of range improvements include water troughs, spring headboxes, culverts, fences, water pipelines, gates, wildlife guzzlers, artificial nest structures, reservoirs, developed springs, corrals, exclosures, etc. These structures were first tracked by the Bureau of Land Management (BLM) in the Job Documentation Report (JDR) System in the early 1960s, which was predominately a paper-based tracking system. In 1988 the JDRs were migrated into and replaced by the automated Range Improvement Project System (RIPS), and version 2.0 is currently being used today. It tracks inventory, status, objectives, treatment, maintenance cycle, maintenance inspection, monetary contributions and reporting. Not all range improvements are documented in the RIPS database; there may be some older range improvements that were built before the JDR tracking system was established. There also may be unauthorized projects that are not in RIPS. Official project files of paper maps, reports, NEPA documents, checklists, etc., document the status of each project and are physically kept in the office with management authority for that project area. In addition, project data is entered into the RIPS system to enable managers to access the data to track progress, run reports, analyze the data, etc. Before Geographic Information System technology most offices kept paper atlases or overlay systems that mapped the locations of the range improvements. The objective of this geodatabase is to migrate the location of historic range improvement projects into a GIS for geospatial use with other data and to centralize the range improvement data for the state. This data set is a work in progress and does not have all range improvement projects that are on BLM lands. Some field offices have not migrated their data into this database, and others are partially completed. New projects may have been built but have not been entered into the system. Historic or unauthorized projects may not have case files and are being mapped and documented as they are found. Many field offices are trying to verify the locations and status of range improvements with GPS, and locations may change or projects that have been abandoned or removed on the ground may be deleted. Attributes may be incomplete or inaccurate. This data was created using the standard for range improvements set forth in Idaho IM 2009-044, dated 6/30/2009. However, it does not have all of the fields the standard requires. Fields that are missing from the polygon feature class that are in the standard are: ALLOT_NO, POLY_TYPE, MGMT_AGCY, ADMIN_ST, and ADMIN_OFF. The polygon feature class also does not have a coincident line feature class, so some of the fields from the polygon arc feature class are included in the polygon feature class: COORD_SRC, COORD_SRC2, DEF_FET, DEF_FEAT2, ACCURACY, CREATE_DT, CREATE_BY, MODIFY_DT, MODIFY_BY, GPS_DATE, and DATAFILE. There is no National BLM standard for GIS range improvement data at this time. For more information contact us at blm_id_stateoffice@blm.gov.

  19. O

    Monthly Gaming Machine range statistics for Clubs and Hotels

    • data.qld.gov.au
    • researchdata.edu.au
    csv
    Updated Jun 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justice (2025). Monthly Gaming Machine range statistics for Clubs and Hotels [Dataset]. https://www.data.qld.gov.au/dataset/monthly-gaming-machine-range-statistics-for-clubs-and-hotels
    Explore at:
    csv(12 KiB)Available download formats
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    Justice
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Monthly Gaming Machine range statistics for Clubs and Hotels

  20. GALILEO VENUS RANGE FIX RAW DATA V1.0 - Dataset - NASA Open Data Portal

    • data.nasa.gov
    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    Updated Mar 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). GALILEO VENUS RANGE FIX RAW DATA V1.0 - Dataset - NASA Open Data Portal [Dataset]. https://data.nasa.gov/dataset/galileo-venus-range-fix-raw-data-v1-0-702ea
    Explore at:
    Dataset updated
    Mar 31, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Raw radio tracking data used to determine the precise distance to Venus (and improve knowledge of the Astronomical Unit) from the Galileo flyby on 10 February 1990.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Construction Sector Development Agency (2020). INSPIRE Priority Data Set (Compliant) - Species range [Dataset]. https://inspire-geoportal.ec.europa.eu/srv/api/records/bfcc7a93-dd66-453b-b7f5-9fc4a868e69f

INSPIRE Priority Data Set (Compliant) - Species range

Explore at:
www:download-1.0-http--download, www:link-1.0-http--link, ogc:wms-1.3.0-http-get-mapAvailable download formats
Dataset updated
Aug 26, 2020
Dataset provided by
State Service for Protected Areas under the Ministry of Environment
Construction Sector Development Agency
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations

Area covered
Description

INSPIRE Priority Data Set (Compliant) - Species range

Search
Clear search
Close search
Google apps
Main menu