100+ datasets found
  1. Range: Pasture (Feature Layer)

    • agdatacommons.nal.usda.gov
    • datadiscoverystudio.org
    • +7more
    bin
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Range: Pasture (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Range_Pasture_Feature_Layer_/25973101
    Explore at:
    binAvailable download formats
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Designates boundaries to establish extent of livestock distribution and management within pastures. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.

  2. N

    Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 19, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/8de3d033-c989-11ee-9145-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 19, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Grass Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Grass Range.

    Key observations

    Largest age group (population): Male # 35-39 years (9) | Female # 70-74 years (30). Source: U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Grass Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Grass Range is shown in the following column.
    • Population (Female): The female population in the Grass Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Grass Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here

  3. N

    Grass Range, MT Age Group Population Dataset: A Complete Breakdown of Grass...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT Age Group Population Dataset: A Complete Breakdown of Grass Range Age Demographics from 0 to 85 Years and Over, Distributed Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/grass-range-mt-population-by-age/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Grass Range population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by age. For example, using this dataset, we can identify the largest age group in Grass Range.

    Key observations

    The largest age group in Grass Range, MT was for the group of age 70 to 74 years years with a population of 41 (42.27%), according to the ACS 2019-2023 5-Year Estimates. At the same time, the smallest age group in Grass Range, MT was the 25 to 29 years years with a population of 0 (0%). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the Grass Range is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of Grass Range total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Age. You can refer the same here

  4. Black Rat Range - CWHR M140 [ds1927]

    • data.cnra.ca.gov
    • data.ca.gov
    • +5more
    Updated Mar 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). Black Rat Range - CWHR M140 [ds1927] [Dataset]. https://data.cnra.ca.gov/dataset/black-rat-range-cwhr-m140-ds1927
    Explore at:
    arcgis geoservices rest api, zip, kml, geojson, csv, htmlAvailable download formats
    Dataset updated
    Mar 12, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  5. Range: Allotment (Feature Layer)

    • catalog.data.gov
    • datadiscoverystudio.org
    • +8more
    Updated Nov 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2024). Range: Allotment (Feature Layer) [Dataset]. https://catalog.data.gov/dataset/range-allotment-feature-layer-3c514
    Explore at:
    Dataset updated
    Nov 2, 2024
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    Designates boundaries to establish extent of livestock distribution and management within the allotment. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.

  6. b

    Home range and body size data compiled from the literature for marine and...

    • bco-dmo.org
    • darchive.mblwhoilibrary.org
    csv, pdf, tsv, txt
    Updated Jan 31, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Malin Pinsky; Doug McCauley (2019). Home range and body size data compiled from the literature for marine and terrestrial vertebrates [Dataset]. http://doi.org/10.1575/1912/bco-dmo.752795.1
    Explore at:
    txt(89 bytes), pdf(154613 bytes), csv(148306 bytes), pdf(38070 bytes), tsv(32947 bytes)Available download formats
    Dataset updated
    Jan 31, 2019
    Dataset provided by
    Biological and Chemical Data Management Office
    Authors
    Malin Pinsky; Doug McCauley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    BM, HR, Refs, Group, System, Species
    Description

    Home range and body size data compiled from the literature for marine and terrestrial vertebrates.

    These data were published in McCauley et al. (2015) Table S2.

  7. Kennedy Range 1:250 000 GIS Dataset

    • data.gov.au
    html
    Updated Jan 1, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2006). Kennedy Range 1:250 000 GIS Dataset [Dataset]. https://data.gov.au/dataset/ds-ga-a05f7892-cdef-7506-e044-00144fdd4fa6
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 1, 2006
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kennedy Range
    Description

    This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at …Show full descriptionThis data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.

  8. N

    South Range, MI Age Cohorts Dataset: Children, Working Adults, and Seniors...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). South Range, MI Age Cohorts Dataset: Children, Working Adults, and Seniors in South Range - Population and Percentage Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6181f24c-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, South Range
    Variables measured
    Population Over 65 Years, Population Under 18 Years, Population Between 18 and 64 Years, Percent of Total Population for Age Groups
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age cohorts. For age cohorts we divided it into three buckets Children ( Under the age of 18 years), working population ( Between 18 and 64 years) and senior population ( Over 65 years). For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the South Range population by age cohorts (Children: Under 18 years; Working population: 18-64 years; Senior population: 65 years or more). It lists the population in each age cohort group along with its percentage relative to the total population of South Range. The dataset can be utilized to understand the population distribution across children, working population and senior population for dependency ratio, housing requirements, ageing, migration patterns etc.

    Key observations

    The largest age group was 18 - 64 years with a poulation of 379 (68.66% of the total population). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age cohorts:

    • Under 18 years
    • 18 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Group: This column displays the age cohort for the South Range population analysis. Total expected values are 3 groups ( Children, Working Population and Senior Population).
    • Population: The population for the age cohort in South Range is shown in the following column.
    • Percent of Total Population: The population as a percent of total population of the South Range is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range Population by Age. You can refer the same here

  9. Robinson Range 1:250 000 GIS Dataset

    • ecat.ga.gov.au
    • researchdata.edu.au
    • +2more
    Updated Jan 1, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Commonwealth of Australia (Geoscience Australia) (2006). Robinson Range 1:250 000 GIS Dataset [Dataset]. https://ecat.ga.gov.au/geonetwork/dashboard/api/records/a05f7892-f65f-7506-e044-00144fdd4fa6
    Explore at:
    www:link-1.0-http--linkAvailable download formats
    Dataset updated
    Jan 1, 2006
    Dataset provided by
    Geoscience Australiahttp://ga.gov.au/
    Area covered
    Description

    This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.

  10. w

    Dixon Range 1:250 000 GIS Dataset

    • data.wu.ac.at
    • researchdata.edu.au
    • +1more
    kml, shp, zip
    Updated Jun 27, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Dixon Range 1:250 000 GIS Dataset [Dataset]. https://data.wu.ac.at/schema/data_gov_au/NGI0ODhiOTctOWY0OC00MDRjLWIxMDctYzc0ZmM3ZTI4NjNl
    Explore at:
    zip, shp, kmlAvailable download formats
    Dataset updated
    Jun 27, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    699eb8311b33b64b2cf8dd28ab8f781e58ff135c
    Description

    This data is part of the series of maps that covers the whole of Australia at a scale of 1:250 000 (1cm on a map represents 2.5km on the ground) and comprises 513 maps. This is the largest scale at which published topographic maps cover the entire continent. Data is downloadable in various distribution formats.

  11. d

    Data from: HomeRange: A global database of mammalian home ranges

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Dec 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maarten Broekman; Selwyn Hoeks; Rosa Freriks; Merel Langendoen; Katharina Runge; Ecaterina Savenco; Ruben ter Harmsel; Mark Huijbregts; Marlee Tucker (2022). HomeRange: A global database of mammalian home ranges [Dataset]. http://doi.org/10.5061/dryad.d2547d85x
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 5, 2022
    Dataset provided by
    Dryad
    Authors
    Maarten Broekman; Selwyn Hoeks; Rosa Freriks; Merel Langendoen; Katharina Runge; Ecaterina Savenco; Ruben ter Harmsel; Mark Huijbregts; Marlee Tucker
    Time period covered
    2022
    Description

    Title of Dataset: HomeRange: A global database of mammalian home ranges

    Mammalian home range papers were compiled via an extensive literature search. All home range values were extracted from the literature including individual, group and population-level home range values. Associated values were also compiled including species names, methodological information on data collection, home-range estimation method, period of data collection, study coordinates and name of location, as well as species traits derived from the studies, such as body mass, life stage, reproductive status and locomotor habit.

    We also provide an R package, which can be installed from https://github.com/SHoeks/HomeRange. The HomeRange R package provides functions for downloading the latest version of the HomeRange database and loading it as a standard dataframe into R, plotting several statistics of the database and finally attaching species traits (e.g. species average body mass, trophic level). from the CO...

  12. P

    LRA Dataset

    • paperswithcode.com
    Updated May 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    LRA Dataset [Dataset]. https://paperswithcode.com/dataset/lra
    Explore at:
    Dataset updated
    May 21, 2023
    Authors
    Yi Tay; Mostafa Dehghani; Samira Abnar; Yikang Shen; Dara Bahri; Philip Pham; Jinfeng Rao; Liu Yang; Sebastian Ruder; Donald Metzler
    Description

    Long-range arena (LRA) is an effort toward systematic evaluation of efficient transformer models. The project aims at establishing benchmark tasks/datasets using which we can evaluate transformer-based models in a systematic way, by assessing their generalization power, computational efficiency, memory foot-print, etc. Long-Range Arena is specifically focused on evaluating model quality under long-context scenarios. The benchmark is a suite of tasks consisting of sequences ranging from 1K to 16K tokens, encompassing a wide range of data types and modalities such as text, natural, synthetic images, and mathematical expressions requiring similarity, structural, and visual-spatial reasoning.

    Description from: Long Range Arena : A Benchmark for Efficient Transformers

  13. N

    South Range, MI Median Income by Age Groups Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). South Range, MI Median Income by Age Groups Dataset: A Comprehensive Breakdown of South Range Annual Median Income Across 4 Key Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e9593186-f353-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, South Range
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in South Range. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in South Range. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2023

    In terms of income distribution across age cohorts, in South Range, the median household income stands at $68,250 for householders within the 45 to 64 years age group, followed by $62,167 for the 25 to 44 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $41,250.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range median household income by age. You can refer the same here

  14. Raccoon Range - CWHR M153 [ds1936]

    • data.ca.gov
    • data.cnra.ca.gov
    • +5more
    Updated Mar 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). Raccoon Range - CWHR M153 [ds1936] [Dataset]. https://data.ca.gov/dataset/raccoon-range-cwhr-m153-ds1936
    Explore at:
    arcgis geoservices rest api, kml, csv, geojson, zip, htmlAvailable download formats
    Dataset updated
    Mar 17, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  15. California Kangaroo Rat Range - CWHR M105 [ds1892]

    • data.cnra.ca.gov
    • data.ca.gov
    • +5more
    Updated Mar 12, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Fish and Wildlife (2020). California Kangaroo Rat Range - CWHR M105 [ds1892] [Dataset]. https://data.cnra.ca.gov/dataset/california-kangaroo-rat-range-cwhr-m105-ds1892
    Explore at:
    arcgis geoservices rest api, kml, html, geojson, zip, csvAvailable download formats
    Dataset updated
    Mar 12, 2020
    Dataset authored and provided by
    California Department of Fish and Wildlifehttps://wildlife.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Vector datasets of CWHR range maps are one component of California Wildlife Habitat Relationships (CWHR), a comprehensive information system and predictive model for Californias wildlife. The CWHR System was developed to support habitat conservation and management, land use planning, impact assessment, education, and research involving terrestrial vertebrates in California. CWHR contains information on life history, management status, geographic distribution, and habitat relationships for wildlife species known to occur regularly in California. Range maps represent the maximum, current geographic extent of each species within California. They were originally delineated at a scale of 1:5,000,000 by species-level experts and have gradually been revised at a scale of 1:1,000,000. For more information about CWHR, visit the CWHR webpage (https://www.wildlife.ca.gov/Data/CWHR). The webpage provides links to download CWHR data and user documents such as a look up table of available range maps including species code, species name, and range map revision history; a full set of CWHR GIS data; .pdf files of each range map or species life history accounts; and a User Guide.

  16. Z

    Fused Image dataset for convolutional neural Network-based crack Detection...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shanglian Zhou (2023). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6383043
    Explore at:
    Dataset updated
    Apr 20, 2023
    Dataset provided by
    Shanglian Zhou
    Wei Song
    Carlos Canchila
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The “Fused Image dataset for convolutional neural Network-based crack Detection” (FIND) is a large-scale image dataset with pixel-level ground truth crack data for deep learning-based crack segmentation analysis. It features four types of image data including raw intensity image, raw range (i.e., elevation) image, filtered range image, and fused raw image. The FIND dataset consists of 2500 image patches (dimension: 256x256 pixels) and their ground truth crack maps for each of the four data types.

    The images contained in this dataset were collected from multiple bridge decks and roadways under real-world conditions. A laser scanning device was adopted for data acquisition such that the captured raw intensity and raw range images have pixel-to-pixel location correspondence (i.e., spatial co-registration feature). The filtered range data were generated by applying frequency domain filtering to eliminate image disturbances (e.g., surface variations, and grooved patterns) from the raw range data [1]. The fused image data were obtained by combining the raw range and raw intensity data to achieve cross-domain feature correlation [2,3]. Please refer to [4] for a comprehensive benchmark study performed using the FIND dataset to investigate the impact from different types of image data on deep convolutional neural network (DCNN) performance.

    If you share or use this dataset, please cite [4] and [5] in any relevant documentation.

    In addition, an image dataset for crack classification has also been published at [6].

    References:

    [1] Shanglian Zhou, & Wei Song. (2020). Robust Image-Based Surface Crack Detection Using Range Data. Journal of Computing in Civil Engineering, 34(2), 04019054. https://doi.org/10.1061/(asce)cp.1943-5487.0000873

    [2] Shanglian Zhou, & Wei Song. (2021). Crack segmentation through deep convolutional neural networks and heterogeneous image fusion. Automation in Construction, 125. https://doi.org/10.1016/j.autcon.2021.103605

    [3] Shanglian Zhou, & Wei Song. (2020). Deep learning–based roadway crack classification with heterogeneous image data fusion. Structural Health Monitoring, 20(3), 1274-1293. https://doi.org/10.1177/1475921720948434

    [4] Shanglian Zhou, Carlos Canchila, & Wei Song. (2023). Deep learning-based crack segmentation for civil infrastructure: data types, architectures, and benchmarked performance. Automation in Construction, 146. https://doi.org/10.1016/j.autcon.2022.104678

    5 Shanglian Zhou, Carlos Canchila, & Wei Song. (2022). Fused Image dataset for convolutional neural Network-based crack Detection (FIND) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6383044

    [6] Wei Song, & Shanglian Zhou. (2020). Laser-scanned roadway range image dataset (LRRD). Laser-scanned Range Image Dataset from Asphalt and Concrete Roadways for DCNN-based Crack Classification, DesignSafe-CI. https://doi.org/10.17603/ds2-bzv3-nc78

  17. n

    Range map dataset for terrestrial vertebrates across Taiwan

    • narcis.nl
    • data.mendeley.com
    Updated Nov 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chang, A (via Mendeley Data) (2021). Range map dataset for terrestrial vertebrates across Taiwan [Dataset]. http://doi.org/10.17632/4g2xfsbmnr.1
    Explore at:
    Dataset updated
    Nov 19, 2021
    Dataset provided by
    Data Archiving and Networked Services (DANS)
    Authors
    Chang, A (via Mendeley Data)
    Area covered
    Taiwan
    Description

    This dataset provides up-to-date, high-precision species distribution maps for 379 terrestrial vertebrates in Taiwan. We used species distribution modeling as the base and then aggregated multiple open datasets describing species occurrence and environmental factors as data sources. Thereafter, we estimated the primary broad-scale and high spatial resolution species range maps using the MaxEnt modeling algorithm, and then consulted experts on each taxa to refine these maps.There are three files in this dataset:model_metadata.csv - metadata of models and information of species, including species taxonomic information, and model arguments.range_maps.shp - species range maps in the shapefile format, each species has its own polygon.

  18. d

    Data from: Range position and climate sensitivity: the structure of...

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Range position and climate sensitivity: the structure of among-population demographic responses to climatic variation [Dataset]. https://catalog.data.gov/dataset/range-position-and-climate-sensitivity-the-structure-of-among-population-demographic-respo
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This data set is comprised of four files related to the counts of wood frog (Lithobates sylvaticus) egg masses in the Northeast United States and climatic information derived for the count locations. One file contains data for the counts at all locations, the other files contain derived temperature and precipitation data for models used in the published manuscript.

  19. m

    Tidal Dataset - CAMRIS - Diurnal Tidal Range

    • demo.dev.magda.io
    • gimi9.com
    • +2more
    html
    Updated Sep 8, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Government Department of Climate Change, Energy, the Environment and Water (2023). Tidal Dataset - CAMRIS - Diurnal Tidal Range [Dataset]. https://demo.dev.magda.io/dataset/ds-dga-270c15d6-0be2-4e6c-a19c-1016d60412b1
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 8, 2023
    Dataset provided by
    Australian Government Department of Climate Change, Energy, the Environment and Water
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Description

    This dataset contains maps showing the principal attributes of tides around the Australian coast. It has been derived from data published in the Australian National Tide Tables. CAMRIS, standing for …Show full descriptionThis dataset contains maps showing the principal attributes of tides around the Australian coast. It has been derived from data published in the Australian National Tide Tables. CAMRIS, standing for the Coastal and Marine Resources Information System, is a small-scale spatial analysis system developed in collaboration by several divisions of Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO), as part of the CSIRO Coastal Zone Program. CSIRO Division of Wildlife and Ecology is the custodian of the 'coastal' subset of the Australian Resources Information System (ARIS). Coastal ARIS became the core dataset of the CAMRIS project. The Coastal ARIS database was developed from a coastal inventory developed by Galloway et al. This inventory contained relatively large scale data including landform, geology, vegetation, soil, land use, climate and population information for each of 3027 3x10km sections around the coastline of mainland Australia and Tasmania, but excluding offshore islands.CC - Attribution (CC BY) This data has been licensed under the Creative Commons Attribution 3.0 Australia Licence. More information can be found at http://www.ausgoal.gov.au/creative-commons.

  20. d

    NZ Roads: Address Range Road Type - Dataset - data.govt.nz - discover and...

    • catalogue.data.govt.nz
    Updated Apr 13, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). NZ Roads: Address Range Road Type - Dataset - data.govt.nz - discover and use data [Dataset]. https://catalogue.data.govt.nz/dataset/nz-roads-address-range-road-type
    Explore at:
    Dataset updated
    Apr 13, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    Please read: This is the look-up table for Address Range Road Type and is part of the set of NZ Roads tables. The Address Range Road Type look-up table is used by the following tables; NZ Roads: Address Range Road. The NZ Roads dataset includes eight data tables and eleven lookup tables. The dataset has been sourced from LINZ’s NZ Roads database, a database for the management of national roads, including those managed for addressing purposes. This set of normalised tables replaces the Landonline: Road Centre Line layer and the Landonline: Road Name and Landonline: Road Name Association tables currently published on LDS. These centrelines are required to indicate the presence of an authoritative road name. Named centrelines are not intended to represent the exact location of a road formation. Named centrelines do not indicate the presence of legal access. For a simplified version of the data contained within these tables see NZ Roads (Addressing), which aggregates geometries based on road name, and NZ Roads Subsections (Addressing), which holds the individual geometries. Please refer to the NZ Roads Data Dictionary for detailed metadata and information about this layer.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Forest Service (2025). Range: Pasture (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Range_Pasture_Feature_Layer_/25973101
Organization logo

Range: Pasture (Feature Layer)

Explore at:
binAvailable download formats
Dataset updated
Feb 28, 2025
Dataset provided by
U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
Authors
U.S. Forest Service
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Designates boundaries to establish extent of livestock distribution and management within pastures. This is a published layer created by combining GIS data managed by each National Forest and attribute data stored in the Forest Service Infra database application. This dataset is designed for reporting and analysis and is not used to enter or edit data.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.

Search
Clear search
Close search
Google apps
Main menu