77 datasets found
  1. Create your first dashboard using ArcGIS Dashboards

    • coronavirus-resources.esri.com
    • data.amerigeoss.org
    • +1more
    Updated Apr 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Create your first dashboard using ArcGIS Dashboards [Dataset]. https://coronavirus-resources.esri.com/documents/5e5ad81771924e498b59d57ede5693e4
    Explore at:
    Dataset updated
    Apr 21, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    An ArcGIS Blog tutorial that guides you through creating your first dashboard using ArcGIS Dashboards.ArcGIS Dashboards is a configurable web app available in ArcGIS Online that enables users to convey information by presenting interactive charts, gauges, maps, and other visual elements that work together on a single screen.In this tutorial you will create a simple dashboard using ArcGIS Dashboards. The dashboard uses a map of medical facilities in Los Angeles County (sample data only) and includes interactive chart and list elements._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  2. a

    Real-time Data Dashboard in Hong Kong

    • smacc1-esri-de.hub.arcgis.com
    • coe-digital-government-esridech.hub.arcgis.com
    • +2more
    Updated Oct 14, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SmartGeoHub (2019). Real-time Data Dashboard in Hong Kong [Dataset]. https://smacc1-esri-de.hub.arcgis.com/app/smartgeohub::real-time-data-dashboard-in-hong-kong
    Explore at:
    Dataset updated
    Oct 14, 2019
    Dataset authored and provided by
    SmartGeoHub
    Area covered
    Hong Kong
    Description

    Hong Kong has a lot of real-time data which are made available by the Government of Hong Kong Special Administrative Region at https://DATA.GOV.HK/ (“DATA.GOV.HK”). These data were processed and converted to Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform.These series of Operations Dashboard integrate different available real-time datasets in Hong Kong to provide a dashboard interface for monitoring real-time data feed on your desktop or tablet device. The objectives are to facilitate our Hong Kong ArcGIS Online users to view these data in a spatial ready format and save their data conversion effort.These series of Operations Dashboard come in three themes, environmental, traffic and integrated.The Environmental theme contains real-time temperature, air quality health risk and air pollution concentration of different districts in Hong Kong. To view it, please click here.Traffic theme contains real-time information of estimated journey time, car park vacancy, traffic speed of major roads, traffic snapshot images and speed map panels in Hong Kong.To view it, please click here. The integrated theme combines the above two sets of data, which are environmental and traffic, and makes them into one single dashboard view.

  3. d

    Languages and English Ability - Seattle Neighborhoods

    • catalog.data.gov
    • data.seattle.gov
    • +4more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Languages and English Ability - Seattle Neighborhoods [Dataset]. https://catalog.data.gov/dataset/languages-and-english-ability-seattle-neighborhoods
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on languages spoken and English ability related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B16004 Age by Language Spoken at Home by Ability to Speak English, C16002 Household Language by Household Limited English-Speaking Status. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B16004, C16002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for

  4. Latest Earthquake Monitoring Dashboard

    • teachwithgis.ie
    • cacgeoportal.com
    • +7more
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2019). Latest Earthquake Monitoring Dashboard [Dataset]. https://www.teachwithgis.ie/datasets/esri::latest-earthquake-monitoring-dashboard
    Explore at:
    Dataset updated
    Feb 12, 2019
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This dashboard monitors the latest earthquake events around the world. It automatically updates when new events come in to show you where they occurred, how significant they were, and if any there were any resulting tsunamis. The real-time earthquake data, provided by the Living Atlas, was used to create a web map that was then used in this dashboard.To learn about the creation of this dashboard, read the blog: Making an Auto-Focusing Real-Time Dashboard. Feel free to make a copy and see how it is configured.

  5. Transportation - Seattle Neighborhoods

    • catalog.data.gov
    • data.seattle.gov
    • +2more
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Transportation - Seattle Neighborhoods [Dataset]. https://catalog.data.gov/dataset/transportation-table-seattle-neighborhoods
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    https://arcgis.com/
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on transportation related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B08303 Travel Time to Work, B25044 Tenure by Vehicles Available, B08301 Means of Transportation to Work. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B08303, B25044, B08301Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Da

  6. d

    IFA Dashboard Data

    • catalog.data.gov
    • data.seattle.gov
    • +1more
    Updated Feb 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). IFA Dashboard Data [Dataset]. https://catalog.data.gov/dataset/ifa-dashboard-data
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Description

    This data layer includes key performance metrics collected by the City and partners tracking the progress towards the goals of the Internet for All Seattle Initiative. Internet for All Seattle Dashboards. The data points reflect activities in five categories: 1) Affordable Connectivity Program, 2) Internet Connectivity, 3) Devices, 4) Digital Skills & Technical Support, and 5) Outreach & Assistance. The majority of the Internet for All Seattle Action Plan items and data fall under these five areas. Source data for Internet for All maps and dashboards.Updated quarterly. Last update: March 4, 2024. ATTRIBUTE NAME DEFINITION ADDITIONAL INFORMATION Resource Organization or program providing metrics for this dashboard. Access for All Program - City of Seattle program to connect eligible organizations and locations in Seattle with free high speed internet service in partnership with Comcast, Astound Broadband, and Lumen. City of Seattle Facilities - City owned buildings, including Community Centers, City Hall, Seattle Center and others. Internet Essentials Program - Low-cost internet program provided by Comcast offering $9.95/month + tax for eligible households. Internet First Program - Low-cost internet program provided by Astound offering $50 Mbps Internet* to qualifying low-income households. Other Partners - Other organizations partnering with the City of Seattle. Seattle Housing Authority - An independent public corporation in the city of Seattle responsible for public housing for low-income, elderly, and disabled residents. Seattle IT Digital Equity - City of Seattle, Seattle Information Technology Department Digital Equity Program. Seattle IT Digital Navigator - Seattle IT grant program providing funding to community-based organizations to provide digital navigation services. Seattle IT Technology Matching Fund - City of Seattle grant program providing funding to community-based organizations to increase internet access and adoption. Seattle Public Library - The publ

  7. ACS Internet Access by Age and Race Variables - Boundaries

    • coronavirus-resources.esri.com
    • resilience.climate.gov
    • +7more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Age and Race Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/5a1b51d3c6374c3cbb7c9ff7acdba16b
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by age and race. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of population age 18 to 64 in households with no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28005, B28003, B28009B, B28009C, B28009D, B28009E, B28009F, B28009G, B28009H, B28009I Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  8. d

    Basic Demographics Age and Gender - Seattle Neighborhoods

    • catalog.data.gov
    • data.seattle.gov
    • +1more
    Updated Jan 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2025). Basic Demographics Age and Gender - Seattle Neighborhoods [Dataset]. https://catalog.data.gov/dataset/basic-demographics-age-and-gender-seattle-neighborhoods
    Explore at:
    Dataset updated
    Jan 31, 2025
    Dataset provided by
    City of Seattle ArcGIS Online
    Area covered
    Seattle
    Description

    Table from the American Community Survey (ACS) 5-year series on age and gender related topics for City of Seattle Council Districts, Comprehensive Plan Growth Areas and Community Reporting Areas. Table includes B01001 Sex by Age, B01002 Median Age by Sex. Data is pulled from block group tables for the most recent ACS vintage and summarized to the neighborhoods based on block group assignment.Table created for and used in the Neighborhood Profiles application.Vintages: 2023ACS Table(s): B01001, B01002Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estima

  9. ACS Disability Status Variables - Boundaries

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +10more
    Updated Oct 20, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Disability Status Variables - Boundaries [Dataset]. https://coronavirus-resources.esri.com/maps/ef1492a820674160ba6815c5e1637c27
    Explore at:
    Dataset updated
    Oct 20, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows disability status by sex and age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of elderly (65+) with a disability. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B18101Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  10. ACS Poverty Status Variables - Boundaries

    • hub.arcgis.com
    • heat.gov
    • +12more
    Updated Oct 22, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Poverty Status Variables - Boundaries [Dataset]. https://hub.arcgis.com/maps/0e468b75bca545ee8dc4b039cbb5aff6
    Explore at:
    Dataset updated
    Oct 22, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows poverty status by age group. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Poverty status is based on income in past 12 months of survey. This layer is symbolized to show the percentage of the population whose income falls below the Federal poverty line. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B17020, C17002Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  11. ACS Internet Access by Education Variables - Boundaries

    • covid-hub.gio.georgia.gov
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Internet Access by Education Variables - Boundaries [Dataset]. https://covid-hub.gio.georgia.gov/maps/62faad5b76b04b90adf47c020d7406ba
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This layer shows computer ownership and internet access by education. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percent of the population age 25+ who are high school graduates (includes equivalency) and have some college or associate's degree in households that have no computer. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B28006 Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  12. e

    ACS Health Insurance Coverage Variables - Centroids

    • coronavirus-resources.esri.com
    • covid-hub.gio.georgia.gov
    • +4more
    Updated Dec 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2018). ACS Health Insurance Coverage Variables - Centroids [Dataset]. https://coronavirus-resources.esri.com/maps/7c69956008bb4019bbbe67ed9fb05dbb
    Explore at:
    Dataset updated
    Dec 7, 2018
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This layer shows health insurance coverage by type and by age group. This is shown by tract, county, and state centroids. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the count and percent uninsured. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B27010 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  13. Demo: Automate School Weather Updates

    • se-national-government-developer-esrifederal.hub.arcgis.com
    Updated Jan 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri National Government (2025). Demo: Automate School Weather Updates [Dataset]. https://se-national-government-developer-esrifederal.hub.arcgis.com/items/6ca656f93efa422180a2b04bca55822d
    Explore at:
    Dataset updated
    Jan 10, 2025
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri National Government
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Author: Titus, Maxwell (mtitus@esri.com)Last Updated: 3/4/2025Intended Environment: ArcGIS ProPurpose: This Notebook was designed to automate updates for Hosted Feature Services hosted in ArcGIS Online (or ArcGIS Portal) from ArcGIS Pro and a spatial join of two live datasets.Description: This Notebook was designed to automate updates for Hosted Feature Services hosted in ArcGIS Online (or ArcGIS Portal) from ArcGIS Pro. An associated ArcGIS Dashboard would then reflect these updates. Specifically, this Notebook would:First, pull two datasets - National Weather Updates and Public Schools - from the Living Atlas and add them to an ArcGIS Pro map.Then, the Notebook would perform a spatial join on two layers to give Public Schools features information on whether they fell within an ongoing weather event or alert. Next, the Notebook would truncate the Hosted Feature Service in ArcGIS Online - that is, delete all the data - and then append the new data to the Hosted Feature ServiceAssociated Resources: This Notebook was used as part of the demo for FedGIS 2025. Below are the associated resources:Living Atlas Layer: NWS National Weather Events and AlertsLiving Atlas Layer: U.S. Public SchoolsArcGIS Demo Dashboard: Demo Impacted Schools Weather DashboardUpdatable Hosted Feature Service: HIFLD Public Schools with Event DataNotebook Requirements: This Notebook has the following requirements:This notebook requires ArcPy and is meant for use in ArcGIS Pro. However, it could be adjusted to work with Notebooks in ArcGIS Online or ArcGIS Portal with the advanced runtime.If running from ArcGIS Pro, connect ArcGIS Pro to the ArcGIS Online or ArcGIS Portal environment.Lastly, the user should have editable access to the hosted feature service to update.

  14. Drought and Water Shortage Risk: Small Suppliers and Rural Communities...

    • catalog.data.gov
    • data.cnra.ca.gov
    • +2more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2024). Drought and Water Shortage Risk: Small Suppliers and Rural Communities (Version 2021) [Dataset]. https://catalog.data.gov/dataset/drought-and-water-shortage-risk-small-suppliers-and-rural-communities-version-2021-f6492
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    Description

    Per California Water Code Section 10609.80 (a), DWR has released an update to the indicators analyzed for the rural communities water shortage vulnerability analysis and a new interactive tool to explore the data. This page remains to archive the original dataset, but for more current information, please see the following pages: - https://water.ca.gov/Programs/Water-Use-And-Efficiency/SB-552/SB-552-Tool - https://data.cnra.ca.gov/dataset/water-shortage-vulnerability-technical-methods - https://data.cnra.ca.gov/dataset/i07-water-shortage-vulnerability-sections - https://data.cnra.ca.gov/dataset/i07-water-shortage-social-vulnerability-blockgroup This dataset is made publicly available pursuant to California Water Code Section 10609.42 which directs the California Department of Water Resources to identify small water suppliers and rural communities that may be at risk of drought and water shortage vulnerability and propose to the Governor and Legislature recommendations and information in support of improving the drought preparedness of small water suppliers and rural communities. As of March 2021, two datasets are offered here for download. The background information, results synthesis, methods and all reports submitted to the legislature are available here: https://water.ca.gov/Programs/Water-Use-And-Efficiency/2018-Water-Conservation-Legislation/County-Drought-Planning Two online interactive dashboards are available here to explore the datasets and findings. https://dwr.maps.arcgis.com/apps/MapSeries/index.html?appid=3353b370f7844f468ca16b8316fa3c7b The following datasets are offered here for download and for those who want to explore the data in tabular format. (1) Small Water Suppliers: In total, 2,419 small water suppliers were examined for their relative risk of drought and water shortage. Of these, 2,244 are community water systems. The remaining 175 systems analyzed are small non-community non-transient water systems that serve schools for which there is available spatial information. This dataset contains the final risk score and individual risk factors for each supplier examined. Spatial boundaries of water suppliers' service areas were used to calculate the extent and severity of each suppliers' exposure to projected climate changes (temperature, wildfire, and sea level rise) and to current environmental conditions and events. The boundaries used to represent service areas are available for download from the California Drinking Water System Area Boundaries, located on the California State Geoportal, which is available online for download at https://gispublic.waterboards.ca.gov/portal/home/item.html?id=fbba842bf134497c9d611ad506ec48cc (2) Rural Communities: In total 4,987 communities, represented by US Census Block Groups, were analyzed for their relative risk of drought and water shortage. Communities with a record of one or more domestic well installed within the past 50 years are included in the analysis. Each community examined received a numeric risk score, which is derived from a set of indicators developed from a stakeholder process. Indicators used to estimate risk represented three key components: (1) the exposure of suppliers and communities to hazardous conditions and events, (2) the physical and social vulnerability of communities to the exposure, and (3) recent history of shortage and drought impacts. The unit of analysis for the rural communities, also referred to as "self-supplied communities" is U.S. Census Block Groups (ACS 2012-2016 Tiger Shapefile). The Census Block Groups do not necessarily represent socially-defined communities, but they do cover areas where population resides. Using this spatial unit for this analysis allows us to access demographic information that is otherwise not available in small geographic units.

  15. o

    Historical Landuse Dataset - Dataset - Open Data NI

    • admin.opendatani.gov.uk
    Updated Oct 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Historical Landuse Dataset - Dataset - Open Data NI [Dataset]. https://admin.opendatani.gov.uk/dataset/historical-landuse-dataset
    Explore at:
    Dataset updated
    Oct 9, 2024
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    About this layerThe Land Use Database held by the Northern Ireland Environment Agency (NIEA) provides a record of approximately 14,000 sites that have had previous industrial land use(s).What can you do with the layer?Visualisation: This layer can be used for visualisation online in web maps and in ArcGIS Pro.Analysis: This layer can be used in dashboards.Download: The data is downloadable.This layer is part of the Living Atlas of the World that provides access to thousands of beautiful and authoritative layers, web maps and apps.

  16. a

    Race by Age Groups (B01001A-I)

    • data-seattlecitygis.opendata.arcgis.com
    • data.seattle.gov
    • +1more
    Updated Sep 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Seattle ArcGIS Online (2023). Race by Age Groups (B01001A-I) [Dataset]. https://data-seattlecitygis.opendata.arcgis.com/datasets/SeattleCityGIS::race-by-age-groups-b01001a-i
    Explore at:
    Dataset updated
    Sep 7, 2023
    Dataset authored and provided by
    City of Seattle ArcGIS Online
    Description

    Table from the American Community Survey (ACS) B01001A-I sex by age by race - data is grouped into three age group categories for each race, under 18, 18-64 and 65 and older. These are multiple, nonoverlapping vintages of the 5-year ACS estimates of population and housing attributes starting in 2010 shown by the corresponding census tract vintage. Also includes the most recent release annually.Data on total number of people by each race alone and in combination by each census tract has been transposed to support dashboard visualizations.King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010. Vintage identified in the "ACS Vintage" field.The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades. Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.Vintages: 2010, 2015, 2020, 2021, 2022, 2023ACS Table(s): B01001Data downloaded from: Census Bureau's Explore Census Data The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.

  17. a

    US 1A Ellsworth/Dedham

    • maine.hub.arcgis.com
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maine (2023). US 1A Ellsworth/Dedham [Dataset]. https://maine.hub.arcgis.com/maps/us-1a-ellsworth-dedham
    Explore at:
    Dataset updated
    May 31, 2023
    Dataset authored and provided by
    State of Maine
    Area covered
    Ellsworth
    Description

    This dashboard defaults to a presentation of the crash points that will cluster the crash types and determine a predominant crash type. In the case two crash types have the same number of crashes for that type the predominant type will not be colored to either of the crash types. Clicking on the clusters will include a basic analysis of the cluster. These clusters are dynamic and will change as the user zooms in an out of the map. The clustering of crashes is functionality availalble in ArcGIS Online and the popups for the clusters is based on items that include elements configured with the Arcade language. Users interested in learning more about point clustering and the configuration of popups should read through some of the examples of the following ESRI Article (https://www.esri.com/arcgis-blog/products/arcgis-online/mapping/summarize-and-explore-point-clusters-with-arcade-in-popups/) . The dashboard itself does include a map widget that does allow the user to toggle the visibility of layers and/or click on the crashes within the map. The popups for single crashes can be difficult to see unless the map is expanded (click in upper right of map widget). There is a Review Crashes tab that allows for another display of details of a crash that may be easier for users.This dashboard includes selectors in both the header and sidebar. By default the sidebar is collapsed and would need to be expanded. The crash dataset used in the presentation includes columns with a prefix of the unit. The persons information associated to each unit would be based on the Person that was considered the driver. Crash data can be filtered by clicking on items in chart widgets. All chart widgets have been configured to allow multiple selections and these selections will then filter the crash data accordingly. Allowing for data to be filtered by clicking on widgets is an alternative approach to setting up individual selectors. Selectors can take up a lot of space in the header and sidebar and clicking on the widget items can allow you to explore different scenarios which may ultimately be setup as selectors in the future. The Dashboard has many widgets that are stacked atop each other and underneath these stacked widgets are controls or tabs that allow the user to toggle between different visualizations. The downside to allowing a user to filter based on the output of a widget is the need for the end user to keep track of what has been clicked and the need to go back through and unclick.Many of the Crash Data Elements are based on lookups that have a fairly large range of values to select. This can be difficult sometimes with charts and the fact that a user may be overwhelmed by the number of items be plotted. Some of these values could potentially benefit by grouping similar values. The crash data being used in this dashboard hasn't been post processed to simplify some of the groupings of data and represent the value as it would appear in the Crash System. This dashboard was put together to continue the discussion on what data elements should be included in the GIS Crash Dataset. At the moment there is currently one primary dataset that is used to present crash data in Map Services. There is lots of potential to extend this dataset to include additional elements or it might be beneficial to create different versions of the crash data. Having an examples like this one will hopefully help with the discussion. Workable examples of what works and doesn't work. There are lots of data elements in the Crash System that could allow for an even more detailed safety analysis. Some of the unit items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash.Most Damaged AreaExtent of DamageUnit TypeDirection of Travel (Northbound, Southbound, Eastbound, Westbound)Pre-Crash ActionsSequence of Events 1-4Most Harmful Event Some of the persons items included in the example for Minot Ave in Auburn are the following. This information is included for the first three units associated to any crash and the person would be based on the driver.Condition at Time of CrashDriver Action 1Driver Action 2Driver DistractedAgeSexPerson Type (Driver/Owner(6), Driver(1))In addition to the Units and Persons information included above each crash includes the standard crash data elements which includesDate, Time, Day of Week, Year, Month, HourInjury Level (K,A,B,C,PD)Type of CrashTownname, County, MDOT RegionWeather ConditionsLight ConditionsRoad Surface ConditionsRoad GradeSchool Bus RelatedTraffic Control DeviceType of LocationWork Zone ItemsLocation Type (NODE, ELEMENT) used for LRS# of K, # of A, # of B, # of C, # of PD InjuriesTotal # of UnitsTotal # of PersonsFactored AADT (Only currently applicable for crashes along the roadway (ELEMENT)).Location of First Harmful EventTotal Injury Count for the CrashBoolean Y/N if Pedestrian or Bicycles are InvolvedContributing EnvironmentsContributing RoadRoute Number, Milepoint, Element ID, Node ID

  18. Traffic Information Dashboard - Web Map

    • dorian-disasterresponse.opendata.arcgis.com
    • hub.arcgis.com
    Updated Sep 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2018). Traffic Information Dashboard - Web Map [Dataset]. https://dorian-disasterresponse.opendata.arcgis.com/datasets/traffic-information-dashboard-web-map
    Explore at:
    Dataset updated
    Sep 17, 2018
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Area covered
    Description

    Data available for use in making maps and products related to Hurricane Florence.

    Esri is supporting organizations that are responding to hurricane/cyclone disasters with software, data, imagery, project services, and technical support. If you are in need of software or support, complete the Request Assistance form. All requests should be justified in the message section of the form and are subject to approval.

  19. a

    Recent Hurricanes, Cyclones and Typhoons

    • hub.arcgis.com
    • resilience.climate.gov
    • +30more
    Updated Jul 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2022). Recent Hurricanes, Cyclones and Typhoons [Dataset]. https://hub.arcgis.com/maps/3d350f37715e4a5da7fdc413c8419dcb
    Explore at:
    Dataset updated
    Jul 27, 2022
    Dataset authored and provided by
    UN Environment, Early Warning &Data Analytics
    Area covered
    Description

    This layer features tropical storm (hurricanes, typhoons, cyclones) tracks, positions, and observed wind swaths from the past hurricane season for the Atlantic, Pacific, and Indian Basins. These are products from the National Hurricane Center (NHC) and Joint Typhoon Warning Center (JTWC). They are part of an archive of tropical storm data maintained in the International Best Track Archive for Climate Stewardship (IBTrACS) database by the NOAA National Centers for Environmental Information.Data SourceNOAA National Hurricane Center tropical cyclone best track archive.Update FrequencyWe automatically check these products for updates every 15 minutes from the NHC GIS Data page.The NHC shapefiles are parsed using the Aggregated Live Feeds methodology to take the returned information and serve the data through ArcGIS Server as a map service.Area CoveredWorldWhat can you do with this layer?Customize the display of each attribute by using the ‘Change Style’ option for any layer.Run a filter to query the layer and display only specific types of storms or areas.Add to your map with other weather data layers to provide insight on hazardous weather events.Use ArcGIS Online analysis tools like ‘Enrich Data’ on the Observed Wind Swath layer to determine the impact of cyclone events on populations.Visualize data in ArcGIS Insights or Operations Dashboards.This map is provided for informational purposes and is not monitored 24/7 for accuracy and currency. Always refer to NOAA or JTWC sources for official guidance.If you would like to be alerted to potential issues or simply see when this Service will update next, please visit our Live Feed Status Page

  20. Chesapeake Bay Fish Presence Web Map (Dashboard)

    • noaa.hub.arcgis.com
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2025). Chesapeake Bay Fish Presence Web Map (Dashboard) [Dataset]. https://noaa.hub.arcgis.com/maps/5143807566724726a52fbf1e9af1b5be
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    This web map provides the spatial foundation for displaying biological survey points and species observations across Chesapeake Bay segments. Multiple biological survey datasets and species observations across Chesapeake Bay segments from fisheries-independent survey data are included, most of which was collected for the 2020 Tetra Tech report 'Inventory & Evaluation of Environmental and Biological Response Data for Fish Habitat Assessment' (https://www.chesapeakebay.net/what/publications/inventory-evaluation-of-environmental-and-biological-response-data-for-fish). The report only included data up to 2019 and as far back as the 1960’s. However, the data in this map only goes as far back as 1990. Several other layers are included in the map that were not part of the report. These include depth polygons of 1.8 meters and 3.6 meters from mean high tide as well as the polygon layer for the 92-Tidal Segments for the Chesapeake Bay. This map is used within an interactive dashboard, where filters and selections control which points are visible and serves only as a tool for visualizing biological survey points and species observations within the Chesapeake Bay.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri’s Disaster Response Program (2020). Create your first dashboard using ArcGIS Dashboards [Dataset]. https://coronavirus-resources.esri.com/documents/5e5ad81771924e498b59d57ede5693e4
Organization logo

Create your first dashboard using ArcGIS Dashboards

Explore at:
Dataset updated
Apr 21, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri’s Disaster Response Program
Description

An ArcGIS Blog tutorial that guides you through creating your first dashboard using ArcGIS Dashboards.ArcGIS Dashboards is a configurable web app available in ArcGIS Online that enables users to convey information by presenting interactive charts, gauges, maps, and other visual elements that work together on a single screen.In this tutorial you will create a simple dashboard using ArcGIS Dashboards. The dashboard uses a map of medical facilities in Los Angeles County (sample data only) and includes interactive chart and list elements._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

Search
Clear search
Close search
Google apps
Main menu