100+ datasets found
  1. World Population By Year

    • kaggle.com
    zip
    Updated Apr 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Devyani Chavan (2024). World Population By Year [Dataset]. https://www.kaggle.com/datasets/devyanichavan/world-population-by-year
    Explore at:
    zip(922 bytes)Available download formats
    Dataset updated
    Apr 2, 2024
    Authors
    Devyani Chavan
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    World
    Description

    This dataset on Kaggle offers a historical look at global population growth, spanning from 1952 to 2023. The data is provided in billions, allowing you to analyze trends and track humanity's population increase over the past seven decades.

    What's included:

    • Year: Identifies the specific year for each data point.
    • Population (Billions): Represents the global population in billions of people for that corresponding year.

    Benefits of using this dataset:

    • Understand population trends: Analyze how the world's population has grown over time.
    • Informative for research: Useful for research projects in demographics, sociology, economics, and sustainability studies.
    • Data visualization potential: Create charts and graphs to visualize population growth patterns.
    • Freely available and reusable: Licensed under Creative Commons CC BY 3.0 IGO, allowing for broad use and attribution.

    Note: This dataset is licensed under Creative Commons CC BY 3.0 IGO. This means you can use, share, and adapt the data freely, as long as you provide attribution to the source.

  2. N

    White Earth, ND Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). White Earth, ND Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in White Earth from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/white-earth-nd-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Dakota, White Earth
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the White Earth population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of White Earth across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of White Earth was 93, a 0% decrease year-by-year from 2022. Previously, in 2022, White Earth population was 93, a decline of 4.12% compared to a population of 97 in 2021. Over the last 20 plus years, between 2000 and 2023, population of White Earth increased by 28. In this period, the peak population was 99 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the White Earth is shown in this column.
    • Year on Year Change: This column displays the change in White Earth population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for White Earth Population by Year. You can refer the same here

  3. Population by Country - 2020

    • kaggle.com
    zip
    Updated Feb 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanu N Prabhu (2020). Population by Country - 2020 [Dataset]. https://www.kaggle.com/datasets/tanuprabhu/population-by-country-2020/versions/1
    Explore at:
    zip(7616 bytes)Available download formats
    Dataset updated
    Feb 10, 2020
    Authors
    Tanu N Prabhu
    Description

    Context

    I always wanted to access a data set that was related to the world’s population (Country wise). But I could not find a properly documented data set. Rather, I just created one manually.

    Content

    Now I knew I wanted to create a dataset but I did not know how to do so. So, I started to search for the content (Population of countries) on the internet. Obviously, Wikipedia was my first search. But I don't know why the results were not acceptable. And also there were only I think 190 or more countries. So then I surfed the internet for quite some time until then I stumbled upon a great website. I think you probably have heard about this. The name of the website is Worldometer. This is exactly the website I was looking for. This website had more details than Wikipedia. Also, this website had more rows I mean more countries with their population.

    Once I got the data, now my next hard task was to download it. Of course, I could not get the raw form of data. I did not mail them regarding the data. Now I learned a new skill which is very important for a data scientist. I read somewhere that to obtain the data from websites you need to use this technique. Any guesses, keep reading you will come to know in the next paragraph.

    https://fiverr-res.cloudinary.com/images/t_main1,q_auto,f_auto/gigs/119580480/original/68088c5f588ec32a6b3a3a67ec0d1b5a8a70648d/do-web-scraping-and-data-mining-with-python.png" alt="alt text">

    You are right its, Web Scraping. Now I learned this so that I could convert the data into a CSV format. Now I will give you the scraper code that I wrote and also I somehow found a way to directly convert the pandas data frame to a CSV(Comma-separated fo format) and store it on my computer. Now just go through my code and you will know what I'm talking about.

    Below is the code that I used to scrape the code from the website

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3200273%2Fe814c2739b99d221de328c72a0b2571e%2FCapture.PNG?generation=1581314967227445&alt=media" alt="">

    Acknowledgements

    Now I couldn't have got the data without Worldometer. So special thanks to the website. It is because of them I was able to get the data.

    Inspiration

    As far as I know, I don't have any questions to ask. You guys can let me know by finding your ways to use the data and let me know via kernel if you find something interesting

  4. N

    White Earth, ND Non-Hispanic Population Breakdown By Race Dataset:...

    • neilsberg.com
    csv, json
    Updated Jul 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). White Earth, ND Non-Hispanic Population Breakdown By Race Dataset: Non-Hispanic Population Counts and Percentages for 7 Racial Categories as Identified by the US Census Bureau // 2024 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e15b7176-2310-11ef-bd92-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 7, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    North Dakota, White Earth
    Variables measured
    Non-Hispanic Asian Population, Non-Hispanic Black Population, Non-Hispanic White Population, Non-Hispanic Some other race Population, Non-Hispanic Two or more races Population, Non-Hispanic American Indian and Alaska Native Population, Non-Hispanic Native Hawaiian and Other Pacific Islander Population, Non-Hispanic Asian Population as Percent of Total Non-Hispanic Population, Non-Hispanic Black Population as Percent of Total Non-Hispanic Population, Non-Hispanic White Population as Percent of Total Non-Hispanic Population, and 4 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) Non-Hispanic population and (b) population as a percentage of the total Non-Hispanic population, we initially analyzed and categorized the data for each of the racial categories idetified by the US Census Bureau. It is ensured that the population estimates used in this dataset pertain exclusively to the identified racial categories, and are part of Non-Hispanic classification. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Non-Hispanic population of White Earth by race. It includes the distribution of the Non-Hispanic population of White Earth across various race categories as identified by the Census Bureau. The dataset can be utilized to understand the Non-Hispanic population distribution of White Earth across relevant racial categories.

    Key observations

    With a zero Hispanic population, White Earth is 100% Non-Hispanic. Among the Non-Hispanic population, the largest racial group is White alone with a population of 76 (100% of the total Non-Hispanic population).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.

    Racial categories include:

    • White
    • Black or African American
    • American Indian and Alaska Native
    • Asian
    • Native Hawaiian and Other Pacific Islander
    • Some other race
    • Two or more races (multiracial)

    Variables / Data Columns

    • Race: This column displays the racial categories (for Non-Hispanic) for the White Earth
    • Population: The population of the racial category (for Non-Hispanic) in the White Earth is shown in this column.
    • % of Total Population: This column displays the percentage distribution of each race as a proportion of White Earth total Non-Hispanic population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for White Earth Population by Race & Ethnicity. You can refer the same here

  5. G

    GPWv411: Population Density (Gridded Population of the World Version 4.11)

    • developers.google.com
    Updated Aug 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NASA SEDAC at the Center for International Earth Science Information Network (2019). GPWv411: Population Density (Gridded Population of the World Version 4.11) [Dataset]. http://doi.org/10.7927/H49C6VHW
    Explore at:
    Dataset updated
    Aug 11, 2019
    Dataset provided by
    NASA SEDAC at the Center for International Earth Science Information Network
    Time period covered
    Jan 1, 2000 - Jan 1, 2020
    Area covered
    Earth
    Description

    This dataset contains estimates of the number of persons per square kilometer consistent with national censuses and population registers. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.

  6. World Population 2023 Datasets

    • kaggle.com
    zip
    Updated May 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ogbuzuru Kelechi (2023). World Population 2023 Datasets [Dataset]. https://www.kaggle.com/datasets/ogbuzurukelechi/latest-world-population-datasets
    Explore at:
    zip(98397 bytes)Available download formats
    Dataset updated
    May 15, 2023
    Authors
    Ogbuzuru Kelechi
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    World
    Description

    The dataset contain the most recent demographic data, which will help us understand, analyze, and forecast the future. The following representations include world population from 2020 to 2023, life expectancy in 2023, and annual population totals from 1960 to 2023.

    Click below to read more: https://rb.gy/uaafa

  7. N

    Dataset for Black Earth Town, Wisconsin Census Bureau Income Distribution by...

    • neilsberg.com
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Black Earth Town, Wisconsin Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3a2407d-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wisconsin, Black Earth
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Black Earth town household income by gender. The dataset can be utilized to understand the gender-based income distribution of Black Earth town income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Black Earth Town, Wisconsin annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • Black Earth Town, Wisconsin annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Black Earth town income distribution by gender. You can refer the same here

  8. Total population worldwide 1950-2100

    • statista.com
    • feherkonyveloiroda.hu
    • +2more
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805044/total-population-worldwide/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.

  9. N

    Dataset for Lincoln township, Blue Earth County, Minnesota Census Bureau...

    • neilsberg.com
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Lincoln township, Blue Earth County, Minnesota Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3be98e6-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Blue Earth County, Lincoln Township
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Lincoln township household income by gender. The dataset can be utilized to understand the gender-based income distribution of Lincoln township income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Lincoln township, Blue Earth County, Minnesota annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • Lincoln township, Blue Earth County, Minnesota annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Lincoln township income distribution by gender. You can refer the same here

  10. Number of global social network users 2017-2028

    • statista.com
    • de.statista.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon, Number of global social network users 2017-2028 [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    How many people use social media?

                  Social media usage is one of the most popular online activities. In 2024, over five billion people were using social media worldwide, a number projected to increase to over six billion in 2028.
    
                  Who uses social media?
                  Social networking is one of the most popular digital activities worldwide and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at 59 percent. This figure is anticipated to grow as lesser developed digital markets catch up with other regions
                  when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. Mobile-first market Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe.
    
                  How much time do people spend on social media?
                  Social media is an integral part of daily internet usage. On average, internet users spend 151 minutes per day on social media and messaging apps, an increase of 40 minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media.
    
                  What are the most popular social media platforms?
                  Market leader Facebook was the first social network to surpass one billion registered accounts and currently boasts approximately 2.9 billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
    
  11. World Population Live Dataset 2022

    • kaggle.com
    zip
    Updated Sep 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aman Chauhan (2022). World Population Live Dataset 2022 [Dataset]. https://www.kaggle.com/datasets/whenamancodes/world-population-live-dataset/code
    Explore at:
    zip(10169 bytes)Available download formats
    Dataset updated
    Sep 10, 2022
    Authors
    Aman Chauhan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    The current US Census Bureau world population estimate in June 2019 shows that the current global population is 7,577,130,400 people on earth, which far exceeds the world population of 7.2 billion from 2015. Our own estimate based on UN data shows the world's population surpassing 7.7 billion.

    China is the most populous country in the world with a population exceeding 1.4 billion. It is one of just two countries with a population of more than 1 billion, with India being the second. As of 2018, India has a population of over 1.355 billion people, and its population growth is expected to continue through at least 2050. By the year 2030, the country of India is expected to become the most populous country in the world. This is because India’s population will grow, while China is projected to see a loss in population.

    The next 11 countries that are the most populous in the world each have populations exceeding 100 million. These include the United States, Indonesia, Brazil, Pakistan, Nigeria, Bangladesh, Russia, Mexico, Japan, Ethiopia, and the Philippines. Of these nations, all are expected to continue to grow except Russia and Japan, which will see their populations drop by 2030 before falling again significantly by 2050.

    Many other nations have populations of at least one million, while there are also countries that have just thousands. The smallest population in the world can be found in Vatican City, where only 801 people reside.

    In 2018, the world’s population growth rate was 1.12%. Every five years since the 1970s, the population growth rate has continued to fall. The world’s population is expected to continue to grow larger but at a much slower pace. By 2030, the population will exceed 8 billion. In 2040, this number will grow to more than 9 billion. In 2055, the number will rise to over 10 billion, and another billion people won’t be added until near the end of the century. The current annual population growth estimates from the United Nations are in the millions - estimating that over 80 million new lives are added each year.

    This population growth will be significantly impacted by nine specific countries which are situated to contribute to the population growth more quickly than other nations. These nations include the Democratic Republic of the Congo, Ethiopia, India, Indonesia, Nigeria, Pakistan, Uganda, the United Republic of Tanzania, and the United States of America. Particularly of interest, India is on track to overtake China's position as the most populous country by the year 2030. Additionally, multiple nations within Africa are expected to double their populations before fertility rates begin to slow entirely.

    Global life expectancy has also improved in recent years, increasing the overall population life expectancy at birth to just over 70 years of age. The projected global life expectancy is only expected to continue to improve - reaching nearly 77 years of age by the year 2050. Significant factors impacting the data on life expectancy include the projections of the ability to reduce AIDS/HIV impact, as well as reducing the rates of infectious and non-communicable diseases.

    Population aging has a massive impact on the ability of the population to maintain what is called a support ratio. One key finding from 2017 is that the majority of the world is going to face considerable growth in the 60 plus age bracket. This will put enormous strain on the younger age groups as the elderly population is becoming so vast without the number of births to maintain a healthy support ratio.

    Although the number given above seems very precise, it is important to remember that it is just an estimate. It simply isn't possible to be sure exactly how many people there are on the earth at any one time, and there are conflicting estimates of the global population in 2016.

    Some, including the UN, believe that a population of 7 billion was reached in October 2011. Others, including the US Census Bureau and World Bank, believe that the total population of the world reached 7 billion in 2012, around March or April.

    ColumnsDescription
    CCA33 Digit Country/Territories Code
    NameName of the Country/Territories
    2022Population of the Country/Territories in the year 2022.
    2020Population of the Country/Territories in the year 2020.
    2015Population of the Country/Territories in the year 2015.
    2010Population of the Country/Territories in the year 2010.
    2000Population of the Country/Territories in the year 2000.
    1990Population of the Country/Territories in the year 1990.
    1980Population of the Country/Territories in the year 1980.
    1970Population of the Country/Territories in the year 1970.
    Area (km²)Area size of the Country/Territories in square kilometer.
    Density (per km²)Population Density per square kilometer.
    Grow...
  12. w

    Turkey - World Health Survey 2003 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Turkey - World Health Survey 2003 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/turkey-world-health-survey-2003
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Türkiye
    Description

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers. The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters. The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules. The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

  13. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  14. n

    TROPIS - Tree Growth and Permanent Plot Information System database

    • cmr.earthdata.nasa.gov
    Updated Apr 20, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). TROPIS - Tree Growth and Permanent Plot Information System database [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1214155153-SCIOPS
    Explore at:
    Dataset updated
    Apr 20, 2017
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Description

    TROPIS is the acronym for the Tree Growth and Permanent Plot Information System sponsored by CIFOR to promote more effective use of existing data and knowledge about tree growth.

        TROPIS is concerned primarily with information about permanent plots and tree
        growth in both planted and natural forests throughout the world. It has five
        components:
    
        - a network of people willing to share permanent plot data and tree
        growth information;
        - an index to people and institutions with permanent plots;
        - a database management system to promote more efficient data management;
        - a method to find comparable sites elsewhere, so that observations
        can be supplemented or contrasted with other data; and
        - an inference system to allow growth estimates to be made in the
        absence of empirical data.
        - TROPIS is about people and information. The core of TROPIS is an
        index to people and their plots maintained in a relational
        database. The database is designed to fulfil two primary needs:
        - to provide for efficient cross-checking, error-checking and
        updating; and to facilitate searches for plots matching a wide range
        of specified criteria, including (but not limited to) location, forest
        type, taxa, plot area, measurement history.
    
        The database is essentially hierarchical: the key element of the
        database is the informant. Each informant may contribute information
        on many plot series, each of which has consistent objectives. In turn,
        each series may comprise many plots, each of which may have a
        different location or different size. Each plot may contain many
        species. A series may be a thinning or spacing experiment, some
        species or provenance trials, a continuous forest inventory system, or
        any other aggregation of plots convenient to the informant. Plots need
        not be current. Abandoned plots may be included provided that the
        location is known and the plot data remain accessible. In addition to
        details of the informant, we try to record details of additional
        contact people associated with plots, to maintain continuity when
        people transfer or retire. Thus the relational structure may appear
        complex, but ensures data integrity.
    
        At present, searches are possible only via mail, fax or email requests
        to the TROPIS co-ordinator at CIFOR. Self-service on-line searching
        will also be available in 1997. Clients may search for plots with
        specified taxa, locations, silvicultural treatment, or other specified
        criteria and combinations. TROPIS currently contains references to
        over 10,000 plots with over 2,000 species contributed by 100
        individuals world-wide.
    
        This database will help CIFOR as well as other users to make more
        efficient use of existing information, and to develop appropriate and
        effective techniques and policies for sustainable forest management
        world-wide.
    
        TROPIS is supported by the Government of Japan.
    
        This information is from the CIFOR web site.
    
  15. N

    Dataset for Blue Earth, MN Census Bureau Income Distribution by Gender

    • neilsberg.com
    Updated Jan 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Blue Earth, MN Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3a29533-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Blue Earth, Minnesota
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Blue Earth household income by gender. The dataset can be utilized to understand the gender-based income distribution of Blue Earth income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Blue Earth, MN annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • Blue Earth, MN annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Blue Earth income distribution by gender. You can refer the same here

  16. d

    Data from: DGGS Geologic Earth Resource Library of Alaska (GERILA) Database

    • catalog.data.gov
    • s.cnmilf.com
    Updated Feb 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Division of Geological & Geophysical Surveys (Point of Contact) (2024). DGGS Geologic Earth Resource Library of Alaska (GERILA) Database [Dataset]. https://catalog.data.gov/dataset/dggs-geologic-earth-resource-library-of-alaska-gerila-database
    Explore at:
    Dataset updated
    Feb 24, 2024
    Dataset provided by
    Alaska Division of Geological & Geophysical Surveys (Point of Contact)
    Area covered
    Alaska, Earth
    Description

    DGGS Geologic Earth Resource Library of Alaska (GERILA) Database, Digital Data Series 22, is the enterprise database back-end to the Alaska Division of Geological & Geophysical Survey's (DGGS) website and enterprise data repository. GERILA serves as an index to geologic information that supports State of Alaska statutes relating to the potential of Alaskan land for the production of metals, minerals, fuels, and geothermal resources, the locations and supplies of groundwater and construction material (Sec. 41.08.010), and the potential geologic hazards to buildings, roads, bridges, and other installations and structures and systematic collection, recording, evaluation, and distribution of hydrological and seismic hazard data declared to be of public interest (Sec. 41.08.017). Much of the information stored in GERILA is viewable through DGGS's public website, which provides search interfaces for specific data modules, including our geologic publications catalog (https://dggs.alaska.gov/pubs). The database is actively updated as new information becomes available or published. Consequently, products developed from the database may change over time as information and data are updated. DGGS encourages public members to contact DGGS's Geologic Information Center staff (dggspubs@alaska.gov) to discuss potential changes to the data or resolve errors in our derivative products. See the DGGS citation page for the preferred citation and additional information (http://doi.org/10.14509/31119).

  17. Infrastructure Climate Resilience Assessment Data Starter Kit for Ghana

    • zenodo.org
    zip
    Updated Dec 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas (2024). Infrastructure Climate Resilience Assessment Data Starter Kit for Ghana [Dataset]. http://doi.org/10.5281/zenodo.14536877
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 20, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Tom Russell; Tom Russell; Diana Jaramillo; Chris Nicholas; Fred Thomas; Fred Thomas; Raghav Pant; Raghav Pant; Jim W. Hall; Jim W. Hall; Diana Jaramillo; Chris Nicholas
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This starter data kit collects extracts from global, open datasets relating to climate hazards and infrastructure systems.

    These extracts are derived from global datasets which have been clipped to the national scale (or subnational, in cases where national boundaries have been split, generally to separate outlying islands or non-contiguous regions), using Natural Earth (2023) boundaries, and is not meant to express an opinion about borders, territory or sovereignty.

    Human-induced climate change is increasing the frequency and severity of climate and weather extremes. This is causing widespread, adverse impacts to societies, economies and infrastructures. Climate risk analysis is essential to inform policy decisions aimed at reducing risk. Yet, access to data is often a barrier, particularly in low and middle-income countries. Data are often scattered, hard to find, in formats that are difficult to use or requiring considerable technical expertise. Nevertheless, there are global, open datasets which provide some information about climate hazards, society, infrastructure and the economy. This "data starter kit" aims to kickstart the process and act as a starting point for further model development and scenario analysis.

    Hazards:

    • coastal and river flooding (Ward et al, 2020; Baugh et al, 2024)
    • extreme heat and drought (Russell et al 2023, derived from Lange et al, 2020)
    • tropical cyclone wind speeds (Russell 2022, derived from Bloemendaal et al 2020 and Bloemendaal et al 2022)

    Exposure:

    • population (Schiavina et al, 2023)
    • built-up area (Pesaresi et al, 2023)
    • roads (OpenStreetMap, 2023)
    • railways (OpenStreetMap, 2023)
    • power plants (Global Energy Observatory et al, 2018)
    • power transmission lines (Arderne et al, 2020)

    Contextual information:

    • elevation (European Union and ESA, 2021)
    • land-use and land cover (Copernicus Climate Change Service and Climate Data Store, 2019)
    • administrative boundaries from geoBoundaries (Runfola et al., 2020)

    The spatial intersection of hazard and exposure datasets is a first step to analyse vulnerability and risk to infrastructure and people.

    To learn more about related concepts, there is a free short course available through the Open University on Infrastructure and Climate Resilience. This overview of the course has more details.

    These Python libraries may be a useful place to start analysis of the data in the packages produced by this workflow:

    • snkit helps clean network data
    • nismod-snail is designed to help implement infrastructure exposure, damage and risk calculations

    The open-gira repository contains a larger workflow for global-scale open-data infrastructure risk and resilience analysis.

    For a more developed example, some of these datasets were key inputs to a regional climate risk assessment of current and future flooding risks to transport networks in East Africa, which has a related online visualisation tool at https://east-africa.infrastructureresilience.org/ and is described in detail in Hickford et al (2023).

    References

    • Arderne, Christopher, Nicolas, Claire, Zorn, Conrad, & Koks, Elco E. (2020). Data from: Predictive mapping of the global power system using open data [Dataset]. In Nature Scientific Data (1.1.1, Vol. 7, Number Article 19). Zenodo. DOI: 10.5281/zenodo.3628142
    • Baugh, Calum; Colonese, Juan; D'Angelo, Claudia; Dottori, Francesco; Neal, Jeffrey; Prudhomme, Christel; Salamon, Peter (2024): Global river flood hazard maps. European Commission, Joint Research Centre (JRC) [Dataset] PID: data.europa.eu/89h/jrc-floods-floodmapgl_rp50y-tif
    • Bloemendaal, Nadia; de Moel, H. (Hans); Muis, S; Haigh, I.D. (Ivan); Aerts, J.C.J.H. (Jeroen) (2020): STORM tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/12705164.v3
    • Bloemendaal, Nadia; de Moel, Hans; Dullaart, Job; Haarsma, R.J. (Reindert); Haigh, I.D. (Ivan); Martinez, Andrew B.; et al. (2022): STORM climate change tropical cyclone wind speed return periods. 4TU.ResearchData. [Dataset]. DOI: 10.4121/14510817.v3
    • Copernicus Climate Change Service, Climate Data Store, (2019): Land cover classification gridded maps from 1992 to present derived from satellite observation. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). DOI: 10.24381/cds.006f2c9a (Accessed on 09-AUG-2024)
    • Copernicus DEM - Global Digital Elevation Model (2021) DOI: 10.5270/ESA-c5d3d65 (produced using Copernicus WorldDEM™-90 © DLR e.V. 2010-2014 and © Airbus Defence and Space GmbH 2014-2018 provided under COPERNICUS by the European Union and ESA; all rights reserved)
    • Global Energy Observatory, Google, KTH Royal Institute of Technology in Stockholm, Enipedia, World Resources Institute. (2018) Global Power Plant Database. Published on Resource Watch and Google Earth Engine; resourcewatch.org/
    • Hickford et al (2023) Decision support systems for resilient strategic transport networks in low-income countries – Final Report. Available online: https://transport-links.com/hvt-publications/final-report-decision-support-systems-for-resilient-strategic-transport-networks-in-low-income-countries
    • Lange, S., Volkholz, J., Geiger, T., Zhao, F., Vega, I., Veldkamp, T., et al. (2020). Projecting exposure to extreme climate impact events across six event categories and three spatial scales. Earth's Future, 8, e2020EF001616. DOI: 10.1029/2020EF001616
    • Natural Earth (2023) Admin 0 Map Units, v5.1.1. [Dataset] Available online: www.naturalearthdata.com/downloads/10m-cultural-vectors/10m-admin-0-details
    • OpenStreetMap contributors, Russell T., Thomas F., nismod/datapkg contributors (2023) Road and Rail networks derived from OpenStreetMap. [Dataset] Available at global.infrastructureresilience.org
    • Pesaresi M., Politis P. (2023): GHS-BUILT-S R2023A - GHS built-up surface grid, derived from Sentinel2 composite and Landsat, multitemporal (1975-2030) European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/9f06f36f-4b11-47ec-abb0-4f8b7b1d72ea, doi:10.2905/9F06F36F-4B11-47EC-ABB0-4F8B7B1D72EA
    • Runfola D, Anderson A, Baier H, Crittenden M, Dowker E, Fuhrig S, et al. (2020) geoBoundaries: A global database of political administrative boundaries. PLoS ONE 15(4): e0231866. DOI: 10.1371/journal.pone.0231866.
    • Russell, T., Nicholas, C., & Bernhofen, M. (2023). Annual probability of extreme heat and drought events, derived from Lange et al 2020 (Version 2) [Dataset]. Zenodo. DOI: 10.5281/zenodo.8147088
    • Schiavina M., Freire S., Carioli A., MacManus K. (2023): GHS-POP R2023A - GHS population grid multitemporal (1975-2030). European Commission, Joint Research Centre (JRC) PID: data.europa.eu/89h/2ff68a52-5b5b-4a22-8f40-c41da8332cfe, doi:10.2905/2FF68A52-5B5B-4A22-8F40-C41DA8332CFE
    • Ward, P.J., H.C. Winsemius, S. Kuzma, M.F.P. Bierkens, A. Bouwman, H. de Moel, A. Díaz Loaiza, et al. (2020) Aqueduct Floods Methodology. Technical Note. Washington, D.C.: World Resources Institute. Available online at: www.wri.org/publication/aqueduct-floods-methodology.
  18. w

    Slovenia - World Health Survey 2003 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Slovenia - World Health Survey 2003 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/slovenia-world-health-survey-2003
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Slovenia
    Description

    Different countries have different health outcomes that are in part due to the way respective health systems perform. Regardless of the type of health system, individuals will have health and non-health expectations in terms of how the institution responds to their needs. In many countries, however, health systems do not perform effectively and this is in part due to lack of information on health system performance, and on the different service providers. The aim of the WHO World Health Survey is to provide empirical data to the national health information systems so that there is a better monitoring of health of the people, responsiveness of health systems and measurement of health-related parameters. The overall aims of the survey is to examine the way populations report their health, understand how people value health states, measure the performance of health systems in relation to responsiveness and gather information on modes and extents of payment for health encounters through a nationally representative population based community survey. In addition, it addresses various areas such as health care expenditures, adult mortality, birth history, various risk factors, assessment of main chronic health conditions and the coverage of health interventions, in specific additional modules. The objectives of the survey programme are to: 1. develop a means of providing valid, reliable and comparable information, at low cost, to supplement the information provided by routine health information systems. 2. build the evidence base necessary for policy-makers to monitor if health systems are achieving the desired goals, and to assess if additional investment in health is achieving the desired outcomes. 3. provide policy-makers with the evidence they need to adjust their policies, strategies and programmes as necessary.

  19. World data population

    • kaggle.com
    zip
    Updated Jan 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanishq dublish (2024). World data population [Dataset]. https://www.kaggle.com/datasets/tanishqdublish/world-data-population
    Explore at:
    zip(14672 bytes)Available download formats
    Dataset updated
    Jan 12, 2024
    Authors
    Tanishq dublish
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    World
    Description

    Context The world's population has undergone remarkable growth, exceeding 7.5 billion by mid-2019 and continuing to surge beyond previous estimates. Notably, China and India stand as the two most populous countries, with China's population potentially facing a decline while India's trajectory hints at surpassing it by 2030. This significant demographic shift is just one facet of a global landscape where countries like the United States, Indonesia, Brazil, Nigeria, and others, each with populations surpassing 100 million, play pivotal roles.

    The steady decrease in growth rates, though, is reshaping projections. While the world's population is expected to exceed 8 billion by 2030, growth will notably decelerate compared to previous decades. Specific countries like India, Nigeria, and several African nations will notably contribute to this growth, potentially doubling their populations before rates plateau.

    Content This dataset provides comprehensive historical population data for countries and territories globally, offering insights into various parameters such as area size, continent, population growth rates, rankings, and world population percentages. Spanning from 1970 to 2023, it includes population figures for different years, enabling a detailed examination of demographic trends and changes over time.

    Dataset Structured with meticulous detail, this dataset offers a wide array of information in a format conducive to analysis and exploration. Featuring parameters like population by year, country rankings, geographical details, and growth rates, it serves as a valuable resource for researchers, policymakers, and analysts. Additionally, the inclusion of growth rates and world population percentages provides a nuanced understanding of how countries contribute to global demographic shifts.

    This dataset is invaluable for those interested in understanding historical population trends, predicting future demographic patterns, and conducting in-depth analyses to inform policies across various sectors such as economics, urban planning, public health, and more.

  20. Gender statistics redux, average 2012-2016 v2

    • figshare.com
    txt
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Brett (2023). Gender statistics redux, average 2012-2016 v2 [Dataset]. http://doi.org/10.6084/m9.figshare.11536041.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Matthew Brett
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Processed version of https://figshare.com/articles/Gender_statistics_from_World_Bank_-_CSV_-_September_2017/9904979This version is a much-reduced and rearranged version. It has been tidied to have one row per country, and has a few variables, mainly relating to expenditure, fertility, mortality. The data are an average of the values from 2012 through 2016.This version stores the population value in millions of people rather than numbers of people.See https://github.com/matthew-brett/datasets/tree/90626ae3/gender_stats for source and processing.Please attribute to the World Bank Data Catalogue with the this URL: https://datacatalog.worldbank.org/dataset/gender-statistics.Data dictionary at https://github.com/matthew-brett/datasets/blob/90626ae39f4f6f70bf43ed98c39197e8fe4d768c/gender_stats/processed/gender_stats_data_dict.md

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Devyani Chavan (2024). World Population By Year [Dataset]. https://www.kaggle.com/datasets/devyanichavan/world-population-by-year
Organization logo

World Population By Year

A Comprehensive World Population Dataset

Explore at:
zip(922 bytes)Available download formats
Dataset updated
Apr 2, 2024
Authors
Devyani Chavan
License

Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically

Area covered
World
Description

This dataset on Kaggle offers a historical look at global population growth, spanning from 1952 to 2023. The data is provided in billions, allowing you to analyze trends and track humanity's population increase over the past seven decades.

What's included:

  • Year: Identifies the specific year for each data point.
  • Population (Billions): Represents the global population in billions of people for that corresponding year.

Benefits of using this dataset:

  • Understand population trends: Analyze how the world's population has grown over time.
  • Informative for research: Useful for research projects in demographics, sociology, economics, and sustainability studies.
  • Data visualization potential: Create charts and graphs to visualize population growth patterns.
  • Freely available and reusable: Licensed under Creative Commons CC BY 3.0 IGO, allowing for broad use and attribution.

Note: This dataset is licensed under Creative Commons CC BY 3.0 IGO. This means you can use, share, and adapt the data freely, as long as you provide attribution to the source.

Search
Clear search
Close search
Google apps
Main menu