47 datasets found
  1. An Operational Definition of a Statistically Meaningful Trend

    • plos.figshare.com
    xlsx
    Updated Jun 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andreas C. Bryhn; Peter H. Dimberg (2023). An Operational Definition of a Statistically Meaningful Trend [Dataset]. http://doi.org/10.1371/journal.pone.0019241
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 3, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Andreas C. Bryhn; Peter H. Dimberg
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Linear trend analysis of time series is standard procedure in many scientific disciplines. If the number of data is large, a trend may be statistically significant even if data are scattered far from the trend line. This study introduces and tests a quality criterion for time trends referred to as statistical meaningfulness, which is a stricter quality criterion for trends than high statistical significance. The time series is divided into intervals and interval mean values are calculated. Thereafter, r2 and p values are calculated from regressions concerning time and interval mean values. If r2≥0.65 at p≤0.05 in any of these regressions, then the trend is regarded as statistically meaningful. Out of ten investigated time series from different scientific disciplines, five displayed statistically meaningful trends. A Microsoft Excel application (add-in) was developed which can perform statistical meaningfulness tests and which may increase the operationality of the test. The presented method for distinguishing statistically meaningful trends should be reasonably uncomplicated for researchers with basic statistics skills and may thus be useful for determining which trends are worth analysing further, for instance with respect to causal factors. The method can also be used for determining which segments of a time trend may be particularly worthwhile to focus on.

  2. Z

    Dairy Supply Chain Sales Dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dimitris Iatropoulos; Konstantinos Georgakidis; Ilias Siniosoglou; Christos Chaschatzis; Anna Triantafyllou; Athanasios Liatifis; Dimitrios Pliatsios; Thomas Lagkas; Vasileios Argyriou; Panagiotis Sarigiannidis (2024). Dairy Supply Chain Sales Dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7853252
    Explore at:
    Dataset updated
    Jul 12, 2024
    Authors
    Dimitris Iatropoulos; Konstantinos Georgakidis; Ilias Siniosoglou; Christos Chaschatzis; Anna Triantafyllou; Athanasios Liatifis; Dimitrios Pliatsios; Thomas Lagkas; Vasileios Argyriou; Panagiotis Sarigiannidis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    1.Introduction

    Sales data collection is a crucial aspect of any manufacturing industry as it provides valuable insights about the performance of products, customer behaviour, and market trends. By gathering and analysing this data, manufacturers can make informed decisions about product development, pricing, and marketing strategies in Internet of Things (IoT) business environments like the dairy supply chain.

    One of the most important benefits of the sales data collection process is that it allows manufacturers to identify their most successful products and target their efforts towards those areas. For example, if a manufacturer could notice that a particular product is selling well in a certain region, this information could be utilised to develop new products, optimise the supply chain or improve existing ones to meet the changing needs of customers.

    This dataset includes information about 7 of MEVGAL’s products [1]. According to the above information the data published will help researchers to understand the dynamics of the dairy market and its consumption patterns, which is creating the fertile ground for synergies between academia and industry and eventually help the industry in making informed decisions regarding product development, pricing and market strategies in the IoT playground. The use of this dataset could also aim to understand the impact of various external factors on the dairy market such as the economic, environmental, and technological factors. It could help in understanding the current state of the dairy industry and identifying potential opportunities for growth and development.

    1. Citation

    Please cite the following papers when using this dataset:

    I. Siniosoglou, K. Xouveroudis, V. Argyriou, T. Lagkas, S. K. Goudos, K. E. Psannis and P. Sarigiannidis, "Evaluating the Effect of Volatile Federated Timeseries on Modern DNNs: Attention over Long/Short Memory," in the 12th International Conference on Circuits and Systems Technologies (MOCAST 2023), April 2023, Accepted

    1. Dataset Modalities

    The dataset includes data regarding the daily sales of a series of dairy product codes offered by MEVGAL. In particular, the dataset includes information gathered by the logistics division and agencies within the industrial infrastructures overseeing the production of each product code. The products included in this dataset represent the daily sales and logistics of a variety of yogurt-based stock. Each of the different files include the logistics for that product on a daily basis for three years, from 2020 to 2022.

    3.1 Data Collection

    The process of building this dataset involves several steps to ensure that the data is accurate, comprehensive and relevant.

    The first step is to determine the specific data that is needed to support the business objectives of the industry, i.e., in this publication’s case the daily sales data.

    Once the data requirements have been identified, the next step is to implement an effective sales data collection method. In MEVGAL’s case this is conducted through direct communication and reports generated each day by representatives & selling points.

    It is also important for MEVGAL to ensure that the data collection process conducted is in an ethical and compliant manner, adhering to data privacy laws and regulation. The industry also has a data management plan in place to ensure that the data is securely stored and protected from unauthorised access.

    The published dataset is consisted of 13 features providing information about the date and the number of products that have been sold. Finally, the dataset was anonymised in consideration to the privacy requirement of the data owner (MEVGAL).

    File

    Period

    Number of Samples (days)

    product 1 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 1 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 1 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 2 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 2 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 2 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 3 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 3 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 3 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 4 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 4 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 4 2022.xlsx

    01/01/2022–31/12/2022

    364

    product 5 2020.xlsx

    01/01/2020–31/12/2020

    363

    product 5 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 5 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 6 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 6 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 6 2022.xlsx

    01/01/2022–31/12/2022

    365

    product 7 2020.xlsx

    01/01/2020–31/12/2020

    362

    product 7 2021.xlsx

    01/01/2021–31/12/2021

    364

    product 7 2022.xlsx

    01/01/2022–31/12/2022

    365

    3.2 Dataset Overview

    The following table enumerates and explains the features included across all of the included files.

    Feature

    Description

    Unit

    Day

    day of the month

    -

    Month

    Month

    -

    Year

    Year

    -

    daily_unit_sales

    Daily sales - the amount of products, measured in units, that during that specific day were sold

    units

    previous_year_daily_unit_sales

    Previous Year’s sales - the amount of products, measured in units, that during that specific day were sold the previous year

    units

    percentage_difference_daily_unit_sales

    The percentage difference between the two above values

    %

    daily_unit_sales_kg

    The amount of products, measured in kilograms, that during that specific day were sold

    kg

    previous_year_daily_unit_sales_kg

    Previous Year’s sales - the amount of products, measured in kilograms, that during that specific day were sold, the previous year

    kg

    percentage_difference_daily_unit_sales_kg

    The percentage difference between the two above values

    kg

    daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned

    %

    previous_year_daily_unit_returns_kg

    The percentage of the products that were shipped to selling points and were returned the previous year

    %

    points_of_distribution

    The amount of sales representatives through which the product was sold to the market for this year

    previous_year_points_of_distribution

    The amount of sales representatives through which the product was sold to the market for the same day for the previous year

    Table 1 – Dataset Feature Description

    1. Structure and Format

    4.1 Dataset Structure

    The provided dataset has the following structure:

    Where:

    Name

    Type

    Property

    Readme.docx

    Report

    A File that contains the documentation of the Dataset.

    product X

    Folder

    A folder containing the data of a product X.

    product X YYYY.xlsx

    Data file

    An excel file containing the sales data of product X for year YYYY.

    Table 2 - Dataset File Description

    1. Acknowledgement

    This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 957406 (TERMINET).

    References

    [1] MEVGAL is a Greek dairy production company

  3. Data from: Supplemental data

    • figshare.com
    xlsx
    Updated Mar 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    T Miyakoshi; Yoichi M. Ito (2024). Supplemental data [Dataset]. http://doi.org/10.6084/m9.figshare.24596058.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 15, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    T Miyakoshi; Yoichi M. Ito
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset for the article "The current utilization status of wearable devices in clinical research".Analyses were performed by utilizing the JMP Pro 16.10, Microsoft Excel for Mac version 16 (Microsoft).The file extension "jrp" is a file of the statistical analysis software JMP, which contains both the analysis code and the data set.In case JMP is not available, a "csv" file as a data set and JMP script, the analysis code, are prepared in "rtf" format.The "xlsx" file is a Microsoft Excel file that contains the data set and the data plotted or tabulated using Microsoft Excel functions.Supplementary Figure 1. NCT number duplication frequencyIncludes Excel file used to create the figure (Supplemental Figure 1).・Sfig1_NCT number duplication frequency.xlsxSupplementary Figure 2-5 Simple and annual time series aggregationIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 2-5).・Sfig2-5 Annual time series aggregation.xlsx・Sfig2 Study Type.jrp・Sfig4device type.jrp・Sfig3 Interventions Type.jrp・Sfig5Conditions type.jrp・Sfig2, 3 ,5_database.csv・Sfig2_JMP script_Study type.rtf・Sfig3_JMP script Interventions type.rtf・Sfig5_JMP script Conditions type.rtf・Sfig4_dataset.csv・Sfig4_JMP script_device type.rtfSupplementary Figures 6-11 Mosaic diagram of intervention by conditionSupplementary tables 4-9 Analysis of contingency table for intervention by condition JMP repot files used to create the figures(Supplementary Figures 6-11 ) and tables(Supplementary Tablea 4-9) , including the csv dataset of JMP repot files and JMP scripts.・Sfig6-11 Stable4-9 Intervention devicetype_conditions.jrp・Sfig6-11_Stable4-9_dataset.csv・Sfig6-11_Stable4-9_JMP script.rtfSupplementary Figure 12. Distribution of enrollmentIncludes Excel file, JMP repo file, csv dataset of JMP repo file and JMP scripts used to create the figure (Supplementary Figures 12).・Sfig12_Distribution of enrollment.jrp・Sfig12_Distribution of enrollment.csv・Sfig12_JMP script.rtf

  4. d

    Finsheet - Stock Price in Excel and Google Sheet

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Do, Tuan (2023). Finsheet - Stock Price in Excel and Google Sheet [Dataset]. http://doi.org/10.7910/DVN/ZD9XVF
    Explore at:
    Dataset updated
    Nov 8, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Do, Tuan
    Description

    This dataset contains the valuation template the researcher can use to retrieve real-time Excel stock price and stock price in Google Sheets. The dataset is provided by Finsheet, the leading financial data provider for spreadsheet users. To get more financial data, visit the website and explore their function. For instance, if a researcher would like to get the last 30 years of income statement for Meta Platform Inc, the syntax would be =FS_EquityFullFinancials("FB", "ic", "FY", 30) In addition, this syntax will return the latest stock price for Caterpillar Inc right in your spreadsheet. =FS_Latest("CAT") If you need assistance with any of the function, feel free to reach out to their customer support team. To get starter, install their Excel and Google Sheets add-on.

  5. Z

    Dataset: Evaluation of post-hoc interpretability methods in time-series...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jan 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Turbé, Hugues; Bjelogrlic, Mina; Lovis, Christian; Mengaldo, Gianmarco (2023). Dataset: Evaluation of post-hoc interpretability methods in time-series classification [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7534769
    Explore at:
    Dataset updated
    Jan 20, 2023
    Dataset provided by
    National University of Singapore
    University of Geneva
    Authors
    Turbé, Hugues; Bjelogrlic, Mina; Lovis, Christian; Mengaldo, Gianmarco
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the dataset, trained models as well as results for the article Evaluation of post-hoc interpretability methods in time-series classification.

    The code to reproduce the results presented in the article is available on GitHub. More details on the data and results can be found in the article.

    Files:

    datasets.zip: Include the three datasets used in the article:

    ECG: Processed version of the CPSC dataset from Classification of 12-lead ECGs: the PhysioNet - Computing in Cardiology Challenge 2020.

    fordA: Dataset from the UCR Time Series Classification Archive

    synthetic: Synthetic dataset developed specifically for the purpose of the article

    trained_models.zip: Include CNN, transformer and bi-lstm trained on the three datasets

    results_paper.zip: Computed relevance and evaluation metrics for the trained models

    model_interpretability: Include the relevance computed using the different interpretability methods as well as the computed metrics for each method

    summary_results: Summary of the evaluation metrics across all interpretability methods for each dataset as well as an excel file summarising the metrics across all datasets.

  6. s

    Data from: Fostering cultures of open qualitative research: Dataset 1 –...

    • orda.shef.ac.uk
    docx
    Updated Oct 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matthew Hanchard; Itzel San Roman Pineda (2025). Fostering cultures of open qualitative research: Dataset 1 – Survey Responses [Dataset]. http://doi.org/10.15131/shef.data.23567250.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Oct 8, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Matthew Hanchard; Itzel San Roman Pineda
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    This dataset was created and deposited onto the University of Sheffield Online Research Data repository (ORDA) on 23-Jun-2023 by Dr. Matthew S. Hanchard, Research Associate at the University of Sheffield iHuman Institute.

    The dataset forms part of three outputs from a project titled ‘Fostering cultures of open qualitative research’ which ran from January 2023 to June 2023:

    · Fostering cultures of open qualitative research: Dataset 1 – Survey Responses · Fostering cultures of open qualitative research: Dataset 2 – Interview Transcripts · Fostering cultures of open qualitative research: Dataset 3 – Coding Book

    The project was funded with £13,913.85 Research England monies held internally by the University of Sheffield - as part of their ‘Enhancing Research Cultures’ scheme 2022-2023.

    The dataset aligns with ethical approval granted by the University of Sheffield School of Sociological Studies Research Ethics Committee (ref: 051118) on 23-Jan-2021.This includes due concern for participant anonymity and data management.

    ORDA has full permission to store this dataset and to make it open access for public re-use on the basis that no commercial gain will be made form reuse. It has been deposited under a CC-BY-NC license.

    This dataset comprises one spreadsheet with N=91 anonymised survey responses .xslx format. It includes all responses to the project survey which used Google Forms between 06-Feb-2023 and 30-May-2023. The spreadsheet can be opened with Microsoft Excel, Google Sheet, or open-source equivalents.

    The survey responses include a random sample of researchers worldwide undertaking qualitative, mixed-methods, or multi-modal research.

    The recruitment of respondents was initially purposive, aiming to gather responses from qualitative researchers at research-intensive (targetted Russell Group) Universities. This involved speculative emails and a call for participant on the University of Sheffield ‘Qualitative Open Research Network’ mailing list. As result, the responses include a snowball sample of scholars from elsewhere.

    The spreadsheet has two tabs/sheets: one labelled ‘SurveyResponses’ contains the anonymised and tidied set of survey responses; the other, labelled ‘VariableMapping’, sets out each field/column in the ‘SurveyResponses’ tab/sheet against the original survey questions and responses it relates to.

    The survey responses tab/sheet includes a field/column labelled ‘RespondentID’ (using randomly generated 16-digit alphanumeric keys) which can be used to connect survey responses to interview participants in the accompanying ‘Fostering cultures of open qualitative research: Dataset 2 – Interview transcripts’ files.

    A set of survey questions gathering eligibility criteria detail and consent are not listed with in this dataset, as below. All responses provide in the dataset gained a ‘Yes’ response to all the below questions (with the exception of one question, marked with an asterisk (*) below):

    · I am aged 18 or over · I have read the information and consent statement and above. · I understand how to ask questions and/or raise a query or concern about the survey. · I agree to take part in the research and for my responses to be part of an open access dataset. These will be anonymised unless I specifically ask to be named. · I understand that my participation does not create a legally binding agreement or employment relationship with the University of Sheffield · I understand that I can withdraw from the research at any time. · I assign the copyright I hold in materials generated as part of this project to The University of Sheffield. · * I am happy to be contacted after the survey to take part in an interview.

    The project was undertaken by two staff: Co-investigator: Dr. Itzel San Roman Pineda ORCiD ID: 0000-0002-3785-8057 i.sanromanpineda@sheffield.ac.uk

    Postdoctoral Research Assistant Principal Investigator (corresponding dataset author): Dr. Matthew Hanchard ORCiD ID: 0000-0003-2460-8638 m.s.hanchard@sheffield.ac.uk Research Associate iHuman Institute, Social Research Institutes, Faculty of Social Science

  7. d

    Data from: Supplemental data from: Hydraulic characterization of volcanic...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Sep 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Supplemental data from: Hydraulic characterization of volcanic rocks in Pahute Mesa using an integrated analysis of 16 multiple-well aquifer tests, Nevada National Security Site, 2009–14 [Dataset]. https://catalog.data.gov/dataset/supplemental-data-from-hydraulic-characterization-of-volcanic-rocks-in-pahute-mesa-using-a
    Explore at:
    Dataset updated
    Sep 30, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This USGS data release represents tabular data and water-level modeling files for the 16 Pahute Mesa multiple-well aquifer tests conducted from 2009–2014. The data release was produced in compliance with the new 'open data' requirements as a way to make the scientific products associated with USGS research efforts and publications available to the public. The dataset consists of 5 separate items: 1. Pumping time-series data (Tabular dataset) 2. Simplified pumping time-series data (Tabular dataset) 3. Drawdown time-series data (Tabular dataset) 4. Water-level models (Macro-enabled Excel spreadsheets) 5. SeriesSEE (Excel Add-In)

  8. S&T Project 20026 Data: eRNA Data Set

    • data.usbr.gov
    Updated Mar 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States Bureau of Reclamation (2023). S&T Project 20026 Data: eRNA Data Set [Dataset]. https://data.usbr.gov/catalog/6407/item/72733
    Explore at:
    Dataset updated
    Mar 14, 2023
    Dataset authored and provided by
    United States Bureau of Reclamationhttp://www.usbr.gov/
    Description

    This zip file contains the RT-qPCR results from the final report ST-2023-20026-01: Investigation of environmental RNA (eRNA) as a detection method for dreissenid mussels and other invasive species.

    RT-qPCR (reverse transcriptase quantification polymerase chain reaction) analysis was conducted on eRNA (environmental ribosomal nucleic acid) isolated from water samples collected at Canyon Reservoir, AZ. The goal of the project was to test out three different RNA preservation methods and three different RNA extraction methods. RT-qPCR was used to detect the presence of eRNA in the samples. The analysis was conducted using the CFX Maestro instrument. Included in the zip file is the CFX Maestro software information. The Cq (quantification value) was obtained using RT-qPCR for each sample, analyzed, and used to create the figures in the final report.

    Following each RT-qPCR assay, all the files associated with the experiment were downloaded and saved. There are 14 folders, and each contain a series of Excel spreadsheets that contain the information on the RT-qPCR experiment. These Excel spreadsheets include the following data: ANOVA results, end point results, gene expression results, melt curve results, quantification amplification results, Cq results, plate view results, standard curve, and run information for each RT-qPCR analysis. Some of the folders also contain images of the amplification curve, melt curve, melt peak, and standard curve for the experiment.

    The Cq values used in the report were taken from the quantification amplification file for each of the experiments. These Cq values were placed into the eRNA Data and Figures Excel spreadsheet. In this spreadsheet the Cq values were analyzed, and graphs were made with the data.

  9. Graph Input Data Example.xlsx

    • figshare.com
    xlsx
    Updated Dec 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Corynen (2018). Graph Input Data Example.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.7506209.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 26, 2018
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr Corynen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The various performance criteria applied in this analysis include the probability of reaching the ultimate target, the costs, elapsed times and system vulnerability resulting from any intrusion. This Excel file contains all the logical, probabilistic and statistical data entered by a user, and required for the evaluation of the criteria. It also reports the results of all the computations.

  10. Quality Assurance and Quality Control (QA/QC) of Meteorological Time Series...

    • osti.gov
    • dataone.org
    • +1more
    Updated Dec 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (2020). Quality Assurance and Quality Control (QA/QC) of Meteorological Time Series Data for Billy Barr, East River, Colorado USA [Dataset]. http://doi.org/10.15485/1823516
    Explore at:
    Dataset updated
    Dec 31, 2020
    Dataset provided by
    Office of Sciencehttp://www.er.doe.gov/
    Environmental System Science Data Infrastructure for a Virtual Ecosystem
    Area covered
    Colorado, East River, United States
    Description

    A comprehensive Quality Assurance (QA) and Quality Control (QC) statistical framework consists of three major phases: Phase 1—Preliminary raw data sets exploration, including time formatting and combining datasets of different lengths and different time intervals; Phase 2—QA of the datasets, including detecting and flagging of duplicates, outliers, and extreme values; and Phase 3—the development of time series of a desired frequency, imputation of missing values, visualization and a final statistical summary. The time series data collected at the Billy Barr meteorological station (East River Watershed, Colorado) were analyzed. The developed statistical framework is suitable for both real-time and post-data-collection QA/QC analysis of meteorological datasets.The files that are in this data package include one excel file, converted to CSV format (Billy_Barr_raw_qaqc.csv) that contains the raw meteorological data, i.e., input data used for the QA/QC analysis. The second CSV file (Billy_Barr_1hr.csv) is the QA/QC and flagged meteorological data, i.e., output data from the QA/QC analysis. The last file (QAQC_Billy_Barr_2021-03-22.R) is a script written in R that implements the QA/QC and flagging process. The purpose of the CSV data files included in this package is to provide input and output files implemented in the R script.

  11. m

    Public concern, ideology and political communication

    • data.mendeley.com
    • portalciencia.ull.es
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elena Crespo (2025). Public concern, ideology and political communication [Dataset]. http://doi.org/10.17632/2zd8wrnty6.1
    Explore at:
    Dataset updated
    Jul 10, 2025
    Authors
    Elena Crespo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is composed of 176 Excel files, downloaded via the Google Trends tool between June 11 and 15, 2025. The files include time series data on the relative frequency (in percentages) of Google searches conducted in European Union member states on four topics: corruption, immigration, security, and transexuality. They also include data related to right-wing, center-right, and center-left (used as a control group) political parties in each country. Each file contains one column with the date (on a weekly basis) and another with the series value (a percentage normalized by Google Trends). The time span covered in each file is five years.

  12. N

    Excel, AL Median Income by Age Groups Dataset: A Comprehensive Breakdown of...

    • neilsberg.com
    csv, json
    Updated Feb 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Excel, AL Median Income by Age Groups Dataset: A Comprehensive Breakdown of Excel Annual Median Income Across 4 Key Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e931c85f-f353-11ef-8577-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 25, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in Excel. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Excel. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2023

    In terms of income distribution across age cohorts, in Excel, where there exist only two delineated age groups, the median household income is $83,750 for householders within the 25 to 44 years age group, compared to $58,958 for the 65 years and over age group.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2023 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel median household income by age. You can refer the same here

  13. m

    Global Burden of Disease analysis dataset of noncommunicable disease...

    • data.mendeley.com
    Updated Apr 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Cundiff (2023). Global Burden of Disease analysis dataset of noncommunicable disease outcomes, risk factors, and SAS codes [Dataset]. http://doi.org/10.17632/g6b39zxck4.10
    Explore at:
    Dataset updated
    Apr 6, 2023
    Authors
    David Cundiff
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This formatted dataset (AnalysisDatabaseGBD) originates from raw data files from the Institute of Health Metrics and Evaluation (IHME) Global Burden of Disease Study (GBD2017) affiliated with the University of Washington. We are volunteer collaborators with IHME and not employed by IHME or the University of Washington.

    The population weighted GBD2017 data are on male and female cohorts ages 15-69 years including noncommunicable diseases (NCDs), body mass index (BMI), cardiovascular disease (CVD), and other health outcomes and associated dietary, metabolic, and other risk factors. The purpose of creating this population-weighted, formatted database is to explore the univariate and multiple regression correlations of health outcomes with risk factors. Our research hypothesis is that we can successfully model NCDs, BMI, CVD, and other health outcomes with their attributable risks.

    These Global Burden of disease data relate to the preprint: The EAT-Lancet Commission Planetary Health Diet compared with Institute of Health Metrics and Evaluation Global Burden of Disease Ecological Data Analysis. The data include the following: 1. Analysis database of population weighted GBD2017 data that includes over 40 health risk factors, noncommunicable disease deaths/100k/year of male and female cohorts ages 15-69 years from 195 countries (the primary outcome variable that includes over 100 types of noncommunicable diseases) and over 20 individual noncommunicable diseases (e.g., ischemic heart disease, colon cancer, etc). 2. A text file to import the analysis database into SAS 3. The SAS code to format the analysis database to be used for analytics 4. SAS code for deriving Tables 1, 2, 3 and Supplementary Tables 5 and 6 5. SAS code for deriving the multiple regression formula in Table 4. 6. SAS code for deriving the multiple regression formula in Table 5 7. SAS code for deriving the multiple regression formula in Supplementary Table 7
    8. SAS code for deriving the multiple regression formula in Supplementary Table 8 9. The Excel files that accompanied the above SAS code to produce the tables

    For questions, please email davidkcundiff@gmail.com. Thanks.

  14. Bioregional Assessment areas v05

    • researchdata.edu.au
    • data.gov.au
    • +1more
    Updated Mar 23, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bioregional Assessment Program (2016). Bioregional Assessment areas v05 [Dataset]. https://researchdata.edu.au/bioregional-assessment-areas-v05/2994355
    Explore at:
    Dataset updated
    Mar 23, 2016
    Dataset provided by
    Data.govhttps://data.gov/
    Authors
    Bioregional Assessment Program
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract

    The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.

    Approved boundaries of the bioregions and subregions (version 5) for defining the reporting regions for bioregional assessments of impacts of coal seam gas and coal mining development on water resources.

    This is identical to Bioregional_Assessment_areas_v04 except that the attribute tables include areas (both sq. km and ha) based on the GDA 1994 Australia Albers projection. A spreadsheet version of the attribute table is also provided for the benefit of non ArcGIS users.

    Purpose

    Provides authoritative boundaries for defining bioregions and subregions to be reported on for the Bioregional Assessments and tabulation of Bioregion and subregion areas.

    Dataset History

    This dataset contains two spatial shapefiles: "ba_bioregion_alb_gda94_v05.shp" and "ba_subregion_alb_gda94_v05.shp".

    The shapefiles are copies of the previous versions (Bioregional Assessment Areas v04), with the following changes.

    Two fields have been added to each of the shapefiles' attribute tables.

    "albers_km2" and "albers_ha" which list the the bioregion/subregion areas in square kilometres and hectares respectively.

    The polygonal areas are calculated in ArcGIS and are based on the GDA_1994_Australia_Albers projection. Parameters as follows:

    Projected Coordinate System:\tGDA_1994_Australia_Albers

    Projection:\tAlbers

    False_Easting:\t0.00000000

    False_Northing:\t0.00000000

    Central_Meridian:\t132.00000000

    Standard_Parallel_1:\t-18.00000000

    Standard_Parallel_2:\t-36.00000000

    Latitude_Of_Origin:\t0.00000000

    Linear Unit: \tMeter

    Geographic Coordinate System:\tGCS_GDA_1994

    Datum: \tD_GDA_1994

    Prime Meridian: \tGreenwich

    Angular Unit: \tDegree

    It should be noted that area calculations using a different projection (eg UTM or MGA) may yield slightly different areas to those published in this dataset.

    Version 5 of this dataset also includes Excel spreadsheet versions of each shapefiles' attrubute table, to enable non ArcGIS users to access the bioregion/subregion area information.

    Dataset Citation

    Bioregional Assessment Programme (2014) Bioregional Assessment areas v05. Bioregional Assessment Derived Dataset. Viewed 13 March 2019, http://data.bioregionalassessments.gov.au/dataset/25f89049-839d-4736-bd81-97d8e8a40f8e.

    Dataset Ancestors

  15. N

    Excel Township, Minnesota annual median income by age groups dataset (in...

    • neilsberg.com
    csv, json
    Updated Jan 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel Township, Minnesota annual median income by age groups dataset (in 2022 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/research/datasets/b5fd74b0-8db0-11ee-9302-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jan 8, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Excel Township
    Variables measured
    Income for householder under 25 years, Income for householder 65 years and over, Income for householder between 25 and 44 years, Income for householder between 45 and 64 years
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It delineates income distributions across four age groups (Under 25 years, 25 to 44 years, 45 to 64 years, and 65 years and over) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the distribution of median household income among distinct age brackets of householders in Excel township. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Excel township. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.

    Key observations: Insights from 2021

    In terms of income distribution across age cohorts, in Excel township, the median household income stands at $118,900 for householders within the 45 to 64 years age group, followed by $79,717 for the 65 years and over age group. Notably, householders within the 25 to 44 years age group, had the lowest median household income at $66,206.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Age groups classifications include:

    • Under 25 years
    • 25 to 44 years
    • 45 to 64 years
    • 65 years and over

    Variables / Data Columns

    • Age Of The Head Of Household: This column presents the age of the head of household
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific age group

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township median household income by age. You can refer the same here

  16. Z

    Dataset for the Instagram and TikTok problematic use

    • data.niaid.nih.gov
    Updated Jul 19, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Limniou, Maria; Hendrikse, Calanthe (2023). Dataset for the Instagram and TikTok problematic use [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8159159
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    University of Liverpool
    Authors
    Limniou, Maria; Hendrikse, Calanthe
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset supports research on how engagement with social media (Instagram and TikTok) was related to problematic social media use (PSMU) and mental well-being. There are three different files. The SPSS and Excel spreadsheet files include the same dataset but in a different format. The SPSS output presents the data analysis in regard to the difference between Instagram and TikTok users.

  17. Borehole and transmissivity dataset, Uganda (NERC Grant NE/M008606/1)

    • ckan.publishing.service.gov.uk
    • metadata.bgs.ac.uk
    • +1more
    Updated Jun 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2022). Borehole and transmissivity dataset, Uganda (NERC Grant NE/M008606/1) [Dataset]. https://ckan.publishing.service.gov.uk/dataset/borehole-and-transmissivity-dataset-uganda-nerc-grant-ne-m008606-11
    Explore at:
    Dataset updated
    Jun 22, 2022
    Dataset provided by
    CKANhttps://ckan.org/
    Area covered
    Uganda
    Description

    This dataset comprises 655 borehole records and previously unanalysed pumping tests from across Uganda that were compiled from historical borehole records held within 9 district water offices. The dataset is a compilation of historical borehole records held within nine district water offices across Uganda. These data originated from numerous drilling campaigns undertaken by private contractors in each district to site and construct hand-pump borehole community water supplies between 2000 to 2018. In total over 1000 paper borehole records were initially collated and reviewed. This work was carried out over several months visiting the district water offices. Following a quality assurance procedure 655 records were transcribed to create a digital dataset. Each borehole record in the dataset contains a series of metadata alongside the pumping test data (e.g. pump depth, static water level, pumping rate and duration) including locational information (e.g. coordinates, water strike, borehole depth, borehole lithologies). The dataset is delivered as a series georeferenced site information within an MS Excel spreadsheet file.

  18. g

    USGS Geochron: Data Compilation Templates | gimi9.com

    • gimi9.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    USGS Geochron: Data Compilation Templates | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_usgs-geochron-data-compilation-templates
    Explore at:
    Description

    USGS Geochron is a database of geochronological and thermochronological dates and data. The USGS Geochron: Data Compilation Templates data release hosts Microsoft Excel-based data compilation templates for the USGS Geochron database. Geochronological and thermochronological methods currently archived in the USGS Geochron database include radiocarbon, cosmogenic (10Be, 26Al, 3He), fission track, (U-Th)/He, U-series, U-Th-Pb, 40Ar/39Ar, K-Ar, Lu-Hf, Rb-Sr, Sm-Nd, and Re-Os dating methods. For questions or to submit data please contact geochron@usgs.gov

  19. Nuclear Medicine National Headquarter System

    • data.wu.ac.at
    • datahub.va.gov
    • +4more
    Updated Jul 26, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Veterans Affairs (2017). Nuclear Medicine National Headquarter System [Dataset]. https://data.wu.ac.at/schema/data_gov/YjZhNTBkZjctZWI2Mi00NjRjLTk2N2QtNTlkZmY4MGFiMjlj
    Explore at:
    Dataset updated
    Jul 26, 2017
    Dataset provided by
    United States Department of Veterans Affairshttp://va.gov/
    Description

    The Nuclear Medicine National HQ System database is a series of MS Excel spreadsheets and Access Database Tables by fiscal year. They consist of information from all Veterans Affairs Medical Centers (VAMCs) performing or contracting nuclear medicine services in Veterans Affairs medical facilities. The medical centers are required to complete questionnaires annually (RCS 10-0010-Nuclear Medicine Service Annual Report). The information is then manually entered into the Access Tables, which includes: * Distribution and cost of in-house VA - Contract Physician Services, whether contracted services are made via sharing agreement (with another VA medical facility or other government medical providers) or with private providers. * Workload data for the performance and/or purchase of PET/CT studies. * Organizational structure of services. * Updated changes in key imaging service personnel (chiefs, chief technicians, radiation safety officers). * Workload data on the number and type of studies (scans) performed, including Medicare Relative Value Units (RVUs), also referred to as Weighted Work Units (WWUs). WWUs are a workload measure calculated as the product of a study's Current Procedural Terminology (CPT) code, which consists of total work costs (the cost of physician medical expertise and time), and total practice costs (the costs of running a practice, such as equipment, supplies, salaries, utilities etc). Medicare combines WWUs together with one other parameter to derive RVUs, a workload measure widely used in the health care industry. WWUs allow Nuclear Medicine to account for the complexity of each study in assessing workload, that some studies are more time consuming and require higher levels of expertise. This gives a more accurate picture of workload; productivity etc than using just 'total studies' would yield. * A detailed Full-Time Equivalent Employee (FTEE) grid, and staffing distributions of FTEEs across nuclear medicine services. * Information on Radiation Safety Committees and Radiation Safety Officers (RSOs). Beginning in 2011 this will include data collection on part-time and non VA (contract) RSOs; other affiliations they may have and if so to whom they report (supervision) at their VA medical center.Collection of data on nuclear medicine services' progress in meeting the special needs of our female veterans. Revolving documentation of all major VA-owned gamma cameras (by type) and computer systems, their specifications and ages. * Revolving data collection for PET/CT cameras owned or leased by VA; and the numbers and types of PET/CT studies performed on VA patients whether produced on-site, via mobile PET/CT contract or from non-VA providers in the community.* Types of educational training/certification programs available at VA sites * Ongoing funded research projects by Nuclear Medicine (NM) staff, identified by source of funding and research purpose. * Data on physician-specific quality indicators at each nuclear medicine service.* Academic achievements by NM staff, including published books/chapters, journals and abstracts. * Information from polling field sites re: relevant issues and programs Headquarters needs to address. * Results of a Congressionally mandated contracted quality assessment exercise, also known as a Proficiency study. Study results are analyzed for comparison within VA facilities (for example by mission or size), and against participating private sector health care groups. * Information collected on current issues in nuclear medicine as they arise. Radiation Safety Committee structures and membership, Radiation Safety Officer information and information on how nuclear medicine services provided for female Veterans are examples of current issues.The database is now stored completely within MS Access Database Tables with output still presented in the form of Excel graphs and tables.

  20. s

    In-Air Hand-Drawn Number and Shape Dataset

    • orda.shef.ac.uk
    zip
    Updated Jul 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Basheer Alwaely; Charith Abhayaratne (2025). In-Air Hand-Drawn Number and Shape Dataset [Dataset]. http://doi.org/10.15131/shef.data.7381472.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 14, 2025
    Dataset provided by
    The University of Sheffield
    Authors
    Basheer Alwaely; Charith Abhayaratne
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains in-air hand-written numbers and shapes data used in the paper:B. Alwaely and C. Abhayaratne, "Graph Spectral Domain Feature Learning With Application to in-Air Hand-Drawn Number and Shape Recognition," in IEEE Access, vol. 7, pp. 159661-159673, 2019, doi: 10.1109/ACCESS.2019.2950643.The dataset contains the following:-Readme.txt- InAirNumberShapeDataset.zip containing-Number Folder (With 2 sub folders for Matlab and Excel)-Shapes Folder (With 2 sub folders for Matlab and Excel)The datasets include the in-air drawn number and shape hand movement path captured by a Kinect sensor. The number sub dataset includes 500 instances per each number 0 to 9, resulting in a total of 5000 number data instances. Similarly, the shape sub dataset also includes 500 instances per each shape for 10 different arbitrary 2D shapes, resulting in a total of 5000 shape instances. The dataset provides X, Y, Z coordinates of the hand movement path data in Matlab (M-file) and Excel formats and their corresponding labels.This dataset creation has received The University of Sheffield ethics approval under application #023005 granted on 19/10/2018.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Andreas C. Bryhn; Peter H. Dimberg (2023). An Operational Definition of a Statistically Meaningful Trend [Dataset]. http://doi.org/10.1371/journal.pone.0019241
Organization logo

An Operational Definition of a Statistically Meaningful Trend

Explore at:
28 scholarly articles cite this dataset (View in Google Scholar)
xlsxAvailable download formats
Dataset updated
Jun 3, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Andreas C. Bryhn; Peter H. Dimberg
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Linear trend analysis of time series is standard procedure in many scientific disciplines. If the number of data is large, a trend may be statistically significant even if data are scattered far from the trend line. This study introduces and tests a quality criterion for time trends referred to as statistical meaningfulness, which is a stricter quality criterion for trends than high statistical significance. The time series is divided into intervals and interval mean values are calculated. Thereafter, r2 and p values are calculated from regressions concerning time and interval mean values. If r2≥0.65 at p≤0.05 in any of these regressions, then the trend is regarded as statistically meaningful. Out of ten investigated time series from different scientific disciplines, five displayed statistically meaningful trends. A Microsoft Excel application (add-in) was developed which can perform statistical meaningfulness tests and which may increase the operationality of the test. The presented method for distinguishing statistically meaningful trends should be reasonably uncomplicated for researchers with basic statistics skills and may thus be useful for determining which trends are worth analysing further, for instance with respect to causal factors. The method can also be used for determining which segments of a time trend may be particularly worthwhile to focus on.

Search
Clear search
Close search
Google apps
Main menu