All birth data by race before 1980 are based on race of the child; starting in 1980, birth data by race are based on race of the mother. Birth data are used to calculate infant mortality rate. https://www.cdc.gov/nchs/data-visualization/mortality-trends/
Infant Mortality Rate by Maternal Race/Ethnicity for New York City, 2007-2016 Counts of infant deaths (age <1 year) are based on NYC death certificates. The rate is calculated using the counts of infant deaths as the numerator and the count of live births from NYC birth certificates as the denominator.
The Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.
The Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘NCHS - Infant Mortality Rates, by Race: United States, 1915-2013’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/64af6ebf-0058-43ac-9ec8-1556137e60e5 on 26 January 2022.
--- Dataset description provided by original source is as follows ---
All birth data by race before 1980 are based on race of the child; starting in 1980, birth data by race are based on race of the mother. Birth data are used to calculate infant mortality rate.
https://www.cdc.gov/nchs/data-visualization/mortality-trends/
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset compromises all country data included in the UN Inter-agency Group for Child Mortality Estimation (IGME) database (https://childmortality.org/data, downloaded June 2019).
It includes:
Reference area: name of the country
Indicator: child mortality indicator (neonatal mortality, infant mortality, under-5 mortality and mortality rate age 5 to 14)
Sex: sex of the child (male, female and total)
Series name: name of survey/census/VR [note: UN IGME estimates, i.e. not source data, are identified as "UN IGME estimate" in this field]
Series year: year of survey/census/VR series
Observation value: value of indicator from survey/census/VR
Observation status: indicates whether the data point is included or excluded for estimation [status of "normal" indicates UN IGME estimate, i.e. not source data]
Series Category: category of survey/census/VR, and can be:
Series type: the type of calculation method used to derive the indicator value (direct, indirect, household deaths, life table and vital records)
Standard error: sampling standard error of the observation value
Series method: data collection method, and can be:
Lower and upper bound: the lower and upper bounds of 90% uncertainty interval of UN IGME estimates (for estimates only, i.e., not source data).
The dataset is used in the following paper:
Ezbakhe, F. and Pérez-Foguet, A. (2019) Levels and trends in child mortality: a compositional approach. Demographic Research (Under Review)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Infant Mortality’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c733d231-f584-43ce-833b-796dd1803208 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
Infant Mortality Rate by Maternal Race/Ethnicity for New York City, 2007-2016
Counts of infant deaths (age <1 year) are based on NYC death certificates. The rate is calculated using the counts of infant deaths as the numerator and the count of live births from NYC birth certificates as the denominator.--- Original source retains full ownership of the source dataset ---
Number of infant deaths and infant mortality rates, by age group (neonatal and post-neonatal), 1991 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Survey variables needed to calculate fertility and childhood mortality rates.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundGlobally, with a neonatal mortality rate of 27/1000 live births, Sub-Saharan Africa has the highest rate in the world and is responsible for 43% of all infant fatalities. In the first week of life, almost three-fourths of neonatal deaths occur and about one million babies died on their first day of life. Previous studies lack conclusive evidence regarding the overall estimate of early neonatal mortality in Sub-Saharan Africa. Therefore, this review aimed to pool findings reported in the literature on magnitude of early neonatal mortality in Sub-Saharan Africa.MethodsThis review’s output is the aggregate of magnitude of early neonatal mortality in sub-Saharan Africa. Up until June 8, 2023, we performed a comprehensive search of the databases PubMed/Medline, PubMed Central, Hinary, Google, Cochrane Library, African Journals Online, Web of Science, and Google Scholar. The studies were evaluated using the JBI appraisal check list. STATA 17 was employed for the analysis. Measures of study heterogeneity and publication bias were conducted using the I2 test and the Eggers and Beggs tests, respectively. The Der Simonian and Laird random-effect model was used to calculate the combined magnitude of early neonatal mortality. Besides, subgroup analysis, sensitivity analysis, and meta regression were carried out to identify the source of heterogeneity.ResultsFourteen studies were included from a total of 311 articles identified by the search with a total of 278,173 participants. The pooled magnitude of early neonatal mortality in sub-Saharan Africa was 80.3 (95% CI 66 to 94.6) per 1000 livebirths. Ethiopia had the highest pooled estimate of early neonatal mortality rate, at 20.1%, and Cameroon had the lowest rate, at 0.5%. Among the included studies, both the Cochrane Q test statistic (χ2 = 6432.46, P
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data was reported at 14.000 Ratio in 2015. This stayed constant from the previous number of 14.000 Ratio for 2014. United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data is updated yearly, averaging 13.000 Ratio from Dec 1990 (Median) to 2015, with 26 observations. The data reached an all-time high of 15.000 Ratio in 2009 and a record low of 11.000 Ratio in 1998. United States US: Maternal Mortality Ratio: Modeled Estimate: per 100,000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Maternal mortality ratio is the number of women who die from pregnancy-related causes while pregnant or within 42 days of pregnancy termination per 100,000 live births. The data are estimated with a regression model using information on the proportion of maternal deaths among non-AIDS deaths in women ages 15-49, fertility, birth attendants, and GDP.; ; WHO, UNICEF, UNFPA, World Bank Group, and the United Nations Population Division. Trends in Maternal Mortality: 1990 to 2015. Geneva, World Health Organization, 2015; Weighted average; This indicator represents the risk associated with each pregnancy and is also a Sustainable Development Goal Indicator for monitoring maternal health.
This data collection consists of six data files, which can be used to determine infant mortality rates in the United States in 1995. For the first time, data for Puerto Rico, the Virgin Islands, and Guam were included. Another change in 1995 is a change in format of the linked files. They are now released in two different formats, period data and birth cohort data. This collection represents the period data. Parts 1 and 2 are the Denominator files for the United States and for Puerto Rico, the Virgin Islands, and Guam, respectively. These files consist of all births in 1995. Variables in these files include year of birth, state and county of birth, characteristics of the infant (age, sex, race, birth weight, gestation), characteristics of the mother (Hispanic origin, race, age, education, marital status, state of birth), characteristics of the father (Hispanic origin, race, age, education), pregnancy items (prenatal care, live births), and medical data. A new variable in the Denominator files for 1995 is clinical estimate of gestation. Parts 3 and 4 are the Numerator files. They provide records of all infant deaths that occurred in 1995 linked to their corresponding birth certificates, whether the birth occurred in 1995 or 1994. Variables in these files include age at death, underlying cause of death, autopsy, place of accident, infant death identification number, exact age at death, day of birth and death, and month of birth and death. New variables in the linked Numerator files for 1995 include a weight and a clinical estimate of gestation. Parts 5 and 6 are the "unlinked" files. They consist of infant death records that could not be linked to their corresponding birth records. (Source: downloaded from ICPSR 7/13/10)
Please Note: This dataset is part of the historical CISER Data Archive Collection and is also available at ICPSR at https://doi.org/10.3886/ICPSR02285.v1. We highly recommend using the ICPSR version as they may make this dataset available in multiple data formats in the future.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing Iraq infant mortality rate by year from 1950 to 2025.
https://www.icpsr.umich.edu/web/ICPSR/studies/6631/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/6631/terms
This data collection consists of three data files, which can be used to determine infant mortality rates. The first file provides linked records of live births and deaths of children born in the United States in 1989 (residents and nonresidents). This file is referred to as the "Numerator" file. The second file consists of live births in the United States in 1989 and is referred to as the "Denominator-Plus" file. Variables include year of birth, state and county of birth, characteristics of the infant (age, sex, race, birth weight, gestation), characteristics of the mother (origin, race, age, education, marital status, state of birth), characteristics of the father (origin, race, age, education), pregnancy items (prenatal care, live births), and medical data. Beginning in 1989, a number of items were added to the U.S. Standard Certificate of Birth. These changes and/or additions led to the redesign of the linked file record layout for this series and to other changes in the linked file. In addition, variables from the numerator file have been added to the denominator file to facilitate processing, and this file is now called the "Denominator-Plus" file. The additional variables include age at death, underlying cause of death, autopsy, and place of accident. Other new variables added are infant death identification number, exact age at death, day of birth and death, and month of birth and death. The third file, the "Unlinked" file, consists of infant death records that could not be linked to their corresponding birth records.
This thesis studies the effect of US wheat aid on infant mortality rates in developing countries. There is debate on the effectiveness of US food aid; some claim it disrupts local food production, while others discuss its role in prolonging conflict. This paper aims to address the intended impact of food aid, feeding people, rather than unintended impacts tackled by previous studies. Infant mortality rates serve as a measure of the health of pregnant woman and infants, who make up a vulnerable population that is susceptible to food crises. An instrumental variable approach is taken, which uses lagged US wheat production, a country’s tendency to receive any US food aid, a rainshock variable, population, and a measure of intrastate conflict, to determine the impact of wheat aid on infant mortality rates in recipient countries. As shown by the results, infant mortality rates decrease with more US wheat aid, which is conducive to the goals of food aid set out by USAID. Specifically, a 100% increase in US food aid, decreases infant mortality rates by 19.3 deaths per 1,000 live births. Furthermore, the effect of US wheat aid on infant mortality rates is strongest in countries that are more likely to receive aid compared to those with a below average propensity to receive US food aid.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chad TD: Mortality Rate: Infant: per 1000 Live Births data was reported at 58.700 Ratio in 2023. This records a decrease from the previous number of 60.300 Ratio for 2022. Chad TD: Mortality Rate: Infant: per 1000 Live Births data is updated yearly, averaging 114.000 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 142.000 Ratio in 1960 and a record low of 58.700 Ratio in 2023. Chad TD: Mortality Rate: Infant: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Chad – Table TD.World Bank.WDI: Social: Health Statistics. Infant mortality rate is the number of infants dying before reaching one year of age, per 1,000 live births in a given year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
In 2023, the infant mortality rate in deaths per 1,000 live births in Nigeria was 60.1. Between 1964 and 2023, the figure dropped by 113.5, though the decline followed an uneven course rather than a steady trajectory.
The number of deaths of children under the age of five. The data is sorted by both sex and total and includes a range of values from 1955 to 2019. A birth-week cohort method is used to calculate the absolute number of deaths among neonates, infants, and children under age 5. First, each annual birth cohort is divided into 52 equal birth-week cohorts. Then each birth-week cohort is exposed throughout the first five years of life to the appropriate calendar year- and age-specific mortality rates depending on cohort age. All deaths from birth-week cohorts occurring as a result of exposure to the mortality rate for a given calendar year are allocated to that year and are summed by age group at death to get the total number of deaths for a given year and age group. The annual estimate of the number of live births in each country comes from the World Population Prospects. This data is sourced from the UN Inter-Agency Group for Child Mortality Estimation. The UN IGME uses the same estimation method across all countries to arrive at a smooth trend curve of age-specific mortality rates. The estimates are based on high quality nationally representative data including statistics from civil registration systems, results from household surveys, and censuses. The child mortality estimates are produced in conjunction with national level agencies such as a country’s Ministry of Health, National Statistics Office, or other relevant agencies.
All birth data by race before 1980 are based on race of the child; starting in 1980, birth data by race are based on race of the mother. Birth data are used to calculate infant mortality rate. https://www.cdc.gov/nchs/data-visualization/mortality-trends/