Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Change-To-Liabilities Time Series for Excel Force MSC Bhd. Excel Force MSC Berhad, together with its subsidiaries, develops, provides, and maintains software application solutions for the financial services industry in Malaysia. The company operates through Application Solutions, Maintenance Services, Application Services Provider, and Other segments. Its product portfolio includes CyberStock BTX, a bridging trader and exchange system platform that provides trading tools classes; and CyberStock ECOS, a stock broking solution which offers real time market information, place trades, and manage orders solution. In addition, the company provides CyberStock Mobile Trader, a mobile trading system that connects users smartphones to exchanges to manage trading activities; and CyberStock EDS, an exempt dealer system that provides advanced trading infrastructure and facilities for commercial banks. Further, it offers CyberStock SMF, a share margin financing system that enables financial institutions, brokerage firms, and banks to operate and manage margin financing services; and CyberStock CNS, a custodian and nominee system, which provides value-added services, such as trade settlement, cash balances investment, income collection, corporate actions processing, recordkeeping and reporting to custodian banks for domestic services. Additionally, the company provides CyberStock BOS, a back office system to manage enormous file and data; and offers network and security services. Excel Force MSC Berhad was founded in 1994 and is based in Petaling Jaya, Malaysia.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Admission lists to identify patients that match inclusion criteria excel charts that document the number of cases that needed change in management
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All Comparisons of Differentially Expressed Genes - excel sheet containing the annotations and fold change values of the all the differentially expressed genes between the different clone comparisonsFinal List of Common Genes - excel sheet containing the list of genes that were commonly differentially expressed between all the aphid clone comparisons. Also contains table and bar chart presenting the number of times each candidate gene selected from previous literature was found in each aphid clone comparison.Non-direct and Direct Competition - excel sheet containing number of nymphs produced by all 6 clones on the 3 host plants in the non-direct competition, and the number of nymphs produced by the two clones NS and Viola in the direct competition experiment.sterror - excel sheet containing the means and standard error values of the 6 grouped resistant and susceptible clones in the non-direct competition experiment, used to make the bar plot for the non-direct competition experiment.sterror2 - excel sheet containing the means and standard error values of the resistant clone Viola and susceptible clone NS in the direct competition experiment, used to make the bar plot for the direct competition experiment.cabbagettest - excel sheet containing the number of nymphs produce by the 6 grouped resistant and susceptible clones on the 3 host plants, used to conduct the unpaired t tests to compare the reproductive performance of resistant and susceptible clones on the 3 different host plants when in not in competitiondirectcompetition - excel sheet containing the number of nymphs produce by the resistant clone Viola and susceptible clone NS on the 3 host plants, used to conduct the unpaired t tests comparing the reproductive performance of resistant and susceptible clones on the 3 different host plants when in direct competitionAPHID HOST SHIFT DISS Rscript - R script containing all my statistical tests: unpaired t tests of resistant and susceptible clones on the 3 host plants when in direct and non direct competition, and kruskal Wallis tests and post hoc Dunns test to identify significant differences between individual and resistant and susceptible clones on the different host plants. Also contains all my code for my bar charts for the non-direct and direct competition experiments and the code for my box plots showing the significant differences between individual clones and resistant and susceptible clones on the different host plants.Up and Down-regulated Genes Graph - excel sheet containing the number of and and down regulated genes in each aphid clone comparison and the bar graph generated from this data.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Figures in scientific publications are critically important because they often show the data supporting key findings. Our systematic review of research articles published in top physiology journals (n = 703) suggests that, as scientists, we urgently need to change our practices for presenting continuous data in small sample size studies. Papers rarely included scatterplots, box plots, and histograms that allow readers to critically evaluate continuous data. Most papers presented continuous data in bar and line graphs. This is problematic, as many different data distributions can lead to the same bar or line graph. The full data may suggest different conclusions from the summary statistics. We recommend training investigators in data presentation, encouraging a more complete presentation of data, and changing journal editorial policies. Investigators can quickly make univariate scatterplots for small sample size studies using our Excel templates.