100+ datasets found
  1. Historic US Census - 1860

    • redivis.com
    application/jsonl +7
    Updated Feb 1, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2019). Historic US Census - 1860 [Dataset]. http://doi.org/10.57761/fqtr-yz40
    Explore at:
    sas, avro, stata, csv, arrow, spss, parquet, application/jsonlAvailable download formats
    Dataset updated
    Feb 1, 2019
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Area covered
    United States
    Description

    Abstract

    This dataset includes all individuals from the 1860 US census.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was developed through a collaboration between the Minnesota Population Center and the Church of Jesus Christ of Latter-Day Saints. The data contain demographic variables, economic variables, migration variables and race variables. Unlike more recent census datasets, pre-1900 census datasets only contain individual level characteristics and no household or family characteristics, but household and family identifiers do exist.

    The official enumeration day of the 1860 census was 1 June 1860. The main goal of an early census like the 1860 U.S. census was to allow Congress to determine the collection of taxes and the appropriation of seats in the House of Representatives. Each district was assigned a U.S. Marshall who organized other marshals to administer the census. These enumerators visited households and recorder names of every person, along with their age, sex, color, profession, occupation, value of real estate, place of birth, parental foreign birth, marriage, literacy, and whether deaf, dumb, blind, insane or “idiotic”.

    Sources: Szucs, L.D. and Hargreaves Luebking, S. (1997). Research in Census Records, The Source: A Guidebook of American Genealogy. Ancestry Incorporated, Salt Lake City, UT Dollarhide, W.(2000). The Census Book: A Genealogist’s Guide to Federal Census Facts, Schedules and Indexes. Heritage Quest, Bountiful, UT

  2. d

    ACS 5-Year Demographic Characteristics DC Census Tract

    • opendata.dc.gov
    • opdatahub.dc.gov
    • +4more
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Demographic Characteristics DC Census Tract [Dataset]. https://opendata.dc.gov/datasets/62e1f639627342248a4d4027140a1935
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  3. d

    ACS 5-Year Economic Characteristics DC

    • catalog.data.gov
    • opendata.dc.gov
    • +3more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Economic Characteristics DC [Dataset]. https://catalog.data.gov/dataset/acs-5-year-economic-characteristics-dc
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    City of Washington, DC
    Area covered
    Washington
    Description

    Employment, Commuting, Occupation, Income, Health Insurance, Poverty, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2019-2023. ACS Table(s): DP03. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  4. Historic US census - 1930

    • redivis.com
    application/jsonl +7
    Updated Jan 10, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Historic US census - 1930 [Dataset]. http://doi.org/10.57761/6e5q-rh85
    Explore at:
    application/jsonl, parquet, spss, csv, arrow, stata, avro, sasAvailable download formats
    Dataset updated
    Jan 10, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 1930 - Dec 31, 1930
    Area covered
    United States
    Description

    Abstract

    The Integrated Public Use Microdata Series (IPUMS) Complete Count Data include more than 650 million individual-level and 7.5 million household-level records. The microdata are the result of collaboration between IPUMS and the nation’s two largest genealogical organizations—Ancestry.com and FamilySearch—and provides the largest and richest source of individual level and household data.

    Before Manuscript Submission

    All manuscripts (and other items you'd like to publish) must be submitted to

    phsdatacore@stanford.edu for approval prior to journal submission.

    We will check your cell sizes and citations.

    For more information about how to cite PHS and PHS datasets, please visit:

    https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

    Documentation

    This dataset was created on 2020-01-10 22:52:11.461 by merging multiple datasets together. The source datasets for this version were:

    IPUMS 1930 households: This dataset includes all households from the 1930 US census.

    IPUMS 1930 persons: This dataset includes all individuals from the 1930 US census.

    IPUMS 1930 Lookup: This dataset includes variable names, variable labels, variable values, and corresponding variable value labels for the IPUMS 1930 datasets.

    Section 2

    Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier.

    In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.Historic data are scarce and often only exists in aggregate tables. The key advantage of historic US census data is the availability of individual and household level characteristics that researchers can tabulate in ways that benefits their specific research questions. The data contain demographic variables, economic variables, migration variables and family variables. Within households, it is possible to create relational data as all relations between household members are known. For example, having data on the mother and her children in a household enables researchers to calculate the mother’s age at birth. Another advantage of the Complete Count data is the possibility to follow individuals over time using a historical identifier. In sum: the historic US census data are a unique source for research on social and economic change and can provide population health researchers with information about social and economic determinants.

    The historic US 1930 census data was collected in April 1930. Enumerators collected data traveling to households and counting the residents who regularly slept at the household. Individuals lacking permanent housing were counted as residents of the place where they were when the data was collected. Household members absent on the day of data collected were either listed to the household with the help of other household members or were scheduled for the last census subdivision.

    Notes

    • We provide IPUMS household and person data separately so that it is convenient to explore the descriptive statistics on each level. In order to obtain a full dataset, merge the household and person on the variables SERIAL and SERIALP. In order to create a longitudinal dataset, merge datasets on the variable HISTID.

    • Households with more than 60 people in the original data were broken up for processing purposes. Every person in the large households are considered to be in their own household. The original large households can be identified using the variable SPLIT, reconstructed using the variable SPLITHID, and the original count is found in the variable SPLITNUM.

    • Coded variables derived from string variables are still in progress. These variables include: occupation and industry.

    • Missing observations have been allocated and some inconsistencies have been edited for the following variables: SPEAKENG, YRIMMIG, CITIZEN, AGEMARR, AGE, BPL, MBPL, FBPL, LIT, SCHOOL, OWNERSHP, FARM, EMPSTAT, OCC1950, IND1950, MTONGUE, MARST, RACE, SEX, RELATE, CLASSWKR. The flag variables indicating an allocated observation for the associated variables can be included in your extract by clicking the ‘Select data quality flags’ box on the extract summary page.

    • Most inconsistent information was not edite

  5. T

    ACS 5-Year Demographic Characteristics of DC Census Tracts

    • fusioncenter.nhit.org
    Updated Mar 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ACS 5-Year Demographic Characteristics of DC Census Tracts [Dataset]. https://fusioncenter.nhit.org/dataset/ACS-5-Year-Demographic-Characteristics-of-DC-Censu/miwx-pyji
    Explore at:
    csv, application/rdfxml, application/rssxml, tsv, xml, kml, application/geo+json, kmzAvailable download formats
    Dataset updated
    Mar 17, 2025
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  6. a

    Nonemployer Statistics - Counties 2019

    • covid19-uscensus.hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Dec 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2020). Nonemployer Statistics - Counties 2019 [Dataset]. https://covid19-uscensus.hub.arcgis.com/datasets/nonemployer-statistics-counties-2019
    Explore at:
    Dataset updated
    Dec 28, 2020
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows data on the number of establishments and revenue for select 2-digit North American Industry Classification System (NAICS) sectors and for NAICS 00, All Sectors. This is shown by county and state boundaries. The full NES data set (available at census.gov) is updated annually to contain the most currently released NES data, and contains estimates and measure of reliability. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Current Vintage: 2019CBP Table: NS1900NESData downloaded from: Census Bureau's API for Nonemployer StatisticsDate of API call: December 19, 2022National Figures: data.census.govThe United States Census Bureau's Nonemployer Statistics Program (NES):About this ProgramDataTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census Bureau and NES when using this data.Data Processing Notes:Boundaries come from the US Census Bureau TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census Bureau. These are Census Bureau boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 51 records - all US states, Washington D.C..Blank values represent industries where there either were no businesses in that industry and that geography OR industries where the data had to be withheld to avoid disclosing data for individual companies. Users should visit data.census.gov or Census Business Builder for more details on these withheld records.Data shown in thousands of dollars are indicated by '($1000)' in the field aliasing. Average and Totals include NAICS 11.

  7. d

    ACS 5-Year Social Characteristics DC Census Tract

    • adoptablock.dc.gov
    • opendata.dc.gov
    • +3more
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Social Characteristics DC Census Tract [Dataset]. https://adoptablock.dc.gov/datasets/acs-5-year-social-characteristics-dc-census-tract/about
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Household type, Education, Disability, Language, Computer/Internet Use, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP02. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  8. a

    2010 Census Tracts

    • hub.arcgis.com
    • esri-san-antonio-office.hub.arcgis.com
    Updated Nov 17, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    North Central Texas Council of Governments (2016). 2010 Census Tracts [Dataset]. https://hub.arcgis.com/datasets/d429e05d43c346e896686d9c72db4e82
    Explore at:
    Dataset updated
    Nov 17, 2016
    Dataset authored and provided by
    North Central Texas Council of Governments
    Area covered
    Description

    This dataset includes census tracts as defined by the U.S. Census Bureau and made available through their TIGER/Line files. These delineations were prepared for tabulation of the 2010 decennial census data, but are also used in other tabulations such as those of American Community Survey data. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity. Census 2010 tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. For more information about census geographies, see http://www.census.gov/geo/reference/ . This file is for reference use only. NCTCOG and its members are not responsible for errors or inaccuracies in the file.

  9. e

    USA Census Tract Boundaries

    • atlas.eia.gov
    • disasterpartners.org
    • +4more
    Updated May 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Census Tract Boundaries [Dataset]. https://atlas.eia.gov/datasets/esri::usa-census-tract-boundaries-1
    Explore at:
    Dataset updated
    May 9, 2022
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This layer presents the 2020 U.S. Census Tract boundaries of the United States in the 50 states and the District of Columbia. This layer is updated annually. The geography is sourced from U.S. Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrography to add a detailed coastline for cartographic purposes. Attribute fields include 2020 total population from the U.S. Census Public Law 94 data.This ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.

  10. n

    U.S. Census Grids (Summary File 3), 1990

    • earthdata.nasa.gov
    • data.nasa.gov
    • +3more
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2025). U.S. Census Grids (Summary File 3), 1990 [Dataset]. http://doi.org/10.7927/H4JS9NC2
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    ESDIS
    Area covered
    United States
    Description

    The U.S. Census Grids (Summary File 3), 1990 data set contains grids of demographic and socioeconomic data from the year 1990 U.S. census in ASCII and GeoTIFF formats. The grids have a resolution of 30 arc-seconds (0.0083 decimal degrees), or approximately 1 square km. The gridded variables are based on census block geography from Census 1990 TIGER/Line Files and census variables (population, households, and housing variables). This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  11. USA Census Populated Place Areas

    • atlas.eia.gov
    • prep-response-portal.napsgfoundation.org
    • +7more
    Updated May 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). USA Census Populated Place Areas [Dataset]. https://atlas.eia.gov/datasets/d8e6e822e6b44d80b4d3b5fe7538576d
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    U.S. Census Populated Place Areas represents the 2020 U.S. Census populated place areas of the United States that include incorporated places, cities, and census designated places identified by the U.S. Census Bureau.This layer is updated annually. The geography is sourced from U.S. Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrography to add a detailed coastline for cartographic purposes. Attribute fields include 2020 total population from the U.S. Census Public Law 94 data. The Population Class field values represent population ranges as follows:Population from 0 - 249Population from 250 - 499Population from 500 - 999Population from 1,000 - 2,499Population from 2,500 - 9,999Population from 10,000 - 49,999Population from 50,000 - 99,999Population from 100,000 - 249,999Population from 250,000 - 499,999Population 500,000 and overThis ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.

  12. d

    ACS 5-Year Economic Characteristics DC Census Tract

    • opendata.dc.gov
    • catalog.data.gov
    • +1more
    Updated Feb 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Economic Characteristics DC Census Tract [Dataset]. https://opendata.dc.gov/datasets/DCGIS::acs-5-year-economic-characteristics-dc-census-tract
    Explore at:
    Dataset updated
    Feb 28, 2025
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Employment, Commuting, Occupation, Income, Health Insurance, Poverty, and more. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: Census Tracts. Current Vintage: 2019-2023. ACS Table(s): DP03. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  13. c

    Language Spoken at Home - Counties 2015-2019

    • covid19.census.gov
    Updated Mar 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Language Spoken at Home - Counties 2015-2019 [Dataset]. https://covid19.census.gov/datasets/language-spoken-at-home-counties-2015-2019/api
    Explore at:
    Dataset updated
    Mar 19, 2021
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Language Spoken at Home. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show the percentage of households with Limited English Speaking Status. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B16004, DP02, S1601, S1602Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

  14. c

    Households by Type - States 2015-2019

    • covid19.census.gov
    • covid19-uscensus.hub.arcgis.com
    Updated Mar 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Households by Type - States 2015-2019 [Dataset]. https://covid19.census.gov/datasets/households-by-type-states-2015-2019/api
    Explore at:
    Dataset updated
    Mar 19, 2021
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Households by Type. This is shown by state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show percentage of households with no vehicles. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): B11001, B25010, B25044, DP02, DP04Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

  15. D

    Census Tract Top 50 American Community Survey Data

    • data.seattle.gov
    • data-seattlecitygis.opendata.arcgis.com
    application/rdfxml +5
    Updated Feb 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Census Tract Top 50 American Community Survey Data [Dataset]. https://data.seattle.gov/dataset/Census-Tract-Top-50-American-Community-Survey-Data/jya9-y5bv/data
    Explore at:
    application/rdfxml, csv, json, application/rssxml, tsv, xmlAvailable download formats
    Dataset updated
    Feb 3, 2025
    Description

    Data from: American Community Survey, 5-year Series


    King County, Washington census tracts with nonoverlapping vintages of the 5-year American Community Survey (ACS) estimates starting in 2010 of over 50 attributes of the most requested data derived from the U.S. Census Bureau's demographic profiles (DP02-DP05). Also includes the most recent release annually with the vintage identified in the "ACS Vintage" field.

    The census tract boundaries match the vintage of the ACS data (currently 2010 and 2020) so please note the geographic changes between the decades.

    Tracts have been coded as being within the City of Seattle as well as assigned to neighborhood groups called "Community Reporting Areas". These areas were created after the 2000 census to provide geographically consistent neighborhoods through time for reporting U.S. Census Bureau data. This is not an attempt to identify neighborhood boundaries as defined by neighborhoods themselves.

    Vintages: 2010, 2015, 2020, 2021, 2022, 2023
    ACS Table(s): DP02, DP03, DP04, DP05


    The United States Census Bureau's American Community Survey (ACS):
    This ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.

    Data Note from the Census:
    Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.

    Data Processing Notes:
  16. TIGER/Line Shapefile, 2022, Nation, U.S., 2020 Census 5-Digit ZIP Code...

    • catalog.data.gov
    Updated Jan 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, Nation, U.S., 2020 Census 5-Digit ZIP Code Tabulation Area (ZCTA5) [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-nation-u-s-2020-census-5-digit-zip-code-tabulation-area-zcta5
    Explore at:
    Dataset updated
    Jan 27, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. ZIP Code Tabulation Areas (ZCTAs) are approximate area representations of U.S. Postal Service (USPS) ZIP Code service areas that the Census Bureau creates to present statistical data for each decennial census. The Census Bureau delineates ZCTA boundaries for the United States, Puerto Rico, American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands once each decade following the decennial census. Data users should not use ZCTAs to identify the official USPS ZIP Code for mail delivery. The USPS makes periodic changes to ZIP Codes to support more efficient mail delivery. The Census Bureau uses tabulation blocks as the basis for defining each ZCTA. Tabulation blocks are assigned to a ZCTA based on the most frequently occurring ZIP Code for the addresses contained within that block. The most frequently occurring ZIP Code also becomes the five-digit numeric code of the ZCTA. These codes may contain leading zeros. Blocks that do not contain addresses but are surrounded by a single ZCTA (enclaves) are assigned to the surrounding ZCTA. Because the Census Bureau only uses the most frequently occurring ZIP Code to assign blocks, a ZCTA may not exist for every USPS ZIP Code. Some ZIP Codes may not have a matching ZCTA because too few addresses were associated with the specific ZIP Code or the ZIP Code was not the most frequently occurring ZIP Code within any of the blocks where it exists. The ZCTA boundaries in this release are those delineated following the 2020 Census.

  17. n

    U.S. Census Grids (Summary File 3), 2000: Metropolitan Statistical Areas

    • earthdata.nasa.gov
    • s.cnmilf.com
    • +2more
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2025). U.S. Census Grids (Summary File 3), 2000: Metropolitan Statistical Areas [Dataset]. http://doi.org/10.7927/H4Z31WJ0
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    ESDIS
    Area covered
    United States
    Description

    The U.S. Census Grids (Summary File 3), 2000: Metropolitan Statistical Areas data set contains grids of demographic and socioeconomic data from the year 2000 U.S. census in ASCII and GeoTIFF formats for 50 metropolitan statistical areas with at least one million in population. The grids have a resolution of 7.5 arc-seconds (0.002075 decimal degrees), or approximately 250 square meters. The gridded variables are based on census block geography from Census 2000 TIGER/Line Files and census variables (population, households, and housing variables). This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN).

  18. TIGER/Line Shapefile, 2020, Nation, U.S., 2020 Census Urban Area

    • catalog.data.gov
    Updated May 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2020, Nation, U.S., 2020 Census Urban Area [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2020-nation-u-s-2020-census-urban-area
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    United States
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the urban footprint. There are 2,645 Urban Areas (UAs) in this data release with either a minimum population of 5,000 or a housing unit count of 2,000 units. Each urban area is identified by a 5-character numeric census code that may contain leading zeroes.

  19. a

    2020 Census Tracts

    • open-data-carlsbad.hub.arcgis.com
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Carlsbad GIS (2023). 2020 Census Tracts [Dataset]. https://open-data-carlsbad.hub.arcgis.com/datasets/2020-census-tracts
    Explore at:
    Dataset updated
    Dec 4, 2023
    Dataset authored and provided by
    City of Carlsbad GIS
    Area covered
    Description

    This dataset features polygon representations of 2020 US Census Bureau census tracts, focusing specifically on census tract numbers for the City of Carlsbad. Originally sourced from San Diego Geographic Information Source (SanGIS), with coverage spanning San Diego County, the dataset has been customized by clipping to the City of Carlsbad boundary line. This tailored dataset serves as a convenient reference for census tract boundaries within Carlsbad.Point of ContactU.S. Census Bureau4600 Silver Hill RoadWashington, DC. 20233-7400 geo.tiger@census.gov301-763-1128

  20. a

    Computers and Internet Use - Counties 2015-2019

    • covid19-uscensus.hub.arcgis.com
    • covid19.census.gov
    • +1more
    Updated Mar 19, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    US Census Bureau (2021). Computers and Internet Use - Counties 2015-2019 [Dataset]. https://covid19-uscensus.hub.arcgis.com/datasets/computers-and-internet-use-counties-2015-2019
    Explore at:
    Dataset updated
    Mar 19, 2021
    Dataset authored and provided by
    US Census Bureau
    Area covered
    Description

    This layer shows Computers and Internet Use. This is shown by county boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.
    This layer is symbolized to show Percentage of Households with a Broadband Internet Subscription. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2015-2019ACS Table(s): DP02, S2801Data downloaded from: Census Bureau's API for American Community Survey Date of API call: February 10, 2021National Figures: data.census.gov The United States Census Bureau's American Community Survey (ACS): About the SurveyGeography & ACSTechnical Documentation News & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2010 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes.
    All of these are rendered in this dataset as null (blank) values.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Stanford Center for Population Health Sciences (2019). Historic US Census - 1860 [Dataset]. http://doi.org/10.57761/fqtr-yz40
Organization logo

Historic US Census - 1860

Explore at:
sas, avro, stata, csv, arrow, spss, parquet, application/jsonlAvailable download formats
Dataset updated
Feb 1, 2019
Dataset provided by
Redivis Inc.
Authors
Stanford Center for Population Health Sciences
Area covered
United States
Description

Abstract

This dataset includes all individuals from the 1860 US census.

Before Manuscript Submission

All manuscripts (and other items you'd like to publish) must be submitted to

phsdatacore@stanford.edu for approval prior to journal submission.

We will check your cell sizes and citations.

For more information about how to cite PHS and PHS datasets, please visit:

https:/phsdocs.developerhub.io/need-help/citing-phs-data-core

Documentation

This dataset was developed through a collaboration between the Minnesota Population Center and the Church of Jesus Christ of Latter-Day Saints. The data contain demographic variables, economic variables, migration variables and race variables. Unlike more recent census datasets, pre-1900 census datasets only contain individual level characteristics and no household or family characteristics, but household and family identifiers do exist.

The official enumeration day of the 1860 census was 1 June 1860. The main goal of an early census like the 1860 U.S. census was to allow Congress to determine the collection of taxes and the appropriation of seats in the House of Representatives. Each district was assigned a U.S. Marshall who organized other marshals to administer the census. These enumerators visited households and recorder names of every person, along with their age, sex, color, profession, occupation, value of real estate, place of birth, parental foreign birth, marriage, literacy, and whether deaf, dumb, blind, insane or “idiotic”.

Sources: Szucs, L.D. and Hargreaves Luebking, S. (1997). Research in Census Records, The Source: A Guidebook of American Genealogy. Ancestry Incorporated, Salt Lake City, UT Dollarhide, W.(2000). The Census Book: A Genealogist’s Guide to Federal Census Facts, Schedules and Indexes. Heritage Quest, Bountiful, UT

Search
Clear search
Close search
Google apps
Main menu