100+ datasets found
  1. Meta Kaggle Code

    • kaggle.com
    zip
    Updated Jul 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaggle (2025). Meta Kaggle Code [Dataset]. https://www.kaggle.com/datasets/kaggle/meta-kaggle-code/code
    Explore at:
    zip(151045619431 bytes)Available download formats
    Dataset updated
    Jul 31, 2025
    Dataset authored and provided by
    Kagglehttp://kaggle.com/
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Explore our public notebook content!

    Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.

    Why we’re releasing this dataset

    By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.

    Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.

    The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!

    Sensitive data

    While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.

    Joining with Meta Kaggle

    The files contained here are a subset of the KernelVersions in Meta Kaggle. The file names match the ids in the KernelVersions csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.

    File organization

    The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.

    The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays

    Questions / Comments

    We love feedback! Let us know in the Discussion tab.

    Happy Kaggling!

  2. d

    Python code used to download U.S. Census Bureau data for public-supply water...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Python code used to download U.S. Census Bureau data for public-supply water service areas [Dataset]. https://catalog.data.gov/dataset/python-code-used-to-download-u-s-census-bureau-data-for-public-supply-water-service-areas
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Description

    This child item describes Python code used to query census data from the TigerWeb Representational State Transfer (REST) services and the U.S. Census Bureau Application Programming Interface (API). These data were needed as input feature variables for a machine learning model to predict public supply water use for the conterminous United States. Census data were retrieved for public-supply water service areas, but the census data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the census data collector code were used as input features in the public supply delivery and water use machine learning models. This page includes the following file: census_data_collector.zip - a zip file containing the census data collector Python code used to retrieve data from the U.S. Census Bureau and a README file.

  3. f

    Collection of example datasets used for the book - R Programming -...

    • figshare.com
    txt
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kingsley Okoye; Samira Hosseini (2023). Collection of example datasets used for the book - R Programming - Statistical Data Analysis in Research [Dataset]. http://doi.org/10.6084/m9.figshare.24728073.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    figshare
    Authors
    Kingsley Okoye; Samira Hosseini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.

  4. U

    Python code used to download gridMET climate data for public-supply water...

    • data.usgs.gov
    • s.cnmilf.com
    • +1more
    Updated Jan 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carol Luukkonen; Ayman Alzraiee; Joshua Larsen; Donald Martin; Deidre Herbert; Cheryl Buchwald; Natalie Houston; Kristen Valseth; Scott Paulinski; Lisa Miller; Richard Niswonger; Jana Stewart; Cheryl Dieter (2024). Python code used to download gridMET climate data for public-supply water service areas [Dataset]. http://doi.org/10.5066/P9FUL880
    Explore at:
    Dataset updated
    Jan 4, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Carol Luukkonen; Ayman Alzraiee; Joshua Larsen; Donald Martin; Deidre Herbert; Cheryl Buchwald; Natalie Houston; Kristen Valseth; Scott Paulinski; Lisa Miller; Richard Niswonger; Jana Stewart; Cheryl Dieter
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 2000 - Dec 31, 2020
    Description

    This child item describes Python code used to retrieve gridMET climate data for a specific area and time period. Climate data were retrieved for public-supply water service areas, but the climate data collector could be used to retrieve data for other areas of interest. This dataset is part of a larger data release using machine learning to predict public supply water use for 12-digit hydrologic units from 2000-2020. Data retrieved by the climate data collector code were used as input feature variables in the public supply delivery and water use machine learning models. This page includes the following file: climate_data_collector.zip - a zip file containing the climate data collector Python code used to retrieve climate data and a README file.

  5. h

    github-code

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CodeParrot, github-code [Dataset]. https://huggingface.co/datasets/codeparrot/github-code
    Explore at:
    Dataset provided by
    Good Engineering, Inc
    Authors
    CodeParrot
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    The GitHub Code dataest consists of 115M code files from GitHub in 32 programming languages with 60 extensions totalling in 1TB of text data. The dataset was created from the GitHub dataset on BiqQuery.

  6. Z

    PIPr: A Dataset of Public Infrastructure as Code Programs

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salvaneschi, Guido (2023). PIPr: A Dataset of Public Infrastructure as Code Programs [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8262770
    Explore at:
    Dataset updated
    Nov 28, 2023
    Dataset provided by
    Spielmann, David
    Salvaneschi, Guido
    Sokolowski, Daniel
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Description

    Programming Languages Infrastructure as Code (PL-IaC) enables IaC programs written in general-purpose programming languages like Python and TypeScript. The currently available PL-IaC solutions are Pulumi and the Cloud Development Kits (CDKs) of Amazon Web Services (AWS) and Terraform. This dataset provides metadata and initial analyses of all public GitHub repositories in August 2022 with an IaC program, including their programming languages, applied testing techniques, and licenses. Further, we provide a shallow copy of the head state of those 7104 repositories whose licenses permit redistribution. The dataset is available under the Open Data Commons Attribution License (ODC-By) v1.0. Contents:

    metadata.zip: The dataset metadata and analysis results as CSV files. scripts-and-logs.zip: Scripts and logs of the dataset creation. LICENSE: The Open Data Commons Attribution License (ODC-By) v1.0 text. README.md: This document. redistributable-repositiories.zip: Shallow copies of the head state of all redistributable repositories with an IaC program. This artifact is part of the ProTI Infrastructure as Code testing project: https://proti-iac.github.io. Metadata The dataset's metadata comprises three tabular CSV files containing metadata about all analyzed repositories, IaC programs, and testing source code files. repositories.csv:

    ID (integer): GitHub repository ID url (string): GitHub repository URL downloaded (boolean): Whether cloning the repository succeeded name (string): Repository name description (string): Repository description licenses (string, list of strings): Repository licenses redistributable (boolean): Whether the repository's licenses permit redistribution created (string, date & time): Time of the repository's creation updated (string, date & time): Time of the last update to the repository pushed (string, date & time): Time of the last push to the repository fork (boolean): Whether the repository is a fork forks (integer): Number of forks archive (boolean): Whether the repository is archived programs (string, list of strings): Project file path of each IaC program in the repository programs.csv:

    ID (string): Project file path of the IaC program repository (integer): GitHub repository ID of the repository containing the IaC program directory (string): Path of the directory containing the IaC program's project file solution (string, enum): PL-IaC solution of the IaC program ("AWS CDK", "CDKTF", "Pulumi") language (string, enum): Programming language of the IaC program (enum values: "csharp", "go", "haskell", "java", "javascript", "python", "typescript", "yaml") name (string): IaC program name description (string): IaC program description runtime (string): Runtime string of the IaC program testing (string, list of enum): Testing techniques of the IaC program (enum values: "awscdk", "awscdk_assert", "awscdk_snapshot", "cdktf", "cdktf_snapshot", "cdktf_tf", "pulumi_crossguard", "pulumi_integration", "pulumi_unit", "pulumi_unit_mocking") tests (string, list of strings): File paths of IaC program's tests testing-files.csv:

    file (string): Testing file path language (string, enum): Programming language of the testing file (enum values: "csharp", "go", "java", "javascript", "python", "typescript") techniques (string, list of enum): Testing techniques used in the testing file (enum values: "awscdk", "awscdk_assert", "awscdk_snapshot", "cdktf", "cdktf_snapshot", "cdktf_tf", "pulumi_crossguard", "pulumi_integration", "pulumi_unit", "pulumi_unit_mocking") keywords (string, list of enum): Keywords found in the testing file (enum values: "/go/auto", "/testing/integration", "@AfterAll", "@BeforeAll", "@Test", "@aws-cdk", "@aws-cdk/assert", "@pulumi.runtime.test", "@pulumi/", "@pulumi/policy", "@pulumi/pulumi/automation", "Amazon.CDK", "Amazon.CDK.Assertions", "Assertions_", "HashiCorp.Cdktf", "IMocks", "Moq", "NUnit", "PolicyPack(", "ProgramTest", "Pulumi", "Pulumi.Automation", "PulumiTest", "ResourceValidationArgs", "ResourceValidationPolicy", "SnapshotTest()", "StackValidationPolicy", "Testing", "Testing_ToBeValidTerraform(", "ToBeValidTerraform(", "Verifier.Verify(", "WithMocks(", "[Fact]", "[TestClass]", "[TestFixture]", "[TestMethod]", "[Test]", "afterAll(", "assertions", "automation", "aws-cdk-lib", "aws-cdk-lib/assert", "aws_cdk", "aws_cdk.assertions", "awscdk", "beforeAll(", "cdktf", "com.pulumi", "def test_", "describe(", "github.com/aws/aws-cdk-go/awscdk", "github.com/hashicorp/terraform-cdk-go/cdktf", "github.com/pulumi/pulumi", "integration", "junit", "pulumi", "pulumi.runtime.setMocks(", "pulumi.runtime.set_mocks(", "pulumi_policy", "pytest", "setMocks(", "set_mocks(", "snapshot", "software.amazon.awscdk.assertions", "stretchr", "test(", "testing", "toBeValidTerraform(", "toMatchInlineSnapshot(", "toMatchSnapshot(", "to_be_valid_terraform(", "unittest", "withMocks(") program (string): Project file path of the testing file's IaC program Dataset Creation scripts-and-logs.zip contains all scripts and logs of the creation of this dataset. In it, executions/executions.log documents the commands that generated this dataset in detail. On a high level, the dataset was created as follows:

    A list of all repositories with a PL-IaC program configuration file was created using search-repositories.py (documented below). The execution took two weeks due to the non-deterministic nature of GitHub's REST API, causing excessive retries. A shallow copy of the head of all repositories was downloaded using download-repositories.py (documented below). Using analysis.ipynb, the repositories were analyzed for the programs' metadata, including the used programming languages and licenses. Based on the analysis, all repositories with at least one IaC program and a redistributable license were packaged into redistributable-repositiories.zip, excluding any node_modules and .git directories. Searching Repositories The repositories are searched through search-repositories.py and saved in a CSV file. The script takes these arguments in the following order:

    Github access token. Name of the CSV output file. Filename to search for. File extensions to search for, separated by commas. Min file size for the search (for all files: 0). Max file size for the search or * for unlimited (for all files: *). Pulumi projects have a Pulumi.yaml or Pulumi.yml (case-sensitive file name) file in their root folder, i.e., (3) is Pulumi and (4) is yml,yaml. https://www.pulumi.com/docs/intro/concepts/project/ AWS CDK projects have a cdk.json (case-sensitive file name) file in their root folder, i.e., (3) is cdk and (4) is json. https://docs.aws.amazon.com/cdk/v2/guide/cli.html CDK for Terraform (CDKTF) projects have a cdktf.json (case-sensitive file name) file in their root folder, i.e., (3) is cdktf and (4) is json. https://www.terraform.io/cdktf/create-and-deploy/project-setup Limitations The script uses the GitHub code search API and inherits its limitations:

    Only forks with more stars than the parent repository are included. Only the repositories' default branches are considered. Only files smaller than 384 KB are searchable. Only repositories with fewer than 500,000 files are considered. Only repositories that have had activity or have been returned in search results in the last year are considered. More details: https://docs.github.com/en/search-github/searching-on-github/searching-code The results of the GitHub code search API are not stable. However, the generally more robust GraphQL API does not support searching for files in repositories: https://stackoverflow.com/questions/45382069/search-for-code-in-github-using-graphql-v4-api Downloading Repositories download-repositories.py downloads all repositories in CSV files generated through search-respositories.py and generates an overview CSV file of the downloads. The script takes these arguments in the following order:

    Name of the repositories CSV files generated through search-repositories.py, separated by commas. Output directory to download the repositories to. Name of the CSV output file. The script only downloads a shallow recursive copy of the HEAD of the repo, i.e., only the main branch's most recent state, including submodules, without the rest of the git history. Each repository is downloaded to a subfolder named by the repository's ID.

  7. h

    the-stack

    • huggingface.co
    • opendatalab.com
    Updated Oct 27, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BigCode (2022). the-stack [Dataset]. https://huggingface.co/datasets/bigcode/the-stack
    Explore at:
    Dataset updated
    Oct 27, 2022
    Dataset authored and provided by
    BigCode
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    Dataset Card for The Stack

      Changelog
    

    Release Description

    v1.0 Initial release of the Stack. Included 30 programming languages and 18 permissive licenses. Note: Three included licenses (MPL/EPL/LGPL) are considered weak copyleft licenses. The resulting near-deduplicated dataset is 3TB in size.

    v1.1 The three copyleft licenses ((MPL/EPL/LGPL) were excluded and the list of permissive licenses extended to 193 licenses in total. The list of programming languages… See the full description on the dataset page: https://huggingface.co/datasets/bigcode/the-stack.

  8. FStarDataSet-V2

    • huggingface.co
    Updated Sep 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Microsoft (2024). FStarDataSet-V2 [Dataset]. https://huggingface.co/datasets/microsoft/FStarDataSet-V2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 4, 2024
    Dataset authored and provided by
    Microsofthttp://microsoft.com/
    License

    https://choosealicense.com/licenses/cdla-permissive-2.0/https://choosealicense.com/licenses/cdla-permissive-2.0/

    Description

    This dataset is the Version 2.0 of microsoft/FStarDataSet.

      Primary-Objective
    

    This dataset's primary objective is to train and evaluate Proof-oriented Programming with AI (PoPAI, in short). Given a specification of a program and proof in F*, the objective of a AI model is to synthesize the implemantation (see below for details about the usage of this dataset, including the input and output).

      Data Format
    

    Each of the examples in this dataset are organized as dictionaries… See the full description on the dataset page: https://huggingface.co/datasets/microsoft/FStarDataSet-V2.

  9. Data from: Code4ML: a Large-scale Dataset of annotated Machine Learning Code...

    • zenodo.org
    csv
    Updated Sep 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous authors; Anonymous authors (2023). Code4ML: a Large-scale Dataset of annotated Machine Learning Code [Dataset]. http://doi.org/10.5281/zenodo.6607065
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous authors; Anonymous authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.

    The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.

    Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.

    The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.

    Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).

    As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).

    The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.

  10. Best Books Ever Dataset

    • zenodo.org
    csv
    Updated Nov 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lorena Casanova Lozano; Sergio Costa Planells; Lorena Casanova Lozano; Sergio Costa Planells (2020). Best Books Ever Dataset [Dataset]. http://doi.org/10.5281/zenodo.4265096
    Explore at:
    csvAvailable download formats
    Dataset updated
    Nov 10, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lorena Casanova Lozano; Sergio Costa Planells; Lorena Casanova Lozano; Sergio Costa Planells
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    The dataset has been collected in the frame of the Prac1 of the subject Tipology and Data Life Cycle of the Master's Degree in Data Science of the Universitat Oberta de Catalunya (UOC).

    The dataset contains 25 variables and 52478 records corresponding to books on the GoodReads Best Books Ever list (the larges list on the site).

    Original code used to retrieve the dataset can be found on github repository: github.com/scostap/goodreads_bbe_dataset

    The data was retrieved in two sets, the first 30000 books and then the remainig 22478. Dates were not parsed and reformated on the second chunk so publishDate and firstPublishDate are representet in a mm/dd/yyyy format for the first 30000 records and Month Day Year for the rest.

    Book cover images can be optionally downloaded from the url in the 'coverImg' field. Python code for doing so and an example can be found on the github repo.

    The 25 fields of the dataset are:

    | Attributes | Definition | Completeness |
    | ------------- | ------------- | ------------- | 
    | bookId | Book Identifier as in goodreads.com | 100 |
    | title | Book title | 100 |
    | series | Series Name | 45 |
    | author | Book's Author | 100 |
    | rating | Global goodreads rating | 100 |
    | description | Book's description | 97 |
    | language | Book's language | 93 |
    | isbn | Book's ISBN | 92 |
    | genres | Book's genres | 91 |
    | characters | Main characters | 26 |
    | bookFormat | Type of binding | 97 |
    | edition | Type of edition (ex. Anniversary Edition) | 9 |
    | pages | Number of pages | 96 |
    | publisher | Editorial | 93 |
    | publishDate | publication date | 98 |
    | firstPublishDate | Publication date of first edition | 59 |
    | awards | List of awards | 20 |
    | numRatings | Number of total ratings | 100 |
    | ratingsByStars | Number of ratings by stars | 97 |
    | likedPercent | Derived field, percent of ratings over 2 starts (as in GoodReads) | 99 |
    | setting | Story setting | 22 |
    | coverImg | URL to cover image | 99 |
    | bbeScore | Score in Best Books Ever list | 100 |
    | bbeVotes | Number of votes in Best Books Ever list | 100 |
    | price | Book's price (extracted from Iberlibro) | 73 |

  11. b

    CPRD codes: ICD-10 equivalent code lists for dementia subtypes - Datasets -...

    • data.bris.ac.uk
    Updated Dec 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). CPRD codes: ICD-10 equivalent code lists for dementia subtypes - Datasets - data.bris [Dataset]. https://data.bris.ac.uk/data/dataset/2h4rmk9v7pw2k23h7vgf9tx1ea
    Explore at:
    Dataset updated
    Dec 11, 2017
    Description

    This dataset contains the ICD-10 code lists used to test the sensitivity and specificity of the Clinical Practice Research Datalink (CPRD) medical code lists for dementia subtypes. The provided code lists are used to define dementia subtypes in linked data from the Hospital Episode Statistic (HES) inpatient dataset and the Office of National Statistics (ONS) death registry, which are then used as the 'gold standard' for comparison against dementia subtypes defined using the CPRD medical code lists. The CPRD medical code lists used in this comparison are available here: Venexia Walker, Neil Davies, Patrick Kehoe, Richard Martin (2017): CPRD codes: neurodegenerative diseases and commonly prescribed drugs. https://doi.org/10.5523/bris.1plm8il42rmlo2a2fqwslwckm2 Complete download (zip, 3.9 KiB)

  12. Open Data Portal Catalogue

    • open.canada.ca
    • datasets.ai
    • +1more
    csv, json, jsonl, png +2
    Updated Jul 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Treasury Board of Canada Secretariat (2025). Open Data Portal Catalogue [Dataset]. https://open.canada.ca/data/en/dataset/c4c5c7f1-bfa6-4ff6-b4a0-c164cb2060f7
    Explore at:
    csv, sqlite, json, png, jsonl, xlsxAvailable download formats
    Dataset updated
    Jul 27, 2025
    Dataset provided by
    Treasury Board of Canadahttps://www.canada.ca/en/treasury-board-secretariat/corporate/about-treasury-board.html
    Treasury Board of Canada Secretariathttp://www.tbs-sct.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The open data portal catalogue is a downloadable dataset containing some key metadata for the general datasets available on the Government of Canada's Open Data portal. Resource 1 is generated using the ckanapi tool (external link) Resources 2 - 8 are generated using the Flatterer (external link) utility. ###Description of resources: 1. Dataset is a JSON Lines (external link) file where the metadata of each Dataset/Open Information Record is one line of JSON. The file is compressed with GZip. The file is heavily nested and recommended for users familiar with working with nested JSON. 2. Catalogue is a XLSX workbook where the nested metadata of each Dataset/Open Information Record is flattened into worksheets for each type of metadata. 3. datasets metadata contains metadata at the dataset level. This is also referred to as the package in some CKAN documentation. This is the main table/worksheet in the SQLite database and XLSX output. 4. Resources Metadata contains the metadata for the resources contained within each dataset. 5. resource views metadata contains the metadata for the views applied to each resource, if a resource has a view configured. 6. datastore fields metadata contains the DataStore information for CSV datasets that have been loaded into the DataStore. This information is displayed in the Data Dictionary for DataStore enabled CSVs. 7. Data Package Fields contains a description of the fields available in each of the tables within the Catalogue, as well as the count of the number of records each table contains. 8. data package entity relation diagram Displays the title and format for column, in each table in the Data Package in the form of a ERD Diagram. The Data Package resource offers a text based version. 9. SQLite Database is a .db database, similar in structure to Catalogue. This can be queried with database or analytical software tools for doing analysis.

  13. MeDAL Dataset

    • kaggle.com
    • opendatalab.com
    • +1more
    zip
    Updated Nov 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    xhlulu (2020). MeDAL Dataset [Dataset]. https://www.kaggle.com/xhlulu/medal-emnlp
    Explore at:
    zip(7324382521 bytes)Available download formats
    Dataset updated
    Nov 16, 2020
    Authors
    xhlulu
    Description

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F2352583%2F868a18fb09d7a1d3da946d74a9857130%2FLogo.PNG?generation=1604973725053566&alt=media" alt="">

    Medical Dataset for Abbreviation Disambiguation for Natural Language Understanding (MeDAL) is a large medical text dataset curated for abbreviation disambiguation, designed for natural language understanding pre-training in the medical domain. It was published at the ClinicalNLP workshop at EMNLP.

    💻 Code 🤗 Dataset (Hugging Face) 💾 Dataset (Kaggle) 💽 Dataset (Zenodo) 📜 Paper (ACL) 📝 Paper (Arxiv)Pre-trained ELECTRA (Hugging Face)

    Downloading the data

    We recommend downloading from Kaggle if you can authenticate through their API. The advantage to Kaggle is that the data is compressed, so it will be faster to download. Links to the data can be found at the top of the readme.

    First, you will need to create an account on kaggle.com. Afterwards, you will need to install the kaggle API: pip install kaggle

    Then, you will need to follow the instructions here to add your username and key. Once that's done, you can run: kaggle datasets download xhlulu/medal-emnlp

    Now, unzip everything and place them inside the data directory: unzip -nq crawl-300d-2M-subword.zip -d data mv data/pretrain_sample/* data/

    Loading FastText Embeddings

    For the LSTM models, we will need to use the fastText embeddings. To do so, first download and extract the weights: wget -nc -P data/ https://dl.fbaipublicfiles.com/fasttext/vectors-english/crawl-300d-2M-subword.zip unzip -nq data/crawl-300d-2M-subword.zip -d data/

    Model Quickstart

    Using Torch Hub

    You can directly load LSTM and LSTM-SA with torch.hub: ```python import torch

    lstm = torch.hub.load("BruceWen120/medal", "lstm") lstm_sa = torch.hub.load("BruceWen120/medal", "lstm_sa") ```

    If you want to use the Electra model, you need to first install transformers: pip install transformers Then, you can load it with torch.hub: python import torch electra = torch.hub.load("BruceWen120/medal", "electra")

    Using Huggingface transformers

    If you are only interested in the pre-trained ELECTRA weights (without the disambiguation head), you can load it directly from the Hugging Face Repository:

    from transformers import AutoModel, AutoTokenizer
    
    model = AutoModel.from_pretrained("xhlu/electra-medal")
    tokenizer = AutoTokenizer.from_pretrained("xhlu/electra-medal")
    

    Citation

    Download the bibtex here, or copy the text below: @inproceedings{wen-etal-2020-medal, title = "{M}e{DAL}: Medical Abbreviation Disambiguation Dataset for Natural Language Understanding Pretraining", author = "Wen, Zhi and Lu, Xing Han and Reddy, Siva", booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/2020.clinicalnlp-1.15", pages = "130--135", }

    License, Terms and Conditions

    The ELECTRA model is licensed under Apache 2.0. The license for the libraries used in this project (transformers, pytorch, etc.) can be found in their respective GitHub repository. Our model is released under a MIT license.

    The original dataset was retrieved and modified from the NLM website. By using this dataset, you are bound by the terms and conditions specified by NLM:

    INTRODUCTION

    Downloading data from the National Library of Medicine FTP servers indicates your acceptance of the following Terms and Conditions: No charges, usage fees or royalties are paid to NLM for this data.

    MEDLINE/PUBMED SPECIFIC TERMS

    NLM freely provides PubMed/MEDLINE data. Please note some PubMed/MEDLINE abstracts may be protected by copyright.

    GENERAL TERMS AND CONDITIONS

    • Users of the data agree to:

      • acknowledge NLM as the source of the data by including the phrase "Courtesy of the U.S. National Library of Medicine" in a clear and conspicuous manner,
      • properly use registration and/or trademark symbols when referring to NLM products, and
      • not indicate or imply that NLM has endorsed its products/services/applications.
    • Users who republish or redistribute the data (services, products or raw data) agree to:

      • maintain the most current version of all distributed data, or
      • make known in a clear and conspicuous manner that the products/services/applications do not reflect the most current/accurate data available from NLM.
    • These data are produced with a reasonable standard of care, but NLM makes no warranties express or implied, including no warranty of merchantability or fitness for particular purpose, regarding the accuracy or completeness of the data. Users agree to hold NLM and the U.S. Government harmless from any liability resulting from errors in the data. NLM disclaims any liability for any consequences due to use, misuse, or interpretation of information contained or not contained in the data.

    • NLM does not provide legal advice regarding copyright, fair use, or other aspects of intellectual property rights. See the NLM Copyright page.

    • NLM reserves the right to change the type and format of its machine-readable data. NLM will take reasonable steps to inform users of any changes to the format of the data before the data are distributed via the announcement section or subscription to email and RSS updates.

  14. h

    reasonir-data

    • huggingface.co
    Updated May 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ReasonIR (2025). reasonir-data [Dataset]. https://huggingface.co/datasets/reasonir/reasonir-data
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset authored and provided by
    ReasonIR
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    ❗Important❗

    Due to legal reasons, we cannot rehost the original positive documents for the hard-query (HQ) data, so we provide a data processing script to download and merge them below.

      ReasonIR Dataset
    

    This dataset contains synthetic examples used to train ReasonIR-8B.

    Paper: https://arxiv.org/abs/2504.20595 Code: https://github.com/facebookresearch/ReasonIR Model: https://huggingface.co/reasonir/ReasonIR-8B

      Varied-Length (VL) Data
    

    For varied-length… See the full description on the dataset page: https://huggingface.co/datasets/reasonir/reasonir-data.

  15. HCPCS Level II

    • kaggle.com
    zip
    Updated Feb 12, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Medicare & Medicaid Services (2019). HCPCS Level II [Dataset]. https://www.kaggle.com/datasets/cms/cms-codes
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Feb 12, 2019
    Dataset authored and provided by
    Centers for Medicare & Medicaid Services
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The Healthcare Common Procedure Coding System (HCPCS, often pronounced by its acronym as "hick picks") is a set of health care procedure codes based on the American Medical Association's Current Procedural Terminology (CPT).

    HCPCS includes three levels of codes: Level I consists of the American Medical Association's Current Procedural Terminology (CPT) and is numeric. Level II codes are alphanumeric and primarily include non-physician services such as ambulance services and prosthetic devices, and represent items and supplies and non-physician services, not covered by CPT-4 codes (Level I). Level III codes, also called local codes, were developed by state Medicaid agencies, Medicare contractors, and private insurers for use in specific programs and jurisdictions. The Health Insurance Portability and Accountability Act of 1996 (HIPAA) instructed CMS to adopt a standard coding systems for reporting medical transactions. The use of Level III codes was discontinued on December 31, 2003, in order to adhere to consistent coding standards.

    Content

    Classification of procedures performed for patients is important for billing and reimbursement in healthcare. The primary classification system used in the United States is Healthcare Common Procedure Coding System (HCPCS), maintained by Centers for Medicare and Medicaid Services (CMS). This system is divided into two levels: level I and level II.

    Level I HCPCS codes classify services rendered by physicians. This system is based on Common Procedure Terminology (CPT), a coding system maintained by the American Medical Association (AMA). Level II codes, which are the focus of this public dataset, are used to identify products, supplies, and services not included in level I codes. The level II codes include items such as ambulance services, durable medical goods, prosthetics, orthotics and supplies used outside a physician’s office.

    Given the ubiquity of administrative data in healthcare, HCPCS coding systems are also commonly used in areas of clinical research such as outcomes based research.

    Update Frequency: Yearly

    Fork this kernel to get started.

    Acknowledgements

    https://bigquery.cloud.google.com/table/bigquery-public-data:cms_codes.hcpcs

    https://cloud.google.com/bigquery/public-data/hcpcs-level2

    Dataset Source: Center for Medicare and Medicaid Services. This dataset is publicly available for anyone to use under the following terms provided by the Dataset Source - http://www.data.gov/privacy-policy#data_policy — and is provided "AS IS" without any warranty, express or implied, from Google. Google disclaims all liability for any damages, direct or indirect, resulting from the use of the dataset.

    Banner Photo by @rawpixel from Unplash.

    Inspiration

    What are the descriptions for a set of HCPCS level II codes?

  16. h

    starcoderdata

    • huggingface.co
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BigCode, starcoderdata [Dataset]. https://huggingface.co/datasets/bigcode/starcoderdata
    Explore at:
    Dataset authored and provided by
    BigCode
    License

    https://choosealicense.com/licenses/other/https://choosealicense.com/licenses/other/

    Description

    StarCoder Training Dataset

      Dataset description
    

    This is the dataset used for training StarCoder and StarCoderBase. It contains 783GB of code in 86 programming languages, and includes 54GB GitHub Issues + 13GB Jupyter notebooks in scripts and text-code pairs, and 32GB of GitHub commits, which is approximately 250 Billion tokens.

      Dataset creation
    

    The creation and filtering of The Stack is explained in the original dataset, we additionally decontaminate and… See the full description on the dataset page: https://huggingface.co/datasets/bigcode/starcoderdata.

  17. i

    High Cost Claims by Zip Code - Dataset - The Indiana Data Hub

    • hub.mph.in.gov
    Updated Sep 14, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). High Cost Claims by Zip Code - Dataset - The Indiana Data Hub [Dataset]. https://hub.mph.in.gov/dataset/high-cost-claims-by-zip-code
    Explore at:
    Dataset updated
    Sep 14, 2017
    Area covered
    Indiana
    Description

    Archived as of 6/26/2025: The datasets will no longer receive updates but the historical data will continue to be available for download. This dataset provides information related to the 100 most costly diagnostic claims. It contains information about the total number of recipients, total number of claims, and total dollar amount, grouped by recipient location. Restricted to claims with service date between 01/2012 to 12/2017. Restricted to top 100 costly diagnosis codes (by total cost). Provider is the billing provider. If a claim has several diagnostic codes, primary diagnosis is used. This data is for research purposes and is not intended to be used for reporting. Due to differences in geographic aggregation, time period considerations, and units of analysis, these numbers may differ from those reported by FSSA.

  18. PLOS Open Science Indicators

    • plos.figshare.com
    zip
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Public Library of Science (2025). PLOS Open Science Indicators [Dataset]. http://doi.org/10.6084/m9.figshare.21687686.v10
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Public Library of Science
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains article metadata and information about Open Science Indicators for approximately 139,000 research articles published in PLOS journals from 1 January 2018 to 30 March 2025 and a set of approximately 28,000 comparator articles published in non-PLOS journals. This is the tenth release of this dataset, which will be updated with new versions on an annual basis.This version of the Open Science Indicators dataset shares the indicators seen in the previous versions as well as fully operationalised protocols and study registration indicators, which were previously only shared in preliminary forms. The v10 dataset focuses on detection of five Open Science practices by analysing the XML of published research articles:Sharing of research data, in particular data shared in data repositoriesSharing of codePosting of preprintsSharing of protocolsSharing of study registrationsThe dataset provides data and code generation and sharing rates, the location of shared data and code (whether in Supporting Information or in an online repository). It also provides preprint, protocol and study registration sharing rates as well as details of the shared output, such as publication date, URL/DOI/Registration Identifier and platform used. Additional data fields are also provided for each article analysed. This release has been run using an updated preprint detection method (see OSI-Methods-Statement_v10_Jul25.pdf for details). Further information on the methods used to collect and analyse the data can be found in Documentation.Further information on the principles and requirements for developing Open Science Indicators is available in https://doi.org/10.6084/m9.figshare.21640889.Data folders/filesData Files folderThis folder contains the main OSI dataset files PLOS-Dataset_v10_Jul25.csv and Comparator-Dataset_v10_Jul25.csv, which containdescriptive metadata, e.g. article title, publication data, author countries, is taken from the article .xml filesadditional information around the Open Science Indicators derived algorithmicallyand the OSI-Summary-statistics_v10_Jul25.xlsx file contains the summary data for both PLOS-Dataset_v10_Jul25.csv and Comparator-Dataset_v10_Jul25.csv.Documentation folderThis file contains documentation related to the main data files. The file OSI-Methods-Statement_v10_Jul25.pdf describes the methods underlying the data collection and analysis. OSI-Column-Descriptions_v10_Jul25.pdf describes the fields used in PLOS-Dataset_v10_Jul25.csv and Comparator-Dataset_v10_Jul25.csv. OSI-Repository-List_v1_Dec22.xlsx lists the repositories and their characteristics used to identify specific repositories in the PLOS-Dataset_v10_Jul25.csv and Comparator-Dataset_v10_Jul25.csv repository fields.The folder also contains documentation originally shared alongside the preliminary versions of the protocols and study registration indicators in order to give fuller details of their detection methods.Contact details for further information:Iain Hrynaszkiewicz, Director, Open Research Solutions, PLOS, ihrynaszkiewicz@plos.org / plos@plos.orgLauren Cadwallader, Open Research Manager, PLOS, lcadwallader@plos.org / plos@plos.orgAcknowledgements:Thanks to Allegra Pearce, Tim Vines, Asura Enkhbayar, Scott Kerr and parth sarin of DataSeer for contributing to data acquisition and supporting information.

  19. Z

    LAU1 dataset

    • data.niaid.nih.gov
    • zenodo.org
    Updated Nov 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Páleník, Michal (2024). LAU1 dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6165135
    Explore at:
    Dataset updated
    Nov 29, 2024
    Dataset authored and provided by
    Páleník, Michal
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Statistical open data on LAU regions of Slovakia, Czech Republic, Poland, Hungary (and other countries in the future). LAU1 regions are called counties, okres, okresy, powiat, járás, járási, NUTS4, LAU, Local Administrative Units, ... and there are 733 of them in this V4 dataset. Overall, we cover 733 regions which are described by 137.828 observations (panel data rows) and more than 1.760.229 data points.

    This LAU dataset contains panel data on population, on age structure of inhabitants, on number and on structure of registered unemployed. Dataset prepared by Michal Páleník. Output files are in json, shapefiles, xls, ods, json, topojson or CSV formats. Downloadable at zenodo.org.

    This dataset consists of:

    data on unemployment (by gender, education and duration of unemployment),

    data on vacancies,

    open data on population in Visegrad counties (by age and gender),

    data on unemployment share.

    Combined latest dataset

    dataset of the latest available data on unemployment, vacancies and population

    dataset includes map contours (shp, topojson or geojson format), relation id in OpenStreetMap, wikidata entry code,

    it also includes NUTS4 code, LAU1 code used by national statistical office and abbreviation of the region (usually license plate),

    source of map contours is OpenStreetMap, licensed under ODbL

    no time series, only most recent data on population and unemployment combined in one output file

    columns: period, lau, name, registered_unemployed, registered_unemployed_females, disponible_unemployed, low_educated, long_term, unemployment_inflow, unemployment_outflow, below_25, over_55, vacancies, pop_period, TOTAL, Y15-64, Y15-64-females, local_lau, osm_id, abbr, wikidata, population_density, area_square_km, way

    Slovakia – SK: 79 LAU1 regions, data for 2024-10-01, 1.659 data,

    Czech Republic – CZ: 77 LAU1 regions, data for 2024-10-01, 1.617 data,

    Poland – PL: 380 LAU1 regions, data for 2024-09-01, 6.840 data,

    Hungary – HU: 197 LAU1 regions, data for 2024-10-01, 2.955 data,

    13.071 data in total.

    column/number of observations description SK CZ PL HU

    period period (month and year) the data is for 79 77 380 197

    lau LAU code of the region 79 77 380 197

    name name of the region in local language 79 77 380 197

    registered_unemployed number of unemployed registered at labour offices 79 77 380 197

    registered_unemployed_females number of unemployed women 79 77 380 197

    disponible_unemployed unemployed able to accept job offer 79 77 0 0

    low_educated unmployed without secondary school (ISCED 0 and 1) 79 77 380 197

    long_term unemployed for longer than 1 year 79 77 380 0

    unemployment_inflow inflow into unemployment 79 77 0 0

    unemployment_outflow outflow from unemployment 79 77 0 0

    below_25 number of unemployed below 25 years of age 79 77 380 197

    over_55 unemployed older than 55 years 79 77 380 197

    vacancies number of vacancies reported by labour offices 79 77 380 0

    pop_period date of population data 79 77 380 197

    TOTAL total population 79 77 380 197

    Y15-64 number of people between 15 and 64 years of age, population in economically active age 79 77 380 197

    Y15-64-females number of women between 15 and 64 years of age 79 77 380 197

    local_lau region's code used by local labour offices 79 77 380 197

    osm_id relation id in OpenStreetMap database 79 77 380 197

    abbr abbreviation used for this region 79 77 380 0

    wikidata wikidata identification code 79 77 380 197

    population_density population density 79 77 380 197

    area_square_km area of the region in square kilometres 79 77 380 197

    way geometry, polygon of given region 79 77 380 197

    Unemployment dataset

    time series of unemployment data in Visegrad regions

    by gender, duration of unemployment, education level, age groups, vacancies,

    columns: period, lau, name, registered_unemployed, registered_unemployed_females, disponible_unemployed, low_educated, long_term, unemployment_inflow, unemployment_outflow, below_25, over_55, vacancies

    Slovakia – SK: 79 LAU1 regions, data for 334 periods (1997-01-01 ... 2024-10-01), 202.082 data,

    Czech Republic – CZ: 77 LAU1 regions, data for 244 periods (2004-07-01 ... 2024-10-01), 147.528 data,

    Poland – PL: 380 LAU1 regions, data for 189 periods (2005-03-01 ... 2024-09-01), 314.100 data,

    Hungary – HU: 197 LAU1 regions, data for 106 periods (2016-01-01 ... 2024-10-01), 104.408 data,

    768.118 data in total.

    column/number of observations description SK CZ PL HU

    period period (month and year) the data is for 26 386 18 788 71 772 20 882

    lau LAU code of the region 26 386 18 788 71 772 20 882

    name name of the region in local language 26 386 18 788 71 772 20 882

    registered_unemployed number of unemployed registered at labour offices 26 386 18 788 71 772 20 882

    registered_unemployed_females number of unemployed women 26 386 18 788 62 676 20 882

    disponible_unemployed unemployed able to accept job offer 25 438 18 788 0 0

    low_educated unmployed without secondary school (ISCED 0 and 1) 11 771 9855 41 388 20 881

    long_term unemployed for longer than 1 year 24 253 9855 41 388 0

    unemployment_inflow inflow into unemployment 26 149 16 478 0 0

    unemployment_outflow outflow from unemployment 26 149 16 478 0 0

    below_25 number of unemployed below 25 years of age 11 929 9855 17 100 20 881

    over_55 unemployed older than 55 years 11 929 9855 17 100 20 882

    vacancies number of vacancies reported by labour offices 11 692 18 788 62 676 0

    Population dataset

    time series on population by gender and 5 year age groups in V4 counties

    columns: period, lau, name, gender, TOTAL, Y00-04, Y05-09, Y10-14, Y15-19, Y20-24, Y25-29, Y30-34, Y35-39, Y40-44, Y45-49, Y50-54, Y55-59, Y60-64, Y65-69, Y70-74, Y75-79, Y80-84, Y85-89, Y90-94, Y_GE95, Y15-64

    Slovakia – SK: 79 LAU1 regions, data for 28 periods (1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 152.628 data,

    Czech Republic – CZ: 78 LAU1 regions, data for 24 periods (2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 125.862 data,

    Poland – PL: 382 LAU1 regions, data for 29 periods (1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 626.941 data,

    Hungary – HU: 197 LAU1 regions, data for 11 periods (2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 86.680 data,

    992.111 data in total.

    column/number of observations description SK CZ PL HU

    period period (month and year) the data is for 6636 5574 32 883 4334

    lau LAU code of the region 6636 5574 32 883 4334

    name name of the region in local language 6636 5574 32 883 4334

    gender gender (male or female) 6636 5574 32 883 4334

    TOTAL total population 6636 5574 32 503 4334

    Y00-04 inhabitants between 00 to 04 years inclusive 6636 5574 32 503 4334

    Y05-09 number of inhabitants between 05 to 09 years of age 6636 5574 32 503 4334

    Y10-14 number of people between 10 to 14 years inclusive 6636 5574 32 503 4334

    Y15-19 number of inhabitants between 15 to 19 years of age 6636 5574 32 503 4334

    Y20-24 number of people between 20 to 24 years inclusive 6636 5574 32 503 4334

    Y25-29 number of inhabitants between 25 to 29 years of age 6636 5574 32 503 4334

    Y30-34 inhabitants between 30 to 34 years inclusive 6636 5574 32 503 4334

    Y35-39 number of inhabitants between 35 to 39 years of age 6636 5574 32 503 4334

    Y40-44 inhabitants between 40 to 44 years inclusive 6636 5574 32 503 4334

    Y45-49 number of inhabitants younger than 49 and older than 45 years 6636 5574 32 503 4334

    Y50-54 inhabitants between 50 to 54 years inclusive 6636 5574 32 503 4334

    Y55-59 number of inhabitants between 55 to 59 years of age 6636 5574 32 503 4334

    Y60-64 inhabitants between 60 to 64 years inclusive 6636 5574 32 503 4334

    Y65-69 number of inhabitants younger than 69 and older than 65 years 6636 5574 32 503 4334

    Y70-74 inhabitants between 70 to 74 years inclusive 6636 5574 24 670 4334

    Y75-79 number of inhabitants between 75 to 79 years of age 6636 5574 24 670 4334

    Y80-84 number of people between 80 to 84 years inclusive 6636 5574 24 670 4334

    Y85-89 number of inhabitants younger than 89 and older than 85 years 6636 5574 0 0

    Y90-94 inhabitants between 90 to 94 years inclusive 6636 5574 0 0

    Y_GE95 number of people 95 years or older 6636 3234 0 0

    Y15-64 number of people between 15 and 64 years of age, population in economically active age 6636 5574 32 503 4334

    Notes

    more examples at www.iz.sk

    NUTS4 / LAU1 / LAU codes for HU and PL are created by me, so they can (and will) change in the future; CZ and SK NUTS4 codes are used by local statistical offices, so they should be more stable

    NUTS4 codes are consistent with NUTS3 codes used by Eurostat

    local_lau variable is an identifier used by local statistical office

    abbr is abbreviation of region's name, used for map purposes (usually cars' license plate code; except for Hungary)

    wikidata is code used by wikidata

    osm_id is region's relation number in the OpenStreetMap database

    Example outputs

    you can download data in CSV, xml, ods, xlsx, shp, SQL, postgis, topojson, geojson or json format at 📥 doi:10.5281/zenodo.6165135

    Counties of Slovakia – unemployment rate in Slovak LAU1 regions

    Regions of the Slovak Republic

    Unemployment of Czechia and Slovakia – unemployment share in LAU1 regions of Slovakia and Czechia

    interactive map on unemployment in Slovakia

    Slovakia – SK, Czech Republic – CZ, Hungary – HU, Poland – PL, NUTS3 regions of Slovakia

    download at 📥 doi:10.5281/zenodo.6165135

    suggested citation: Páleník, M. (2024). LAU1 dataset [Data set]. IZ Bratislava. https://doi.org/10.5281/zenodo.6165135

  20. b

    BVI-DVC Part 1 - Datasets - data.bris

    • data.bris.ac.uk
    Updated Nov 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). BVI-DVC Part 1 - Datasets - data.bris [Dataset]. https://data.bris.ac.uk/data/dataset/3h0hduxrq4awq2ffvhabjzbzi1
    Explore at:
    Dataset updated
    Nov 30, 2021
    Area covered
    British Virgin Islands
    Description

    Deep learning methods are increasingly being applied in the optimisation of video compression algorithms and can achieve significantly enhanced coding gains, compared to conventional approaches. Such approaches often employ Convolutional Neural Networks (CNNs) which are trained on databases with relatively limited content coverage. BVI-DVC is a new extensive and representative video database for training CNN-based coding tools, which contains 772 sequences at various spatial resolutions from 270p to 2160p. Experimental results show that the database produces significant improvements in terms of coding gains over three existing (commonly used) image/video training databases. Complete download (zip, 83.8 GiB)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Kaggle (2025). Meta Kaggle Code [Dataset]. https://www.kaggle.com/datasets/kaggle/meta-kaggle-code/code
Organization logo

Meta Kaggle Code

Kaggle's public data on notebook code

Explore at:
zip(151045619431 bytes)Available download formats
Dataset updated
Jul 31, 2025
Dataset authored and provided by
Kagglehttp://kaggle.com/
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Explore our public notebook content!

Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.

Why we’re releasing this dataset

By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.

Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.

The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!

Sensitive data

While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.

Joining with Meta Kaggle

The files contained here are a subset of the KernelVersions in Meta Kaggle. The file names match the ids in the KernelVersions csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.

File organization

The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.

The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays

Questions / Comments

We love feedback! Let us know in the Discussion tab.

Happy Kaggling!

Search
Clear search
Close search
Google apps
Main menu