100+ datasets found
  1. r

    Dataset for The effects of a number line intervention on calculation skills

    • researchdata.edu.au
    Updated May 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Saskia Kohnen; Rebecca Bull; Carola Ruiz Hornblas (2023). Dataset for The effects of a number line intervention on calculation skills [Dataset]. http://doi.org/10.25949/22799717.V1
    Explore at:
    Dataset updated
    May 18, 2023
    Dataset provided by
    Macquarie University
    Authors
    Saskia Kohnen; Rebecca Bull; Carola Ruiz Hornblas
    Description

    Study information

    The sample included in this dataset represents five children who participated in a number line intervention study. Originally six children were included in the study, but one of them fulfilled the criterion for exclusion after missing several consecutive sessions. Thus, their data is not included in the dataset.

    All participants were currently attending Year 1 of primary school at an independent school in New South Wales, Australia. For children to be able to eligible to participate they had to present with low mathematics achievement by performing at or below the 25th percentile in the Maths Problem Solving and/or Numerical Operations subtests from the Wechsler Individual Achievement Test III (WIAT III A & NZ, Wechsler, 2016). Participants were excluded from participating if, as reported by their parents, they have any other diagnosed disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, developmental language disorder, cerebral palsy or uncorrected sensory disorders.

    The study followed a multiple baseline case series design, with a baseline phase, a treatment phase, and a post-treatment phase. The baseline phase varied between two and three measurement points, the treatment phase varied between four and seven measurement points, and all participants had 1 post-treatment measurement point.

    The number of measurement points were distributed across participants as follows:

    Participant 1 – 3 baseline, 6 treatment, 1 post-treatment

    Participant 3 – 2 baseline, 7 treatment, 1 post-treatment

    Participant 5 – 2 baseline, 5 treatment, 1 post-treatment

    Participant 6 – 3 baseline, 4 treatment, 1 post-treatment

    Participant 7 – 2 baseline, 5 treatment, 1 post-treatment

    In each session across all three phases children were assessed in their performance on a number line estimation task, a single-digit computation task, a multi-digit computation task, a dot comparison task and a number comparison task. Furthermore, during the treatment phase, all children completed the intervention task after these assessments. The order of the assessment tasks varied randomly between sessions.


    Measures

    Number Line Estimation. Children completed a computerised bounded number line task (0-100). The number line is presented in the middle of the screen, and the target number is presented above the start point of the number line to avoid signalling the midpoint (Dackermann et al., 2018). Target numbers included two non-overlapping sets (trained and untrained) of 30 items each. Untrained items were assessed on all phases of the study. Trained items were assessed independent of the intervention during baseline and post-treatment phases, and performance on the intervention is used to index performance on the trained set during the treatment phase. Within each set, numbers were equally distributed throughout the number range, with three items within each ten (0-10, 11-20, 21-30, etc.). Target numbers were presented in random order. Participants did not receive performance-based feedback. Accuracy is indexed by percent absolute error (PAE) [(number estimated - target number)/ scale of number line] x100.


    Single-Digit Computation. The task included ten additions with single-digit addends (1-9) and single-digit results (2-9). The order was counterbalanced so that half of the additions present the lowest addend first (e.g., 3 + 5) and half of the additions present the highest addend first (e.g., 6 + 3). This task also included ten subtractions with single-digit minuends (3-9), subtrahends (1-6) and differences (1-6). The items were presented horizontally on the screen accompanied by a sound and participants were required to give a verbal response. Participants did not receive performance-based feedback. Performance on this task was indexed by item-based accuracy.


    Multi-digit computational estimation. The task included eight additions and eight subtractions presented with double-digit numbers and three response options. None of the response options represent the correct result. Participants were asked to select the option that was closest to the correct result. In half of the items the calculation involved two double-digit numbers, and in the other half one double and one single digit number. The distance between the correct response option and the exact result of the calculation was two for half of the trials and three for the other half. The calculation was presented vertically on the screen with the three options shown below. The calculations remained on the screen until participants responded by clicking on one of the options on the screen. Participants did not receive performance-based feedback. Performance on this task is measured by item-based accuracy.


    Dot Comparison and Number Comparison. Both tasks included the same 20 items, which were presented twice, counterbalancing left and right presentation. Magnitudes to be compared were between 5 and 99, with four items for each of the following ratios: .91, .83, .77, .71, .67. Both quantities were presented horizontally side by side, and participants were instructed to press one of two keys (F or J), as quickly as possible, to indicate the largest one. Items were presented in random order and participants did not receive performance-based feedback. In the non-symbolic comparison task (dot comparison) the two sets of dots remained on the screen for a maximum of two seconds (to prevent counting). Overall area and convex hull for both sets of dots is kept constant following Guillaume et al. (2020). In the symbolic comparison task (Arabic numbers), the numbers remained on the screen until a response was given. Performance on both tasks was indexed by accuracy.


    The Number Line Intervention

    During the intervention sessions, participants estimated the position of 30 Arabic numbers in a 0-100 bounded number line. As a form of feedback, within each item, the participants’ estimate remained visible, and the correct position of the target number appeared on the number line. When the estimate’s PAE was lower than 2.5, a message appeared on the screen that read “Excellent job”, when PAE was between 2.5 and 5 the message read “Well done, so close! and when PAE was higher than 5 the message read “Good try!” Numbers were presented in random order.


    Variables in the dataset

    Age = age in ‘years, months’ at the start of the study

    Sex = female/male/non-binary or third gender/prefer not to say (as reported by parents)

    Math_Problem_Solving_raw = Raw score on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Math_Problem_Solving_Percentile = Percentile equivalent on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Num_Ops_Raw = Raw score on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

    Math_Problem_Solving_Percentile = Percentile equivalent on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).


    The remaining variables refer to participants’ performance on the study tasks. Each variable name is composed by three sections. The first one refers to the phase and session. For example, Base1 refers to the first measurement point of the baseline phase, Treat1 to the first measurement point on the treatment phase, and post1 to the first measurement point on the post-treatment phase.


    The second part of the variable name refers to the task, as follows:

    DC = dot comparison

    SDC = single-digit computation

    NLE_UT = number line estimation (untrained set)

    NLE_T= number line estimation (trained set)

    CE = multidigit computational estimation

    NC = number comparison

    The final part of the variable name refers to the type of measure being used (i.e., acc = total correct responses and pae = percent absolute error).


    Thus, variable Base2_NC_acc corresponds to accuracy on the number comparison task during the second measurement point of the baseline phase and Treat3_NLE_UT_pae refers to the percent absolute error on the untrained set of the number line task during the third session of the Treatment phase.





  2. TIGER/Line Shapefile, 2023, County, Los Alamos County, NM, Address...

    • catalog.data.gov
    Updated Dec 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Geospatial Products Branch (Point of Contact) (2023). TIGER/Line Shapefile, 2023, County, Los Alamos County, NM, Address Range-Feature [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2023-county-los-alamos-county-nm-address-range-feature
    Explore at:
    Dataset updated
    Dec 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Los Alamos County, New Mexico
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Feature Shapefile (ADDRFEAT.dbf) contains the geospatial edge geometry and attributes of all unsuppressed address ranges for a county or county equivalent area. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. Single-address address ranges have been suppressed to maintain the confidentiality of the addresses they describe. Multiple coincident address range feature edge records are represented in the shapefile if more than one left or right address ranges are associated to the edge. The ADDRFEAT shapefile contains a record for each address range to street name combination. Address range associated to more than one street name are also represented by multiple coincident address range feature edge records. Note that the ADDRFEAT shapefile includes all unsuppressed address ranges compared to the All Lines Shapefile (EDGES.shp) which only includes the most inclusive address range associated with each side of a street edge. The TIGER/Line shapefile contain potential address ranges, not individual addresses. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.

  3. H

    Large Dataset of Generalization Patterns in the Number Game

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Aug 10, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eric J. Bigelow; Steven T. Piantadosi (2018). Large Dataset of Generalization Patterns in the Number Game [Dataset]. http://doi.org/10.7910/DVN/A8ZWLF
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 10, 2018
    Dataset provided by
    Harvard Dataverse
    Authors
    Eric J. Bigelow; Steven T. Piantadosi
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    272,700 two-alternative forced choice responses in a simple numerical task modeled after Tenenbaum (1999, 2000), collected from 606 Amazon Mechanical Turk workers. Subjects were shown sets of numbers length 1 to 4 from the range 1 to 100 (e.g. {12, 16}), and asked what other numbers were likely to belong to that set (e.g. 1, 5, 2, 98). Their generalization patterns reflect both rule-like (e.g. “even numbers,” “powers of two”) and distance-based (e.g. numbers near 50) generalization. This data set is available for further analysis of these simple and intuitive inferences, developing of hands-on modeling instruction, and attempts to understand how probability and rules interact in human cognition.

  4. o

    Range Line Road Cross Street Data in Newton, WI

    • ownerly.com
    Updated Dec 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ownerly (2021). Range Line Road Cross Street Data in Newton, WI [Dataset]. https://www.ownerly.com/wi/newton/range-line-rd-home-details
    Explore at:
    Dataset updated
    Dec 16, 2021
    Dataset authored and provided by
    Ownerly
    Area covered
    Wisconsin, Newton
    Description

    This dataset provides information about the number of properties, residents, and average property values for Range Line Road cross streets in Newton, WI.

  5. d

    Data from: Accounting for nonlinear responses to traits improves range shift...

    • datadryad.org
    • search.dataone.org
    zip
    Updated Apr 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Cannistra; Lauren Buckley (2024). Accounting for nonlinear responses to traits improves range shift predictions [Dataset]. http://doi.org/10.5061/dryad.wstqjq2v8
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 3, 2024
    Dataset provided by
    Dryad
    Authors
    Anthony Cannistra; Lauren Buckley
    Description

    We assess model performance using six datasets encompassing a broad taxonomic range. The number of species per dataset ranges from 28 to 239 (mean=118, median=94), and range shifts were observed over periods ranging from 20 to 100+ years. Each dataset was derived from previous evaluations of traits as range shift predictors and consists of a list of focal species, associated species-level traits, and a range shift metric.

  6. N

    Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1e392ff-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Grass Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Grass Range.

    Key observations

    Largest age group (population): Male # 35-39 years (7) | Female # 70-74 years (36). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Grass Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Grass Range is shown in the following column.
    • Population (Female): The female population in the Grass Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Grass Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here

  7. N

    Grass Range, MT Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/grass-range-mt-population-by-age/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Feb 22, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the Grass Range, MT population pyramid, which represents the Grass Range population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for Grass Range, MT, is 17.1.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for Grass Range, MT, is 160.0.
    • Total dependency ratio for Grass Range, MT is 177.1.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for Grass Range, MT is 0.6.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the Grass Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Grass Range for the selected age group is shown in the following column.
    • Population (Female): The female population in the Grass Range for the selected age group is shown in the following column.
    • Total Population: The total population of the Grass Range for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Age. You can refer the same here

  8. Analysis of Number of Employers by Payroll and Employee Range

    • data.gov.hk
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.hk, Analysis of Number of Employers by Payroll and Employee Range [Dataset]. https://data.gov.hk/en-data/dataset/hk-ird-ird_json-payroll-er
    Explore at:
    Dataset provided by
    data.gov.hk
    Description

    Statistics on number of employers by payroll and employee range

  9. N

    Dataset for Grass Range, MT Census Bureau Income Distribution by Gender

    • neilsberg.com
    Updated Jan 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Dataset for Grass Range, MT Census Bureau Income Distribution by Gender [Dataset]. https://www.neilsberg.com/research/datasets/b3b45159-abcb-11ee-8b96-3860777c1fe6/
    Explore at:
    Dataset updated
    Jan 9, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Grass Range household income by gender. The dataset can be utilized to understand the gender-based income distribution of Grass Range income.

    Content

    The dataset will have the following datasets when applicable

    Please note: The 2020 1-Year ACS estimates data was not reported by the Census Bureau due to the impact on survey collection and analysis caused by COVID-19. Consequently, median household income data for 2020 is unavailable for large cities (population 65,000 and above).

    • Grass Range, MT annual median income by work experience and sex dataset : Aged 15+, 2010-2022 (in 2022 inflation-adjusted dollars)
    • Grass Range, MT annual income distribution by work experience and gender dataset (Number of individuals ages 15+ with income, 2021)

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Interested in deeper insights and visual analysis?

    Explore our comprehensive data analysis and visual representations for a deeper understanding of Grass Range income distribution by gender. You can refer the same here

  10. c

    Suspension Rate by Grade Range - Datasets - CTData.org

    • data.ctdata.org
    Updated Mar 17, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Suspension Rate by Grade Range - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/suspension-rate-by-grade-range
    Explore at:
    Dataset updated
    Mar 17, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Suspension Rate by Grade Range reports the percentage of students receiving at least one sanction (ISS, OSS, EXP) by grade range.

  11. Public Land Survey System Quarter Sections (Feature Layer)

    • agdatacommons.nal.usda.gov
    • datasets.ai
    • +6more
    bin
    Updated Apr 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Public Land Survey System Quarter Sections (Feature Layer) [Dataset]. https://agdatacommons.nal.usda.gov/articles/dataset/Public_Land_Survey_System_Quarter_Sections_Feature_Layer_/25974238
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 22, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This Quarter Section feature class depicts PLSS Second Divisions . PLSS townships are subdivided in a spatial hierarchy of first, second, and third division. These divisions are typically aliquot parts ranging in size from 640 acres to 160 to 40 acres, and subsequently all the way down to 2.5 acres. The data in this feature class was translated from the PLSSSecondDiv feature class in the original production data model, which defined the second division for a specific parcel of land. MetadataThis record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService OGC WMS CSV Shapefile GeoJSON KML For complete information, please visit https://data.gov.

  12. Cars comparison

    • kaggle.com
    Updated Apr 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HILLOL DAS (2021). Cars comparison [Dataset]. https://www.kaggle.com/hilloldas/cars-comparison/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 13, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    HILLOL DAS
    Description

    Dataset

    This dataset was created by HILLOL DAS

    Contents

  13. TIGER/Line Shapefile, 2022, County, Alachua County, FL, Address Ranges...

    • catalog.data.gov
    Updated Jan 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Commerce, U.S. Census Bureau, Geography Division, Spatial Data Collection and Products Branch (Point of Contact) (2024). TIGER/Line Shapefile, 2022, County, Alachua County, FL, Address Ranges Relationship File [Dataset]. https://catalog.data.gov/dataset/tiger-line-shapefile-2022-county-alachua-county-fl-address-ranges-relationship-file
    Explore at:
    Dataset updated
    Jan 27, 2024
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Area covered
    Florida, Alachua County
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The Address Ranges Relationship File (ADDR.dbf) contains the attributes of each address range. Each address range applies to a single edge and has a unique address range identifier (ARID) value. The edge to which an address range applies can be determined by linking the address range to the All Lines Shapefile (EDGES.shp) using the permanent topological edge identifier (TLID) attribute. Multiple address ranges can apply to the same edge since an edge can have multiple address ranges. Note that the most inclusive address range associated with each side of a street edge already appears in the All Lines Shapefile (EDGES.shp). The TIGER/Line Files contain potential address ranges, not individual addresses. The term "address range" refers to the collection of all possible structure numbers from the first structure number to the last structure number and all numbers of a specified parity in between along an edge side relative to the direction in which the edge is coded. The address ranges in the TIGER/Line Files are potential ranges that include the full range of possible structure numbers even though the actual structures may not exist.

  14. o

    Range Street Cross Street Data in Wolcott, IN

    • ownerly.com
    Updated Dec 8, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ownerly (2021). Range Street Cross Street Data in Wolcott, IN [Dataset]. https://www.ownerly.com/in/wolcott/range-st-home-details
    Explore at:
    Dataset updated
    Dec 8, 2021
    Dataset authored and provided by
    Ownerly
    Area covered
    Wolcott, South Range Street, North Range Street
    Description

    This dataset provides information about the number of properties, residents, and average property values for Range Street cross streets in Wolcott, IN.

  15. N

    South Range, MI Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). South Range, MI Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e200fba9-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, South Range
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of South Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for South Range. The dataset can be utilized to understand the population distribution of South Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in South Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for South Range.

    Key observations

    Largest age group (population): Male # 20-24 years (49) | Female # 20-24 years (50). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the South Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the South Range is shown in the following column.
    • Population (Female): The female population in the South Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in South Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range Population by Gender. You can refer the same here

  16. f

    Summary descriptive statistics of TIMSS dataset.

    • plos.figshare.com
    xls
    Updated Feb 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Fries; Sandra Oberleiter; Jakob Pietschnig (2024). Summary descriptive statistics of TIMSS dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0297033.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Feb 2, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Jonathan Fries; Sandra Oberleiter; Jakob Pietschnig
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Regression ranks among the most popular statistical analysis methods across many research areas, including psychology. Typically, regression coefficients are displayed in tables. While this mode of presentation is information-dense, extensive tables can be cumbersome to read and difficult to interpret. Here, we introduce three novel visualizations for reporting regression results. Our methods allow researchers to arrange large numbers of regression models in a single plot. Using regression results from real-world as well as simulated data, we demonstrate the transformations which are necessary to produce the required data structure and how to subsequently plot the results. The proposed methods provide visually appealing ways to report regression results efficiently and intuitively. Potential applications range from visual screening in the model selection stage to formal reporting in research papers. The procedure is fully reproducible using the provided code and can be executed via free-of-charge, open-source software routines in R.

  17. w

    Dataset of books series that contain Blizzard Range

    • workwithdata.com
    Updated Nov 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of books series that contain Blizzard Range [Dataset]. https://www.workwithdata.com/datasets/book-series?f=1&fcol0=j0-book&fop0=%3D&fval0=Blizzard+Range&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book series. It has 1 row and is filtered where the books is Blizzard Range. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  18. R

    Dataset for "High-throughput phenotyping to characterise range use behaviour...

    • entrepot.recherche.data.gouv.fr
    bin +4
    Updated Jan 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Julie Collet; Julie Collet; Claire Bonnefous; Claire Bonnefous; Karine Germain; Karine Germain; Laure Ravon; Laure Ravon; Ludovic Calandreau; Ludovic Calandreau; Vanessa Guesdon; Vanessa Guesdon; Anne Collin; Anne Collin; Elisabeth Le Bihan-Duval; Elisabeth Le Bihan-Duval; Sandrine Mignon-Grasteau; Sandrine Mignon-Grasteau (2024). Dataset for "High-throughput phenotyping to characterise range use behaviour in broiler chickens" [Dataset]. http://doi.org/10.57745/JUDHTG
    Explore at:
    tsv(13468), bin(7829), bin(7706), txt(1910), tsv(5600), text/comma-separated-values(1374092123), tsv(12835), bin(7008), text/comma-separated-values(1057246321), text/comma-separated-values(2204116241), type/x-r-syntax(69557), tsv(44362)Available download formats
    Dataset updated
    Jan 31, 2024
    Dataset provided by
    Recherche Data Gouv
    Authors
    Julie Collet; Julie Collet; Claire Bonnefous; Claire Bonnefous; Karine Germain; Karine Germain; Laure Ravon; Laure Ravon; Ludovic Calandreau; Ludovic Calandreau; Vanessa Guesdon; Vanessa Guesdon; Anne Collin; Anne Collin; Elisabeth Le Bihan-Duval; Elisabeth Le Bihan-Duval; Sandrine Mignon-Grasteau; Sandrine Mignon-Grasteau
    License

    https://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html

    Time period covered
    Mar 31, 2021 - Dec 23, 2021
    Dataset funded by
    European Commission
    Description

    A key characteristic of free-range chicken farming is to enable chickens to spend time outdoors. However, each chicken may use the available areas for roaming in variable ways. To check if, and how, broilers use their outdoor range at an individual level, we need to reliably characterise range use behaviour. Traditional methods relying on visual scans require significant time investment and only provide discontinuous information. Passive RFID (Radio Frequency Identification) systems enable tracking individually tagged chickens’ when they go through pop-holes; hence they only provide partial information on the movements of individual chickens. Here, we describe a new method to measure chickens’ range use and test its reliability on three ranges each containing a different breed. We used an active RFID system to localise chickens in their barn, or in one of nine zones of their range, every 30 seconds and assessed range-use behaviour in 600 chickens belonging to three breeds of slow- or medium-growing broilers used for outdoor production (all < 40g daily weight gain). From those real-time locations, we determined five measures to describe daily range use: time spent in the barn, number of outdoor accesses, number of zones visited in a day, gregariousness (an index that increases when birds spend time in zones where other birds are), and numbers of zone changes. Principal Component Analyses (PCAs) were performed on those measures, in each production system, to create two synthetic indicators of chickens’ range use behaviour. Our dataset includes the files needed to calibrate the system (supplementary materials), the data files used in the publication and the associated codes.

  19. N

    South Range, MI Population Pyramid Dataset: Age Groups, Male and Female...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). South Range, MI Population Pyramid Dataset: Age Groups, Male and Female Population, and Total Population for Demographics Analysis [Dataset]. https://www.neilsberg.com/research/datasets/63632866-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, South Range
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Total Population for Age Groups, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) male population, (b) female population and (b) total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the data for the South Range, MI population pyramid, which represents the South Range population distribution across age and gender, using estimates from the U.S. Census Bureau American Community Survey 5-Year estimates. It lists the male and female population for each age group, along with the total population for those age groups. Higher numbers at the bottom of the table suggest population growth, whereas higher numbers at the top indicate declining birth rates. Furthermore, the dataset can be utilized to understand the youth dependency ratio, old-age dependency ratio, total dependency ratio, and potential support ratio.

    Key observations

    • Youth dependency ratio, which is the number of children aged 0-14 per 100 persons aged 15-64, for South Range, MI, is 16.9.
    • Old-age dependency ratio, which is the number of persons aged 65 or over per 100 persons aged 15-64, for South Range, MI, is 24.6.
    • Total dependency ratio for South Range, MI is 41.5.
    • Potential support ratio, which is the number of youth (working age population) per elderly, for South Range, MI is 4.1.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group for the South Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the South Range for the selected age group is shown in the following column.
    • Population (Female): The female population in the South Range for the selected age group is shown in the following column.
    • Total Population: The total population of the South Range for the selected age group is shown in the following column.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range Population by Age. You can refer the same here

  20. Z

    Wallhack1.8k Dataset | Data Augmentation Techniques for Cross-Domain WiFi...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Apr 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kampel, Martin (2025). Wallhack1.8k Dataset | Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8188998
    Explore at:
    Dataset updated
    Apr 4, 2025
    Dataset provided by
    Kampel, Martin
    Strohmayer, Julian
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repository contains the Wallhack1.8k dataset for WiFi-based long-range activity recognition in Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)/Through-Wall scenarios, as proposed in [1,2], as well as the CAD models (of 3D-printable parts) of the WiFi systems proposed in [2].

    PyTroch Dataloader

    A minimal PyTorch dataloader for the Wallhack1.8k dataset is provided at: https://github.com/StrohmayerJ/wallhack1.8k

    Dataset Description

    The Wallhack1.8k dataset comprises 1,806 CSI amplitude spectrograms (and raw WiFi packet time series) corresponding to three activity classes: "no presence," "walking," and "walking + arm-waving." WiFi packets were transmitted at a frequency of 100 Hz, and each spectrogram captures a temporal context of approximately 4 seconds (400 WiFi packets).

    To assess cross-scenario and cross-system generalization, WiFi packet sequences were collected in LoS and through-wall (NLoS) scenarios, utilizing two different WiFi systems (BQ: biquad antenna and PIFA: printed inverted-F antenna). The dataset is structured accordingly:

    LOS/BQ/ <- WiFi packets collected in the LoS scenario using the BQ system

    LOS/PIFA/ <- WiFi packets collected in the LoS scenario using the PIFA system

    NLOS/BQ/ <- WiFi packets collected in the NLoS scenario using the BQ system

    NLOS/PIFA/ <- WiFi packets collected in the NLoS scenario using the PIFA system

    These directories contain the raw WiFi packet time series (see Table 1). Each row represents a single WiFi packet with the complex CSI vector H being stored in the "data" field and the class label being stored in the "class" field. H is of the form [I, R, I, R, ..., I, R], where two consecutive entries represent imaginary and real parts of complex numbers (the Channel Frequency Responses of subcarriers). Taking the absolute value of H (e.g., via numpy.abs(H)) yields the subcarrier amplitudes A.

    To extract the 52 L-LTF subcarriers used in [1], the following indices of A are to be selected:

    52 L-LTF subcarriers

    csi_valid_subcarrier_index = [] csi_valid_subcarrier_index += [i for i in range(6, 32)] csi_valid_subcarrier_index += [i for i in range(33, 59)]

    Additional 56 HT-LTF subcarriers can be selected via:

    56 HT-LTF subcarriers

    csi_valid_subcarrier_index += [i for i in range(66, 94)]
    csi_valid_subcarrier_index += [i for i in range(95, 123)]

    For more details on subcarrier selection, see ESP-IDF (Section Wi-Fi Channel State Information) and esp-csi.

    Extracted amplitude spectrograms with the corresponding label files of the train/validation/test split: "trainLabels.csv," "validationLabels.csv," and "testLabels.csv," can be found in the spectrograms/ directory.

    The columns in the label files correspond to the following: [Spectrogram index, Class label, Room label]

    Spectrogram index: [0, ..., n]

    Class label: [0,1,2], where 0 = "no presence", 1 = "walking", and 2 = "walking + arm-waving."

    Room label: [0,1,2,3,4,5], where labels 1-5 correspond to the room number in the NLoS scenario (see Fig. 3 in [1]). The label 0 corresponds to no room and is used for the "no presence" class.

    Dataset Overview:

    Table 1: Raw WiFi packet sequences.

    Scenario System "no presence" / label 0 "walking" / label 1 "walking + arm-waving" / label 2 Total

    LoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    LoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    NLoS BQ b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    NLoS PIFA b1.csv w1.csv, w2.csv, w3.csv, w4.csv and w5.csv ww1.csv, ww2.csv, ww3.csv, ww4.csv and ww5.csv

    4 20 20 44

    Table 2: Sample/Spectrogram distribution across activity classes in Wallhack1.8k.

    Scenario System

    "no presence" / label 0

    "walking" / label 1

    "walking + arm-waving" / label 2 Total

    LoS BQ 149 154 155

    LoS PIFA 149 160 152

    NLoS BQ 148 150 152

    NLoS PIFA 143 147 147

    589 611 606 1,806

    Download and UseThis data may be used for non-commercial research purposes only. If you publish material based on this data, we request that you include a reference to one of our papers [1,2].

    [1] Strohmayer, Julian, and Martin Kampel. (2024). “Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition”, In IFIP International Conference on Artificial Intelligence Applications and Innovations (pp. 42-56). Cham: Springer Nature Switzerland, doi: https://doi.org/10.1007/978-3-031-63211-2_4.

    [2] Strohmayer, Julian, and Martin Kampel., “Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition,” 2024 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 2024, pp. 3594-3599, doi: https://doi.org/10.1109/ICIP51287.2024.10647666.

    BibTeX citations:

    @inproceedings{strohmayer2024data, title={Data Augmentation Techniques for Cross-Domain WiFi CSI-Based Human Activity Recognition}, author={Strohmayer, Julian and Kampel, Martin}, booktitle={IFIP International Conference on Artificial Intelligence Applications and Innovations}, pages={42--56}, year={2024}, organization={Springer}}@INPROCEEDINGS{10647666, author={Strohmayer, Julian and Kampel, Martin}, booktitle={2024 IEEE International Conference on Image Processing (ICIP)}, title={Directional Antenna Systems for Long-Range Through-Wall Human Activity Recognition}, year={2024}, volume={}, number={}, pages={3594-3599}, keywords={Visualization;Accuracy;System performance;Directional antennas;Directive antennas;Reflector antennas;Sensors;Human Activity Recognition;WiFi;Channel State Information;Through-Wall Sensing;ESP32}, doi={10.1109/ICIP51287.2024.10647666}}

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Saskia Kohnen; Rebecca Bull; Carola Ruiz Hornblas (2023). Dataset for The effects of a number line intervention on calculation skills [Dataset]. http://doi.org/10.25949/22799717.V1

Dataset for The effects of a number line intervention on calculation skills

Explore at:
Dataset updated
May 18, 2023
Dataset provided by
Macquarie University
Authors
Saskia Kohnen; Rebecca Bull; Carola Ruiz Hornblas
Description

Study information

The sample included in this dataset represents five children who participated in a number line intervention study. Originally six children were included in the study, but one of them fulfilled the criterion for exclusion after missing several consecutive sessions. Thus, their data is not included in the dataset.

All participants were currently attending Year 1 of primary school at an independent school in New South Wales, Australia. For children to be able to eligible to participate they had to present with low mathematics achievement by performing at or below the 25th percentile in the Maths Problem Solving and/or Numerical Operations subtests from the Wechsler Individual Achievement Test III (WIAT III A & NZ, Wechsler, 2016). Participants were excluded from participating if, as reported by their parents, they have any other diagnosed disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, intellectual disability, developmental language disorder, cerebral palsy or uncorrected sensory disorders.

The study followed a multiple baseline case series design, with a baseline phase, a treatment phase, and a post-treatment phase. The baseline phase varied between two and three measurement points, the treatment phase varied between four and seven measurement points, and all participants had 1 post-treatment measurement point.

The number of measurement points were distributed across participants as follows:

Participant 1 – 3 baseline, 6 treatment, 1 post-treatment

Participant 3 – 2 baseline, 7 treatment, 1 post-treatment

Participant 5 – 2 baseline, 5 treatment, 1 post-treatment

Participant 6 – 3 baseline, 4 treatment, 1 post-treatment

Participant 7 – 2 baseline, 5 treatment, 1 post-treatment

In each session across all three phases children were assessed in their performance on a number line estimation task, a single-digit computation task, a multi-digit computation task, a dot comparison task and a number comparison task. Furthermore, during the treatment phase, all children completed the intervention task after these assessments. The order of the assessment tasks varied randomly between sessions.


Measures

Number Line Estimation. Children completed a computerised bounded number line task (0-100). The number line is presented in the middle of the screen, and the target number is presented above the start point of the number line to avoid signalling the midpoint (Dackermann et al., 2018). Target numbers included two non-overlapping sets (trained and untrained) of 30 items each. Untrained items were assessed on all phases of the study. Trained items were assessed independent of the intervention during baseline and post-treatment phases, and performance on the intervention is used to index performance on the trained set during the treatment phase. Within each set, numbers were equally distributed throughout the number range, with three items within each ten (0-10, 11-20, 21-30, etc.). Target numbers were presented in random order. Participants did not receive performance-based feedback. Accuracy is indexed by percent absolute error (PAE) [(number estimated - target number)/ scale of number line] x100.


Single-Digit Computation. The task included ten additions with single-digit addends (1-9) and single-digit results (2-9). The order was counterbalanced so that half of the additions present the lowest addend first (e.g., 3 + 5) and half of the additions present the highest addend first (e.g., 6 + 3). This task also included ten subtractions with single-digit minuends (3-9), subtrahends (1-6) and differences (1-6). The items were presented horizontally on the screen accompanied by a sound and participants were required to give a verbal response. Participants did not receive performance-based feedback. Performance on this task was indexed by item-based accuracy.


Multi-digit computational estimation. The task included eight additions and eight subtractions presented with double-digit numbers and three response options. None of the response options represent the correct result. Participants were asked to select the option that was closest to the correct result. In half of the items the calculation involved two double-digit numbers, and in the other half one double and one single digit number. The distance between the correct response option and the exact result of the calculation was two for half of the trials and three for the other half. The calculation was presented vertically on the screen with the three options shown below. The calculations remained on the screen until participants responded by clicking on one of the options on the screen. Participants did not receive performance-based feedback. Performance on this task is measured by item-based accuracy.


Dot Comparison and Number Comparison. Both tasks included the same 20 items, which were presented twice, counterbalancing left and right presentation. Magnitudes to be compared were between 5 and 99, with four items for each of the following ratios: .91, .83, .77, .71, .67. Both quantities were presented horizontally side by side, and participants were instructed to press one of two keys (F or J), as quickly as possible, to indicate the largest one. Items were presented in random order and participants did not receive performance-based feedback. In the non-symbolic comparison task (dot comparison) the two sets of dots remained on the screen for a maximum of two seconds (to prevent counting). Overall area and convex hull for both sets of dots is kept constant following Guillaume et al. (2020). In the symbolic comparison task (Arabic numbers), the numbers remained on the screen until a response was given. Performance on both tasks was indexed by accuracy.


The Number Line Intervention

During the intervention sessions, participants estimated the position of 30 Arabic numbers in a 0-100 bounded number line. As a form of feedback, within each item, the participants’ estimate remained visible, and the correct position of the target number appeared on the number line. When the estimate’s PAE was lower than 2.5, a message appeared on the screen that read “Excellent job”, when PAE was between 2.5 and 5 the message read “Well done, so close! and when PAE was higher than 5 the message read “Good try!” Numbers were presented in random order.


Variables in the dataset

Age = age in ‘years, months’ at the start of the study

Sex = female/male/non-binary or third gender/prefer not to say (as reported by parents)

Math_Problem_Solving_raw = Raw score on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

Math_Problem_Solving_Percentile = Percentile equivalent on the Math Problem Solving subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

Num_Ops_Raw = Raw score on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).

Math_Problem_Solving_Percentile = Percentile equivalent on the Numerical Operations subtest from the WIAT III (WIAT III A & NZ, Wechsler, 2016).


The remaining variables refer to participants’ performance on the study tasks. Each variable name is composed by three sections. The first one refers to the phase and session. For example, Base1 refers to the first measurement point of the baseline phase, Treat1 to the first measurement point on the treatment phase, and post1 to the first measurement point on the post-treatment phase.


The second part of the variable name refers to the task, as follows:

DC = dot comparison

SDC = single-digit computation

NLE_UT = number line estimation (untrained set)

NLE_T= number line estimation (trained set)

CE = multidigit computational estimation

NC = number comparison

The final part of the variable name refers to the type of measure being used (i.e., acc = total correct responses and pae = percent absolute error).


Thus, variable Base2_NC_acc corresponds to accuracy on the number comparison task during the second measurement point of the baseline phase and Treat3_NLE_UT_pae refers to the percent absolute error on the untrained set of the number line task during the third session of the Treatment phase.





Search
Clear search
Close search
Google apps
Main menu