This indicator represents the tracts ranked by their percentile level of median household incomes per census tract, per capita income. The data source is 2017-2021 American Community Survey, 5-year estimates. The percentile and the rank were calculated. A percentile is a score indicating the value below which a given percentage of observations in a group of observations fall. It indicates the relative position of a particular value within a dataset. For example, the 20th percentile is the value below which 20% of the observations may be found. The rank refers to a process of arranging percentiles in descending order, starting from the highest percentile and ending with the lowest percentile. Once the percentiles are ranked, a normalization step is performed to rescale the rank values between 0 and 10. A rank value of 10 represents the highest percentile, while a rank value of 0 corresponds to the lowest percentile in the dataset. The normalized rank provides a relative assessment of the position of each percentile within the distribution, making it simpler to understand the relative magnitude of differences between percentiles. Normalization between 0 and 10 ensures that the rank values are standardized and uniformly distributed within the specified range. This normalization allows for easier interpretation and comparison of the rank values, as they are now on a consistent scale. For detailed methods, go to connecticut-environmental-justice.circa.uconn.edu.
Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
https://data.gov.sg/open-data-licencehttps://data.gov.sg/open-data-licence
Dataset from Singapore Department of Statistics. For more information, visit https://data.gov.sg/datasets/d_1f57cbc6cc41d72fb1b96c7c266c2eaf/view
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘SID09 - Current percentile of equivalised disposable income by the perceived financial situation of the teenage household’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from http://data.europa.eu/88u/dataset/5981d36f-ab08-4a4c-822b-cd5bd473794f on 19 January 2022.
--- Dataset description provided by original source is as follows ---
Current percentile of equivalised disposable income by the perceived financial situation of the teenage household
--- Original source retains full ownership of the source dataset ---
The Distributional Financial Accounts (DFAs) provide a quarterly measure of the distribution of U.S. household wealth since 1989, based on a comprehensive integration of disaggregated household-level wealth data with official aggregate wealth measures. The data set contains the level and share of each balance sheet item on the Financial Accounts' household wealth table (Table B.101.h), for various sub-populations in the United States. In our core data set, aggregate household wealth is allocated to each of four percentile groups of wealth: the top 1 percent, the next 9 percent (i.e., 90th to 99th percentile), the next 40 percent (50th to 90th percentile), and the bottom half (below the 50th percentile). Additionally, the data set contains the level and share of aggregate household wealth by income, age, generation, education, and race. The quarterly frequency makes the data useful for studying the business cycle dynamics of wealth concentration--which are typically difficult to observe in lower-frequency data because peaks and troughs often fall between times of measurement. These data will be updated about 10 or 11 weeks after the end of each quarter, making them a timely measure of the distribution of wealth.
The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.
This dataset was created on 2020-01-10 18:53:00.508
by merging multiple datasets together. The source datasets for this version were:
Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile
Commuting Zone Characteristics: CZ-level characteristics
Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.
This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.
Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths
This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.
This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.
Two variables constructed by the Cen
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Current percentile of equivalised disposable income by the perceived financial situation of the teenage household
Upper income limit, income share and average of market, total and after-tax income by economic family type and income decile, annual.
This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are geography-specific; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% income threshold of Nova Scotian tax filers. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.
Title VI of the Civil Rights Act and the Executive Order on Environmental Justice (#12898) do not provide specific guidance to evaluate EJ issues within a region's transportation planning process. Therefore, MPOs must devise their own methods for ensuring that EJ issues are investigated and evaluated in transportation decision-making. In 2001, DVRPC developed an EJ technical assessment to identify direct and disparate impacts of its plans, programs, and planning process on defined population groups in the Delaware Valley region. This assessment, called the Indicators of Potential Disadvantage Methodology, is utilized in a variety of DVRPC plans and programs. DVRPC currently assesses the following population groups, defined by the U.S. Census Bureau:YouthOlder AdultsFemaleRacial MinorityEthnic MinorityForeign-BornDisabledLimited English ProficiencyLow-IncomeCensus tables used to gather data from the 2018-2022 American Community Survey 5-Year EstimatesUsing U.S. Census American Community Survey data, the population groups listed above are identified and located at the census tract level. Data is gathered at the regional level, combining populations from each of the nine counties, for either individuals or households, depending on the indicator. From there, the total number of persons in each demographic group is divided by the appropriate universe (either population or households) for the nine-county region, providing a regional average for that population group. Any census tract that meets or exceeds the regional average level, or threshold, is considered an EJ-sensitive tract for that group.Census tables used to gather data from the 2018-2022 American Community Survey 5-Year Estimates.For more information and for methodology, visit DVRPC's website:http://www.dvrpc.org/GetInvolved/TitleVI/For technical documentation visit DVRPC's GitHub IPD repo: https://github.com/dvrpc/ipdSource of tract boundaries: 2020 US Census Bureau, TIGER/Line ShapefilesNote: Tracts with null values should be symbolized as "Insufficient or No Data".Data Dictionary for Attributes:(Source = DVRPC indicates a calculated field)FieldAliasDescriptionSourceyearIPD analysis yearDVRPCgeoid2011-digit tract GEOIDCensus tract identifierACS 5-yearstatefp2-digit state GEOIDFIPS Code for StateACS 5-yearcountyfp3-digit county GEOIDFIPS Code for CountyACS 5-yeartractceTract numberTract NumberACS 5-yearnameTract numberCensus tract identifier with decimal placesACS 5-yearnamelsadTract nameCensus tract name with decimal placesACS 5-yeard_classDisabled percentile classClassification of tract's disabled percentage as: well below average, below average, average, above average, or well above averagecalculatedd_estDisabled count estimateEstimated count of disabled populationACS 5-yeard_est_moeDisabled count margin of errorMargin of error for estimated count of disabled populationACS 5-yeard_pctDisabled percent estimateEstimated percentage of disabled populationACS 5-yeard_pct_moeDisabled percent margin of errorMargin of error for percentage of disabled populationACS 5-yeard_pctileDisabled percentileTract's regional percentile for percentage disabledcalculatedd_scoreDisabled percentile scoreCorresponding numeric score for tract's disabled classification: 0, 1, 2, 3, 4calculatedem_classEthnic minority percentile classClassification of tract's Hispanic/Latino percentage as: well below average, below average, average, above average, or well above averagecalculatedem_estEthnic minority count estimateEstimated count of Hispanic/Latino populationACS 5-yearem_est_moeEthnic minority count margin of errorMargin of error for estimated count of Hispanic/Latino populationACS 5-yearem_pctEthnic minority percent estimateEstimated percentage of Hispanic/Latino populationcalculatedem_pct_moeEthnic minority percent margin of errorMargin of error for percentage of Hispanic/Latino populationcalculatedem_pctileEthnic minority percentileTract's regional percentile for percentage Hispanic/Latinocalculatedem_scoreEthnic minority percentile scoreCorresponding numeric score for tract's Hispanic/Latino classification: 0, 1, 2, 3, 4calculatedf_classFemale percentile classClassification of tract's female percentage as: well below average, below average, average, above average, or well above averagecalculatedf_estFemale count estimateEstimated count of female populationACS 5-yearf_est_moeFemale count margin of errorMargin of error for estimated count of female populationACS 5-yearf_pctFemale percent estimateEstimated percentage of female populationACS 5-yearf_pct_moeFemale percent margin of errorMargin of error for percentage of female populationACS 5-yearf_pctileFemale percentileTract's regional percentile for percentage femalecalculatedf_scoreFemale percentile scoreCorresponding numeric score for tract's female classification: 0, 1, 2, 3, 4calculatedfb_classForeign-born percentile classClassification of tract's foreign born percentage as: well below average, below average, average, above average, or well above averagecalculatedfb_estForeign-born count estimateEstimated count of foreign born populationACS 5-yearfb_est_moeForeign-born count margin of errorMargin of error for estimated count of foreign born populationACS 5-yearfb_pctForeign-born percent estimateEstimated percentage of foreign born populationcalculatedfb_pct_moeForeign-born percent margin of errorMargin of error for percentage of foreign born populationcalculatedfb_pctileForeign-born percentileTract's regional percentile for percentage foreign borncalculatedfb_scoreForeign-born percentile scoreCorresponding numeric score for tract's foreign born classification: 0, 1, 2, 3, 4calculatedle_classLimited English proficiency percentile classClassification of tract's limited english proficiency percentage as: well below average, below average, average, above average, or well above averagecalculatedle_estLimited English proficiency count estimateEstimated count of limited english proficiency populationACS 5-yearle_est_moeLimited English proficiency count margin of errorMargin of error for estimated count of limited english proficiency populationACS 5-yearle_pctLimited English proficiency percent estimateEstimated percentage of limited english proficiency populationACS 5-yearle_pct_moeLimited English proficiency percent margin of errorMargin of error for percentage of limited english proficiency populationACS 5-yearle_pctileLimited English proficiency percentileTract's regional percentile for percentage limited english proficiencycalculatedle_scoreLimited English proficiency percentile scoreCorresponding numeric score for tract's limited english proficiency classification: 0, 1, 2, 3, 4calculatedli_classLow-income percentile classClassification of tract's low income percentage as: well below average, below average, average, above average, or well above averagecalculatedli_estLow-income count estimateEstimated count of low income (below 200% of poverty level) populationACS 5-yearli_est_moeLow-income count margin of errorMargin of error for estimated count of low income populationACS 5-yearli_pctLow-income percent estimateEstimated percentage of low income (below 200% of poverty level) populationcalculatedli_pct_moeLow-income percent margin of errorMargin of error for percentage of low income populationcalculatedli_pctileLow-income percentileTract's regional percentile for percentage low incomecalculatedli_scoreLow-income percentile scoreCorresponding numeric score for tract's low income classification: 0, 1, 2, 3, 4calculatedoa_classOlder adult percentile classClassification of tract's older adult percentage as: well below average, below average, average, above average, or well above averagecalculatedoa_estOlder adult count estimateEstimated count of older adult population (65 years or older)ACS 5-yearoa_est_moeOlder adult count margin of errorMargin of error for estimated count of older adult populationACS 5-yearoa_pctOlder adult percent estimateEstimated percentage of older adult population (65 years or older)ACS 5-yearoa_pct_moeOlder adult percent margin of errorMargin of error for percentage of older adult populationACS 5-yearoa_pctileOlder adult percentileTract's regional percentile for percentage older adultcalculatedoa_scoreOlder adult percentile scoreCorresponding numeric score for tract's older adult classification: 0, 1, 2, 3, 4calculatedrm_classRacial minority percentile classClassification of tract's non-white percentage as: well below average, below average, average, above average, or well above averagecalculatedrm_estRacial minority count estimateEstimated count of non-white populationACS 5-yearrm_est_moeRacial minority count margin of errorMargin of error for estimated count of non-white populationACS 5-yearrm_pctRacial minority percent estimateEstimated percentage of non-white populationcalculatedrm_pct_moeRacial minority percent margin of errorMargin of error for percentage of non-white populationcalculatedrm_pctileRacial minority percentileTract's regional percentile for percentage non-whitecalculatedrm_scoreRacial minority percentile scoreCorresponding numeric score for tract's non-white classification: 0, 1, 2, 3, 4calculatedtot_ppTotal population estimateEstimated total population of tract (universe [or denominator] for youth, older adult, female, racial minoriry, ethnic minority, & foreign born)ACS 5-yeartot_pp_moeTotal population margin of errorMargin of error for estimated total population of tractACS 5-yeary_classYouth percentile classClassification of tract's youth percentage as: well below average, below average, average, above average, or well above averagecalculatedy_estYouth count estimateEstimated count of youth population (under 18 years)ACS 5-yeary_est_moeYouth count margin of errorMargin of error for estimated count of youth populationACS 5-yeary_pctYouth population percentage estimateEstimated percentage of youth population (under 18 years)calculatedy_pct_moeYouth population percentage margin of
The 90th percentile means 90% of the population with an income falls below this threshold, the 50th percentile is the median where 50% of the population is above and 50% is below. The 25th percentile means 75% of the population is above this threshold and 25% of the population is below.
The Indicator represents the tracts ranked by their percentile level of percentage of households who spend 30% or more of their yearly household income on housing costs. The data source is 2017-2021 American Community Survey, 5-year estimates. The percentile and the rank were calculated. A percentile is a score indicating the value below which a given percentage of observations in a group of observations fall. It indicates the relative position of a particular value within a dataset. For example, the 20th percentile is the value below which 20% of the observations may be found. The rank refers to a process of arranging percentiles in descending order, starting from the highest percentile and ending with the lowest percentile. Once the percentiles are ranked, a normalization step is performed to rescale the rank values between 0 and 10. A rank value of 10 represents the highest percentile, while a rank value of 0 corresponds to the lowest percentile in the dataset. The normalized rank provides a relative assessment of the position of each percentile within the distribution, making it simpler to understand the relative magnitude of differences between percentiles. Normalization between 0 and 10 ensures that the rank values are standardized and uniformly distributed within the specified range. This normalization allows for easier interpretation and comparison of the rank values, as they are now on a consistent scale. For detailed methods, go to connecticut-environmental-justice.circa.uconn.edu.
Families of tax filers; Distribution of total income by census family type and age of older partner, parent or individual (final T1 Family File; T1FF).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SID03 - Current percentile of equivalised disposable income by highest level of education achieved by either parent. Published by Central Statistics Office. Available under the license Creative Commons Attribution 4.0 (CC-BY-4.0).Current percentile of equivalised disposable income by highest level of education achieved by either parent...
This dataset was derived from federal data collected by the Census Bureau and Environmental Protection Agency and originally made available to the public on July 31, 2024. These data provide both summary and detailed information at the Census block group level for both demographic and environmental indicators.These data were selected from the Harvard Environment and Law Data (HELD) Collection to inform environmental justice in New York State. The data was uploaded to the HELD Collection on December 3rd, 2024 and downloaded by NYSDOS-OPDCI for service to the Geographic Information Gateway via this item on March 18th, 2025.This dataset is intended to act as the basis for various View Layers including:Low Income PopulationPeople of ColorPopulation with less than a High School EducationLinguistically Isolated PopulationPopulation Under 5 Years of AgePopulation Over 64 Years of AgeLead Paint Hazard RiskAir Toxics and Respiratory Hazard RiskAir Quality by Particulate MatterAir Quality by Diesel Particulate MatterOzone ConcentrationTraffic Proximity and VolumeSuperfund (CERCLA) Site ProximityRisk Management Plan Facility ProximityHazardous Waste ProximityWater Pollution Hazard RiskWastewater Discharge
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the countries in this dataset have a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.
See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.
VARIABLE DESCRIPTIONS:
unid: ISO numeric country code (used by the United Nations)
wbid: ISO alpha country code (used by the World Bank)
SES: Country socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174)
country: Short country name
year: Survey year
gdppc: GDP per capita: Single time-series (imputed)
yrseduc: Completed years of education in the adult (15+) population
region5: Five category regional coding schema
regionUN: United Nations regional coding schema
DATA SOURCES:
The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below. GDP per Capita:
Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls.
World Development Indicators Database Years of Education 1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/ 2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm
Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/
Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.
United Nations Population Division. 2009.
These geospatial data resources and the linked mapping tool below reflect currently available data on three categories of potentially qualifying Low-Income communities: Census tracts that meet the CDFI's New Market Tax Credit Program's threshold for Low Income, thereby are able to apply to Category 1. Census tracts that meet the White House's Climate and Economic Justice Screening Tool's threshold for disadvantage in the 'Energy' category, thereby are able to apply for Additional Selection Criteria Geography. Counties that meet the USDA's threshold for Persistent Poverty, thereby are able to apply for Additional Selection Criteria Geography. Note that Category 2 - Indian Lands are not shown on this map. Note that Persistent Poverty is not calculated for US Territories. Note that CEJST Energy disadvantage is not calculated for US Territories besides Puerto Rico. The excel tool provides the land area percentage of each 2023 census tract meeting each of the above categories. To examine geographic eligibility for a specific address or latitude and longitude, visit the program's mapping tool. Additional information on this tax credit program can be found on the DOE Landing Page for the 48e program at https://www.energy.gov/diversity/low-income-communities-bonus-credit-program or the IRS Landing Page at https://www.irs.gov/credits-deductions/low-income-communities-bonus-credit. Maps last updated: September 1st, 2024 Next map update expected: December 7th, 2024 Disclaimer: The spatial data and mapping tool is intended for geolocation purposes. It should not be relied upon by taxpayers to determine eligibility for the Low-Income Communities Bonus Credit Program. Source Acknowledgements: The New Market Tax Credit (NMTC) Tract layer using data from the 2016-2020 ACS is from the CDFI Information Mapping System (CIMS) and is created by the U.S. Department of Treasury Community Development Financial Institutions Fund. To learn more, visit CDFI Information Mapping System (CIMS) | Community Development Financial Institutions Fund (cdfifund.gov). https://www.cdfifund.gov/mapping-system. Tracts are displayed that meet the threshold for the New Market Tax Credit Program. The 'Energy' Category Tract layer from the Climate and Economic Justice Screening Tool (CEJST) is created by the Council on Environmental Quality (CEQ) within the Executive Office of the President. To learn more, visit https://screeningtool.geoplatform.gov/en/. Tracts are displayed that meet the threshold for the 'Energy' Category of burden. I.e., census tracts that are at or above the 90th percentile for (energy burden OR PM2.5 in the air) AND are at or above the 65th percentile for low income. The Persistent Poverty County layer is created by joining the U.S. Department of Agriculture, Economic Research Service's Poverty Area Official Measures dataset, with relevant county TIGER/Line Shapefiles from the US Census Bureau. To learn more, visit https://www.ers.usda.gov/data-products/poverty-area-measures/. Counties are displayed that meet the thresholds for Persistent Poverty according to 'Official' USDA updates. i.e. areas with a poverty rate of 20.0 percent or more for 4 consecutive time periods, about 10 years apart, spanning approximately 30 years (baseline time period plus 3 evaluation time periods). Until Dec 7th, 2024 both the USDA estimates using 2007-2011 and 2017-2021 ACS 5-year data. On Dec 8th, 2024, only the USDA estimates using 2017-2021 data will be accepted for program eligibility.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Country Socioeconomic Status Scores: 1880-2010’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sdorius/globses on 14 February 2022.
--- Dataset description provided by original source is as follows ---
This dataset contains estimates of the socioeconomic status (SES) position of each of 149 countries covering the period 1880-2010. Measures of SES, which are in decades, allow for a 130 year time-series analysis of the changing position of countries in the global status hierarchy. SES scores are the average of each country’s income and education ranking and are reported as percentile rankings ranging from 1-99. As such, they can be interpreted similarly to other percentile rankings, such has high school standardized test scores. If country A has an SES score of 55, for example, it indicates that 55 percent of the world’s people live in a country with a lower average income and education ranking than country A. ISO alpha and numeric country codes are included to allow users to merge these data with other variables, such as those found in the World Bank’s World Development Indicators Database and the United Nations Common Database.
See here for a working example of how the data might be used to better understand how the world came to look the way it does, at least in terms of status position of countries.
VARIABLE DESCRIPTIONS: UNID: ISO numeric country code (used by the United Nations) WBID: ISO alpha country code (used by the World Bank) SES: Socioeconomic status score (percentile) based on GDP per capita and educational attainment (n=174) country: Short country name year: Survey year SES: Socioeconomic status score (1-99) for each of 174 countries gdppc: GDP per capita: Single time-series (imputed) yrseduc: Completed years of education in the adult (15+) population popshare: Total population shares
DATA SOURCES:
The dataset was compiled by Shawn Dorius (sdorius@iastate.edu) from a large number of data sources, listed below.
GDP per Capita:
1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. Maddison population data in 000s; GDP & GDP per capita data in (1990 Geary-Khamis dollars, PPPs of currencies and average prices of commodities). Maddison data collected from: http://www.ggdc.net/MADDISON/Historical_Statistics/horizontal-file_02-2010.xls.
2. World Development Indicators Database
Years of Education
1. Morrisson and Murtin.2009. 'The Century of Education'. Journal of Human Capital(3)1:1-42. Data downloaded from http://www.fabricemurtin.com/
2. Cohen, Daniel & Marcelo Cohen. 2007. 'Growth and human capital: Good data, good results' Journal of economic growth 12(1):51-76. Data downloaded from http://soto.iae-csic.org/Data.htm
3. Barro, Robert and Jong-Wha Lee, 2013, "A New Data Set of Educational Attainment in the World, 1950-2010." Journal of Development Economics, vol 104, pp.184-198. Data downloaded from http://www.barrolee.com/
Total Population
1. Maddison, Angus. 2004. 'The World Economy: Historical Statistics'. Organization for Economic Co-operation and Development: Paris. 13.
2. United Nations Population Division. 2009.
--- Original source retains full ownership of the source dataset ---
Household income statistics by household type (couple family, one-parent family, non-census family households) and household size for Canada, provinces and territories, census divisions and census subdivisions.
Distribution of total income in constant 2020 dollars by age and gender.
This indicator represents the tracts ranked by their percentile level of median household incomes per census tract, per capita income. The data source is 2017-2021 American Community Survey, 5-year estimates. The percentile and the rank were calculated. A percentile is a score indicating the value below which a given percentage of observations in a group of observations fall. It indicates the relative position of a particular value within a dataset. For example, the 20th percentile is the value below which 20% of the observations may be found. The rank refers to a process of arranging percentiles in descending order, starting from the highest percentile and ending with the lowest percentile. Once the percentiles are ranked, a normalization step is performed to rescale the rank values between 0 and 10. A rank value of 10 represents the highest percentile, while a rank value of 0 corresponds to the lowest percentile in the dataset. The normalized rank provides a relative assessment of the position of each percentile within the distribution, making it simpler to understand the relative magnitude of differences between percentiles. Normalization between 0 and 10 ensures that the rank values are standardized and uniformly distributed within the specified range. This normalization allows for easier interpretation and comparison of the rank values, as they are now on a consistent scale. For detailed methods, go to connecticut-environmental-justice.circa.uconn.edu.