Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.Units: (Thematic dataset)Cell Size: 30m Source Type: Thematic Pixel Type: Unsigned 8 bitData Projection: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: 50 US States, District of Columbia, Puerto RicoSource: National Land Cover DatabasePublication date: June 30, 2023Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America Albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into Web Mercator projection, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief. MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. 51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or
description: Resources for Advanced Data Analysis and VisualizationResearchers who have access to the latest analysis and visualization tools are able to use large amounts of complex data to find efficiencies in projects, designs, and resources. The Data Analysis and Assessment Center (DAAC) at ERDC's Information Technology Laboratory (ITL) provides visualization and analysis tools and support services to enable the analysis of an ever-increasing volume of data.Simplify Data Analysis and Visualization ResearchThe resources provided by the DAAC enable any user to conduct important data analysis and visualization that provides valuable insight into projects and designs and helps to find ways to save resources. The DAAC provides new tools like ezVIZ, and services such as the DAAC website, a rich resource of news about the DAAC, training materials, a community forum and tutorials on how to use data analysis and other issues.The DAAC can perform collaborative work when users prefer to do the work themselves but need help in choosing which visualization program and/or technique and using the visualization tools. The DAAC also carries out custom projects to produce high-quality animations of data, such as movies, which allow researchers to communicate their results to others.Communicate Research in ContextDAAC provides leading animation and modeling software which allows scientists and researchers may communicate all aspects of their research by setting their results in context through conceptual visualization and data analysis.Success StoriesWave Breaking and Associated Droplet and Bubble FormationWave breaking and associated droplet and bubble formation are among the most challenging problems in the field of free-surface hydrodynamics. The method of computational fluid dynamics (CFD) was used to solve this problem numerically for flow about naval vessels. The researchers wanted to animate the time-varying three-dimensional data sets using isosurfaces, but transferring the data back to the local site was a problem because the data sets were large. The DAAC visualization team solved the problem by using EnSight and ezVIZ to generate the isosurfaces, and photorealistic rendering software to produce the images for the animation.Explosive Structure Interaction Effects in Urban TerrainKnown as the Breaching Project, this research studied the effects of high-explosive (HE) charges on brick or reinforced concrete walls. The results of this research will enable the war fighter to breach a wall to enter a building where enemy forces are conducting operations against U.S. interests. Images produced show computed damaged caused by an HE charge on the outer and inner sides of a reinforced concrete wall. The ability to quickly and meaningfully analyze large simulation data sets helps guide further development of new HE package designs and better ways to deploy the HE packages. A large number of designs can be simulated and analyzed to find the best at breaching the wall. The project saves money in greatly reduced field test costs by testing only the designs which were identified in analysis as the best performers.SpecificationsAmethyst, the seven-node Linux visualization cluster housed at the DAAC, is supported by ParaView, EnSight, and ezViz visualization tools and configured as follows:Six computer nodes, each with the following specifications:CPU: 8 dual-core 2.4 Ghz, 64-bit AMD Opteron Processors (16 effective cores)Memory: 128-G RAMVideo: NVidia Quadro 5500 1-GB memoryNetwork: Infiniband Interconnect between nodes, and Gigabit Ethernet to Defense Research and Engineering Network (DREN)One storage node:Disk Space: 20-TB TerraGrid file system, mounted on all nodes as /viz and /work; abstract: Resources for Advanced Data Analysis and VisualizationResearchers who have access to the latest analysis and visualization tools are able to use large amounts of complex data to find efficiencies in projects, designs, and resources. The Data Analysis and Assessment Center (DAAC) at ERDC's Information Technology Laboratory (ITL) provides visualization and analysis tools and support services to enable the analysis of an ever-increasing volume of data.Simplify Data Analysis and Visualization ResearchThe resources provided by the DAAC enable any user to conduct important data analysis and visualization that provides valuable insight into projects and designs and helps to find ways to save resources. The DAAC provides new tools like ezVIZ, and services such as the DAAC website, a rich resource of news about the DAAC, training materials, a community forum and tutorials on how to use data analysis and other issues.The DAAC can perform collaborative work when users prefer to do the work themselves but need help in choosing which visualization program and/or technique and using the visualization tools. The DAAC also carries out custom projects to produce high-quality animations of data, such as movies, which allow researchers to communicate their results to others.Communicate Research in ContextDAAC provides leading animation and modeling software which allows scientists and researchers may communicate all aspects of their research by setting their results in context through conceptual visualization and data analysis.Success StoriesWave Breaking and Associated Droplet and Bubble FormationWave breaking and associated droplet and bubble formation are among the most challenging problems in the field of free-surface hydrodynamics. The method of computational fluid dynamics (CFD) was used to solve this problem numerically for flow about naval vessels. The researchers wanted to animate the time-varying three-dimensional data sets using isosurfaces, but transferring the data back to the local site was a problem because the data sets were large. The DAAC visualization team solved the problem by using EnSight and ezVIZ to generate the isosurfaces, and photorealistic rendering software to produce the images for the animation.Explosive Structure Interaction Effects in Urban TerrainKnown as the Breaching Project, this research studied the effects of high-explosive (HE) charges on brick or reinforced concrete walls. The results of this research will enable the war fighter to breach a wall to enter a building where enemy forces are conducting operations against U.S. interests. Images produced show computed damaged caused by an HE charge on the outer and inner sides of a reinforced concrete wall. The ability to quickly and meaningfully analyze large simulation data sets helps guide further development of new HE package designs and better ways to deploy the HE packages. A large number of designs can be simulated and analyzed to find the best at breaching the wall. The project saves money in greatly reduced field test costs by testing only the designs which were identified in analysis as the best performers.SpecificationsAmethyst, the seven-node Linux visualization cluster housed at the DAAC, is supported by ParaView, EnSight, and ezViz visualization tools and configured as follows:Six computer nodes, each with the following specifications:CPU: 8 dual-core 2.4 Ghz, 64-bit AMD Opteron Processors (16 effective cores)Memory: 128-G RAMVideo: NVidia Quadro 5500 1-GB memoryNetwork: Infiniband Interconnect between nodes, and Gigabit Ethernet to Defense Research and Engineering Network (DREN)One storage node:Disk Space: 20-TB TerraGrid file system, mounted on all nodes as /viz and /work
This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
The total amount of data created, captured, copied, and consumed globally is forecast to increase rapidly, reaching 149 zettabytes in 2024. Over the next five years up to 2028, global data creation is projected to grow to more than 394 zettabytes. In 2020, the amount of data created and replicated reached a new high. The growth was higher than previously expected, caused by the increased demand due to the COVID-19 pandemic, as more people worked and learned from home and used home entertainment options more often. Storage capacity also growing Only a small percentage of this newly created data is kept though, as just two percent of the data produced and consumed in 2020 was saved and retained into 2021. In line with the strong growth of the data volume, the installed base of storage capacity is forecast to increase, growing at a compound annual growth rate of 19.2 percent over the forecast period from 2020 to 2025. In 2020, the installed base of storage capacity reached 6.7 zettabytes.
https://dataverse.harvard.edu/api/datasets/:persistentId/versions/5.0/customlicense?persistentId=doi:10.7910/DVN/ZTMDURhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/5.0/customlicense?persistentId=doi:10.7910/DVN/ZTMDUR
The Pilot Analysis of Global Ecosystems (PAGE): Agroecosystems was one of four pilot studies undertaken as precursors to the Millennium Ecosystem Assessment. The study identifies linkages between crop production systems and environmental services such as food, soil resources, water, biodiversity, and carbon cycling, in the hopes that a better understanding of these linkages might lead to policies that can contribute both to improved food output and to improved ecosystem service provision. Th e PAGE Agroecosystems report includes a series of 24 maps that provide a detailed spatial perspective on agroecosystems a nd agroecosystem services. Pilot Analysis of Global Ecosystems (PAGE): Agroecosystems Dataset offers the 9 geospatial datasets used to build these maps. The datasets are: PAGE Global Agricultural Extent. The data describe the location and extent of global agriculture and are derived from GLLCCD 1998; USGS EDC1999a. PAGE Global Agricultural Extent version 2. The data are an update of the original PAGE Global Agricultural Extent, based on version 2 of the Global Land Cover Characteristics Dataset (GLCCD v2.0, USGS/EDC 2000). The methods used to create this dataset were the same as those employed to create the origina l PAGE Global Agricultural Extent. Mask of the Global Extent of Agriculture. This dataset displays the global extent of agricultural areas as defined by the PAGE study. The other datasets made available on this site (eg. tree cover, soil carbon, area free of soil constraints) only show values for areas within this agricultural extent. PAGE Global Agroecosystems. These data characterize agroecosystems, defined as "a biological and natural resource system managed by humans for the primary purpose of producing food as well as other socially valuable nonfood products and environmental services." Percentage Tree Cover within the Extent of Agriculture. This is a raster dataset that shows the proportion of land area within the PAGE agricultural extent that is occupied by "woody vegetation" (mature vegetation whose approximate height is greater than 5 meters). Carbon Storage in Soils within the PAGE Agricultural Extent. The data give a global estimate of soil organic carbon storage in agricultural lands, calculated by applying Batjes' (1996 and 2000) soil organic carbon content values by soil type area share of each 5 x 5 minute of the Digital Soil Map of the World (FAO 1995). Agriculture Share of Watershed. This dataset depicts agricultural area as a share of total watershed area. The share of each watershed that is agricultural was calculated by applying a weighted percentage to each PAGE agricultural land cover class. Area Free of Soil Constraints. The data show the proportional area within the PAGE agricultural extent that is free from soil constraints. The area free of soil constraints is based on fertility capability classification (FCC) app lied to FAO's Digital Soil Map of the World (1995). Outline of Land and Water Area. These data are used to provide a boundary for land areas and facilitate the readability of maps.
The tree canopy layer displays the proportion of the land surface covered by trees for the years 2011 to 2021 from the National Land Cover Database. Source: https://www.mrlc.govPhenomenon Mapped: Proportion of the landscape covered by trees.Time Extent: 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021Units: Percent (of each pixel that is covered by tree canopy)Cell Size: 30 metersSource Type: DiscretePixel Type: Unsigned integerData Coordinate Systems: North America Albers Equal Area ConicMosaic Projection: WGS 1984 Web Mercator Auxiliary SphereExtent: CONUS, Southeastern Alaska, Hawaii, Puerto Rico and the US Virgin IslandsSource: Multi-Resolution Land Characteristics ConsortiumPublication Date: April 1, 2023ArcGIS Server URL: https://landscape10.arcgis.com/arcgis/Time SeriesBy default, this layer will appear in your client with a time slider which allows you to play the series as an animation. The animation will advance year by year changing appearance every year in the lower 48 states from 2011 to 2021. (In Alaska, Hawaii, Puerto Rico and the US Virgin Islands, the animation will only show a change between 2011 and 2016.) To select just one year in the series, first turn the time series off on the time slider, then create a definition query on the layer which selects only the desired year.Alaska, Hawaii, Puerto Rico, and the US Virgin IslandsAt this time Alaska, Hawaii, Puerto Rico, and the US Virgin Islands do not have tree canopy cover for every year in the series like MRLC produced for the Lower 48 states. Furthermore, only a portion of coastal Southeastern Alaska from Kodiak to the Panhandle is available, but not the entire state. Alaska, Hawaii, Puerto Rico, and the US Virgin Islands have data in the series only from 2011 and 2016. Dataset SummaryThe National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data. This layer can be used as an analytic input in ArcGIS Desktop.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Abstract Part One. There is controversy over whether byti ‘be’ in Old Church Slavonic functioned as an imperfective verb with an unusually large number of inflected forms or as an aspectual pair of verbs, reflecting its suppletive origin from two stems (es- and bū-). We offer an objective empirical approach to the status of this verb, using statistical analysis of 2,428 attestations of byti in comparison with 9,694 attestations of 129 other verbs. This makes it possible to accurately locate byti in the context of the verbal lexicon of Old Church Slavonic. The comparison is made via grammatical profiles, a method that examines the frequency distribution of each verb’s inflected forms. This comparison is undertaken in two rounds, one assuming that byti is a single verb, and the other assuming that it is a pair of verbs. Both assumptions yield reasonable results, and although the grammatical profile analyses do not suffice to solve the controversy, they lay the groundwork for further analysis in Part Two that argues for a single-verb interpretation of byti. Data and R Scripts Part One: The Dat a Our analysis uses two datasets, one that presents the forms of byti as a single paradigm, verbs.csv, and one that presents it as a pair of verbs, splitverbs.csv. The R Scripts In order to represent the Church Slavonic orthography, you will need our transliteration script: translit.r. This script is sourced by the scripts for our analysis which present byti as either a single verb or a verb pair: PartOneSingleVerb.r and PartOneVerbPair.r . This script performs all of the steps for the analysis in our article and generates the plots. Abstract Part Two: The verb byti ‘be’ in Old Church Slavonic appears in an unusually rich inventory of grammatical constructions that it appears in. We analyze corpus data on the distribution of constructions in order to assess the status of this verb as either a single verb or an aspectual pair of verbs. Our study moves beyond a strict structuralist interpretation of the behavior of byti, instead recognizing the real variation and ambiguity in the data. Our findings make both theoretical and descriptive advances. The radial category structure is a central tenet of cognitive linguistics, but until now such structures have usually been posited by researchers based on their qualitative insights from data. We show that it is possible to identify both the nodes and the structure of a radial category statistically, using only linguistic data as input. We provide an enhanced description of byti that clearly distinguishes between core uses and those that are more peripheral and shows the relationships among them. While we find some evidence in support of an aspectual pair, most evidence points instead toward a single verb. Data and R Script Part Two: The Data The dataset used in this analysis is frames.csv. The R Script The R script used in this analysis is PartTwo.r.
This layer is a subset of Global Landcover 1992- 2020 Layer. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
EyeFi Dataset
This dataset is collected as a part of the EyeFi project at Bosch Research and Technology Center, Pittsburgh, PA, USA. The dataset contains WiFi CSI values of human motion trajectories along with ground truth location information captured through a camera. This dataset is used in the following paper "EyeFi: Fast Human Identification Through Vision and WiFi-based Trajectory Matching" that is published in the IEEE International Conference on Distributed Computing in Sensor Systems 2020 (DCOSS '20). We also published a dataset paper titled as "Dataset: Person Tracking and Identification using Cameras and Wi-Fi Channel State Information (CSI) from Smartphones" in Data: Acquisition to Analysis 2020 (DATA '20) workshop describing details of data collection. Please check it out for more information on the dataset.
Data Collection Setup
In our experiments, we used Intel 5300 WiFi Network Interface Card (NIC) installed in an Intel NUC and Linux CSI tools [1] to extract the WiFi CSI packets. The (x,y) coordinates of the subjects are collected from Bosch Flexidome IP Panoramic 7000 panoramic camera mounted on the ceiling and Angle of Arrivals (AoAs) are derived from the (x,y) coordinates. Both the WiFi card and camera are located at the same origin coordinates but at different height, the camera is location around 2.85m from the ground and WiFi antennas are around 1.12m above the ground.
The data collection environment consists of two areas, first one is a rectangular space measured 11.8m x 8.74m, and the second space is an irregularly shaped kitchen area with maximum distances of 19.74m and 14.24m between two walls. The kitchen also has numerous obstacles and different materials that pose different RF reflection characteristics including strong reflectors such as metal refrigerators and dishwashers.
To collect the WiFi data, we used a Google Pixel 2 XL smartphone as an access point and connect the Intel 5300 NIC to it for WiFi communication. The transmission rate is about 20-25 packets per second. The same WiFi card and phone are used in both lab and kitchen area.
List of Files
Here is a list of files included in the dataset:
|- 1_person
|- 1_person_1.h5
|- 1_person_2.h5
|- 2_people
|- 2_people_1.h5
|- 2_people_2.h5
|- 2_people_3.h5
|- 3_people
|- 3_people_1.h5
|- 3_people_2.h5
|- 3_people_3.h5
|- 5_people
|- 5_people_1.h5
|- 5_people_2.h5
|- 5_people_3.h5
|- 5_people_4.h5
|- 10_people
|- 10_people_1.h5
|- 10_people_2.h5
|- 10_people_3.h5
|- Kitchen
|- 1_person
|- kitchen_1_person_1.h5
|- kitchen_1_person_2.h5
|- kitchen_1_person_3.h5
|- 3_people
|- kitchen_3_people_1.h5
|- training
|- shuffuled_train.h5
|- shuffuled_valid.h5
|- shuffuled_test.h5
View-Dataset-Example.ipynb
README.md
In this dataset, folder `1_person/` , `2_people/` , `3_people/` , `5_people/`, and `10_people/` contains data collected from the lab area whereas `Kitchen/` folder contains data collected from the kitchen area. To see how the each file is structured, please see below in section Access the data.
The training folder contains the training dataset we used to train the neural network discussed in our paper. They are generated by shuffling all the data from `1_person/` folder collected in the lab area (`1_person_1.h5` and `1_person_2.h5`).
Why multiple files in one folder?
Each folder contains multiple files. For example, `1_person` folder has two files: `1_person_1.h5` and `1_person_2.h5`. Files in the same folder always have the same number of human subjects present simultaneously in the scene. However, the person who is holding the phone can be different. Also, the data could be collected through different days and/or the data collection system needs to be rebooted due to stability issue. As result, we provided different files (like `1_person_1.h5`, `1_person_2.h5`) to distinguish different person who is holding the phone and possible system reboot that introduces different phase offsets (see below) in the system.
Special note:
For `1_person_1.h5`, this file is generated by the same person who is holding the phone, and `1_person_2.h5` contains different people holding the phone but only one person is present in the area at a time. Boths files are collected in different days as well.
Access the data
To access the data, hdf5 library is needed to open the dataset. There are free HDF5 viewer available on the official website: https://www.hdfgroup.org/downloads/hdfview/. We also provide an example Python code View-Dataset-Example.ipynb to demonstrate how to access the data.
Each file is structured as (except the files under *"training/"* folder):
|- csi_imag
|- csi_real
|- nPaths_1
|- offset_00
|- spotfi_aoa
|- offset_11
|- spotfi_aoa
|- offset_12
|- spotfi_aoa
|- offset_21
|- spotfi_aoa
|- offset_22
|- spotfi_aoa
|- nPaths_2
|- offset_00
|- spotfi_aoa
|- offset_11
|- spotfi_aoa
|- offset_12
|- spotfi_aoa
|- offset_21
|- spotfi_aoa
|- offset_22
|- spotfi_aoa
|- nPaths_3
|- offset_00
|- spotfi_aoa
|- offset_11
|- spotfi_aoa
|- offset_12
|- spotfi_aoa
|- offset_21
|- spotfi_aoa
|- offset_22
|- spotfi_aoa
|- nPaths_4
|- offset_00
|- spotfi_aoa
|- offset_11
|- spotfi_aoa
|- offset_12
|- spotfi_aoa
|- offset_21
|- spotfi_aoa
|- offset_22
|- spotfi_aoa
|- num_obj
|- obj_0
|- cam_aoa
|- coordinates
|- obj_1
|- cam_aoa
|- coordinates
...
|- timestamp
The `csi_real` and `csi_imag` are the real and imagenary part of the CSI measurements. The order of antennas and subcarriers are as follows for the 90 `csi_real` and `csi_imag` values : [subcarrier1-antenna1, subcarrier1-antenna2, subcarrier1-antenna3, subcarrier2-antenna1, subcarrier2-antenna2, subcarrier2-antenna3,… subcarrier30-antenna1, subcarrier30-antenna2, subcarrier30-antenna3]. `nPaths_x` group are SpotFi [2] calculated WiFi Angle of Arrival (AoA) with `x` number of multiple paths specified during calculation. Under the `nPath_x` group are `offset_xx` subgroup where `xx` stands for the offset combination used to correct the phase offset during the SpotFi calculation. We measured the offsets as:
|Antennas | Offset 1 (rad) | Offset 2 (rad) |
|:-------:|:---------------:|:-------------:|
| 1 & 2 | 1.1899 | -2.0071
| 1 & 3 | 1.3883 | -1.8129
The measurement is based on the work [3], where the authors state there are two possible offsets between two antennas which we measured by booting the device multiple times. The combination of the offset are used for the `offset_xx` naming. For example, `offset_12` is offset 1 between antenna 1 & 2 and offset 2 between antenna 1 & 3 are used in the SpotFi calculation.
The `num_obj` field is used to store the number of human subjects present in the scene. The `obj_0` is always the subject who is holding the phone. In each file, there are `num_obj` of `obj_x`. For each `obj_x1`, we have the `coordinates` reported from the camera and `cam_aoa`, which is estimated AoA from the camera reported coordinates. The (x,y) coordinates and AoA listed here are chronologically ordered (except the files in the `training` folder) . It reflects the way the person carried the phone moved in the space (for `obj_0`) and everyone else walked (for other `obj_y`, where `y` > 0).
The `timestamp` is provided here for time reference for each WiFi packets.
To access the data (Python):
import h5py
data = h5py.File('3_people_3.h5','r')
csi_real = data['csi_real'][()]
csi_imag = data['csi_imag'][()]
cam_aoa = data['obj_0/cam_aoa'][()]
cam_loc = data['obj_0/coordinates'][()]
For file inside `training/` folder:
Files inside training folder has a different data structure:
|- nPath-1
|- aoa
|- csi_imag
|- csi_real
|- spotfi
|- nPath-2
|- aoa
|- csi_imag
|- csi_real
|- spotfi
|- nPath-3
|- aoa
|- csi_imag
|- csi_real
|- spotfi
|- nPath-4
|- aoa
|- csi_imag
|- csi_real
|- spotfi
The group `nPath-x` is the number of multiple path specified during the SpotFi calculation. `aoa` is the camera generated angle of arrival (AoA) (can be considered as ground truth), `csi_image` and `csi_real` is the imaginary and real component of the CSI value. `spotfi` is the SpotFi calculated AoA values. The SpotFi values are chosen based on the lowest median and mean error from across `1_person_1.h5` and `1_person_2.h5`. All the rows under the same `nPath-x` group are aligned (i.e., first row of `aoa` corresponds to the first row of `csi_imag`, `csi_real`, and `spotfi`. There is no timestamp recorded and the sequence of the data is not chronological as they are randomly shuffled from the `1_person_1.h5` and `1_person_2.h5` files.
Citation
If you use the dataset, please cite our paper:
@inproceedings{eyefi2020,
title={EyeFi: Fast Human Identification Through Vision and WiFi-based Trajectory Matching},
author={Fang, Shiwei and Islam, Tamzeed and Munir, Sirajum and Nirjon, Shahriar},
booktitle={2020 IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS)},
year={2020},
This dynamic World Elevation Terrain service provides numeric values representing ground surface heights, based on a digital terrain model (DTM). The ground heights are based on multiple sources. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis.Note: This image services combine data from different sources and resample the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, you can filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS desktop, server function can be invoked from Layer Properties - Processing Templates.
Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Data Sources and Coverage: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: The accuracy of these services will vary as a function of location and data source. Please refer to the metadata available in the services, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was derived by the Bioregional Assessment Programme from The OGIA model 1.5km grid cells. The source dataset is identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement.
This Assessment Units dataset is a 1500m * 1500m vector polygon ('vector grid') dataset that was generated over the entire OGIA model domain with subsets of that grid extracted for the MBC Analysis Domain and the MBC Focal Analysis Extents. These grids are intended for use in the MBC Subregion only. The Analysis Domain Assessment Units subset covers the area that is 20 km greater than the MBC Analysis Extent (AE). It was derived to perfectly align with the groundwater model results produced by the OGIA Model. The unique ID field for each vector polygon tile is AUID. The dataset is in Australia Albers (GDA94) (EPSG 3577).
The Assessment Units are intended for use in transferring data between the OGIA groundwater model and all the other relevant datasets including the assets and landscape classes.
This Assessment Units dataset is a 1500m * 1500m vector polygon ('vector grid') dataset that was generated over the entire OGIA model domain with subsets of that grid extracted for the MBC Analysis Domain and the MBC Focal Analysis Extents. These grids are intended for use in the MBC Subregion only. The Analysis Domain Assessment Units subset covers the area that is 20 km greater than the MBC Analysis Extent (AE). The Assessment Unit dataset is an exact copy of the OGIA model grid cells and was derived to perfectly align with the groundwater model results produced by the OGIA Model. Additional fields were added to generate unique AUID by concatenating the Assessment Unit resolution (1500) with the row and column numbers. The unique ID field for each vector polygon tile is AUID though the au1500_id field is also unique and integer-based. The dataset is in Australia Albers (GDA94) (EPSG 3577).
Bioregional Assessment Programme (2016) MBC Assessment Units 20160714 v02. Bioregional Assessment Derived Dataset. Viewed 25 October 2017, http://data.bioregionalassessments.gov.au/dataset/29596cc1-8380-4a2b-902d-1a7ee4d323ac.
Derived From Surface Geology of Australia, 1:1 000 000 scale, 2012 edition
Derived From Bioregional Assessment areas v02
Derived From MBC Groundwater model domain boundary
Derived From Natural Resource Management (NRM) Regions 2010
Derived From Bioregional Assessment areas v03
Derived From Groundwater Preliminary Assessment Extent (PAE) for the Maranoa Balonne Condamine (MBC) subregion - v02
Derived From Groundwater Preliminary Assessment Extent (PAE) for the Maranoa Balonne Condamine (MBC) subregion - v01
Derived From MBC Groundwater model layer boundaries
Derived From MBC Groundwater model
Derived From Great Artesian Basin and Laura Basin groundwater recharge areas
Derived From Surface water Preliminary Assessment Extent (PAE) for the Maranoa Balonne Condamine (MBC) subregion - v03
Derived From Preliminary Assessment Extent (PAE) for the Maranoa-Balonne-Condamine subregion - v03
Derived From Bioregional Assessment areas v01
Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb)
Derived From GEODATA TOPO 250K Series 3
Derived From NSW Catchment Management Authority Boundaries 20130917
Derived From Geological Provinces - Full Extent
Derived From Surface water preliminary assessment extent for the Maranoa-Balonne-Condamine subregion - v02
Derived From MBC Groundwater model mine footprints
Opportunity-focused, high-growth entrepreneurship and science-led innovation are crucial for continued economic growth and productivity. Working in these fields offers the opportunity for rewarding and high-paying careers. However, the majority of youth in developing countries do not consider either as job options, affecting their choices of what to study. Youth may not select these educational and career paths due to lack of knowledge, lack of appropriate skills, and lack of role models. We provide a scalable approach to overcoming these constraints through an online education course for secondary school students that covers entrepreneurial soft skills, scientific methods, and interviews with role models.
The study comprises three experimental trials provided Before and during COVID-19 pandemic in different regions of Ecuador. This catalog entry includes data from Experiment 1: Educational Zone 2/Municipality of Quito 2019-2020. The data from the other two experiments are also available in the catalog.
Experiment 1: Educational Zone 2/Municipality of Quito 2019-2020 In course of Showing Life Opportunities project we conducted a randomized control trial in high schools in Educational Zone 2, Ecuador and Municipality of Quito, Ecuador in 2019-2020; Students finish the program in July 2020. The intervention is an online education course that covers entrepreneurial soft skills, scientific methods, and interviews with role models. This course is taken by students at school (some students finish the program at school during COVID-19 outbreak). We work with mostly 14-19 year-old students (16,570 students). The experimental program covers 126 schools in Educational Zone 2 and 11 schools in Municipality of Quito. We randomly assign schools either to treatment (and receiving the entrepreneurship courses online), or placebo-control (receiving a placebo treatment of online courses from standard curricula) groups. We also cross-randomize the role models and evaluate set of nimble interventions to increase take-up.
The details of intervention can be found in AEA registry: Asanov, Igor and David McKenzie. 2020. Showing Life Opportunities: Increasing opportunity-driven entrepreneurship and STEM careers through online courses in schools. AEA RCT Registry. July 19.
Experiment 1: Municipality of Quito and Educational Zone 2 Educational Zone 2 has its administrative headquarters in the city of Tena, Napo province. Its covers provinces of Napo, Orellana and Pichincha, 8 districts (15D01, 22D01, 17D10, 17D11, 15D02, 17D12, 22D02, 22D03), its 16 cantons and 68 parishes. It has an area of 39,542.58 km². The educational zone 2 spread from east to the western border of the Ecuador. We cover students of age 14-18 in schools that has sufficient access to the internet and classes of the K10, K11, or K12. We included the municipality of Quito in the study to enrich the coverage of program by having large (capital) city in the sample.
Student
Sample survey data [ssd]
All students in selected schools who were present in classes filled out the baseline questionnaire
Internet [int]
Questionnaires We execute three main sets of questioners. A. Internet (Online Based survey)
The survey consists of a multi-topic questionnaire administered to the students through online learning platform in school during normal educational hours before COVID-19 pandemic or at home during the COVID-19 pandemic. We collect next information:
1. Subject specific knowledge tests. Spanish, English, Statistics, Personal Initiative (only endline), Negotiations (only endline).
2. Career intentions, preferences, beliefs, expectations, and attitudes. STEM and entrepreneurial intentions, preferences, beliefs, expectations, and attitudes.
3. Psychological characteristics. Personal Initiative, Negotiations, General Cognitions (General Self-Efficacy, Youth Self-Efficacy, Perceived Subsidiary Self-Efficacy Scale, Self-Regulatory Focus, Short Grit Scale), Entrepreneurial Cognitions (Business Self-Efficacy, Identifying Opportunities, Business Attitudes, Social Entrepreneurship Standards).
4. Behavior in (incentivized) games: Other-regarding preferences (dictator game), tendency to cooperate (Prisoners Dilemma), Perseverance (triangle game), preference for honesty, creativity (unscramble game).
5. Other background information. Socioeconomic level, language spoken, risk and time preferences, trust level, parents background, big-five personality traits of student, cognitive abilities.
Background information (5) collected only at the baseline.
B. First follow-up Phone-based Survey Zone 2, Summer (Phone Based).
The survey replicates by phone shorter version of the internet-based survey above. We collect next information:
1. Subject specific knowledge tests.
2. Career intentions, preferences, beliefs, expectations, and attitudes.
3. Psychological characteristics
C. (Second) Follow-up Phone-Based Survey, Winter, Zone 2, Highlands Educational Regime.
We execute multi-topic questionnaire by phone to capture the first life-outcomes of students who finished the school. We collect next information:
Data Editing A. Internet, Online-based surveys. We extracted the raw data generated on online platform from each experiment and prepared it for research purposes. We made several pre-processing steps of data: 1. We transform the raw data generated on platform in standard statistical software (R/STATA) readable format. 2. We extracted the answer for each item for each student for each survey (Baseline, Midline, Endline). 3. We cleaned duplicated students and duplicated answers for each item in each survey based on administrative data, performance and information given by students on platform. 4. In case of baseline survey, we standardized items/scales but also kept the raw items.
B. Phone-based surveys. The phone-based surveys are collected with help of advanced CATI kit. It contains all cases (attempts to call) and indication if the survey was effective. The data is cleaned to be ready for analysis. The data is anonymized but contains unique anonymous student id for merging across datasets.
An area encompassing all the National Forest System lands administered by an administrative unit. The area encompasses private lands, other governmental agency lands, and may contain National Forest System lands within the proclaimed boundaries of another administrative unit. All National Forest System lands fall within one and only one Administrative Forest Area.
This data is intended for read-only use. These data were prepared to describe Forest Service administrative area boundaries. The purpose of the data is to provide display, identification, and analysis tools for determining current boundary information for Forest Service managers, GIS Specialists, and others.
The Forest Service has multiple types of boundaries represented by different feature classes (layers): Administrative, Ownership and Proclaimed. 1) ADMINISTRATIVE boundaries (e.g. AdministrativeForest and RangerDistrict feature classes) encompass National Forest System lands managed by an administrative unit. These are dynamic layers that should not be considered "legal" boundaries as they are simply intended to identify the specific organizational units that administer areas. As lands are acquired and disposed, the administrative boundaries are adjusted to expand or shrink accordingly. Please note that ranger districts are sub units of National Forests. An administrative forest boundary can contain one or more Proclaimed National Forests, National Grasslands, Purchase Units, Research and Experimental Areas, Land Utilization Projects and various "Other" Areas. If needed, OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) should be reviewed along with these datasets to determine parcels that are federally managed within the administrative boundaries. 2) OWNERSHIP boundaries (e.g. BasicOwnership and SurfaceOwnership feature classes) represent parcels that are tied to legal transactions of ownership. These are parcels of Federal land managed by the USDA Forest Service. Please note that the BasicOwnership layer is simply a dissolved version of the SurfaceOwnership layer. 3) PROCLAIMED boundaries (e.g. ProclaimedForest and ProclaimedForest_Grassland) encompass areas of National Forest System land that is set aside and reserved from public domain by executive order or proclamation. Please note that the ProclaimedForest layer contains only proclaimed forests while ProclaimedForest_Grassland layer contains both proclaimed forests and proclaimed grasslands. For boundaries that reflect current National Forest System lands managed by an administrative unit, see the ADMINISTRATIVE boundaries (AdministrativeForest and RangerDistrict feature classes). For a visual comparison of the different kinds of USFS boundary datasets maintained by the USFS, see the Forest Service Boundary Comparison map at https://usfs.maps.arcgis.com/apps/CompareAnalysis/index.html?appid=fe7b9f56217949a291356f08cfccb119. USFS boundaries are often referenced in national datasets maintained by other federal agencies. Please note that variations may be found between USFS data and other boundary datasets due to differing update frequencies. PAD-US (Protected Areas Database of the United States), maintained by the U.S. Geological Survey, is a "best available" inventory of protected areas including data provided by managing agencies and organizations including the Forest Service. For more information see https://gapanalysis.usgs.gov/padus/data/metadata/. SMA (Surface Management Agency), maintained by the Bureau of Land Management, depicts Federal land for the United States and classifies this land by its active Federal surface managing agency. It uses data provided by the Forest Service and other agencies, combined with National Regional Offices collection efforts. For more information see https://landscape.blm.gov/geoportal/catalog/search/resource/details.page?uuid=%7B2A8B8906-7711-4AF7-9510-C6C7FD991177%7D.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. This resource contains raster datasets created using ArcGIS to analyse groundwater levels in the Namoi subregion. This is an update to some of the data that is registered here: http://data.bi…Show full descriptionAbstract The dataset was derived by the Bioregional Assessment Programme from multiple source datasets. The source datasets are identified in the Lineage field in this metadata statement. The processes undertaken to produce this derived dataset are described in the History field in this metadata statement. This resource contains raster datasets created using ArcGIS to analyse groundwater levels in the Namoi subregion. This is an update to some of the data that is registered here: http://data.bioregionalassessments.gov.au/dataset/7604087e-859c-4a92-8548-0aa274e8a226 Purpose These data layers were created in ArcGIS as part of the analysis to investigate surface water - groundwater connectivity in the Namoi subregion. The data layers provide several of the figures presented in the Namoi 2.1.5 Surface water - groundwater interactions report. Dataset History Extracted points inside Namoi subregion boundary. Converted bore and pipe values to Hydrocode format, changed heading of 'Value' column to 'Waterlevel' and removed unnecessary columns then joined to Updated_NSW_GroundWaterLevel_data_analysis_v01\NGIS_NSW_Bore_Join_Hydmeas_unique_bores.shp clipped to only include those bores within the Namoi subregion. Selected only those bores with sample dates between >=26/4/2012 and <31/7/2012. Then removed 4 gauges due to anomalous ref_pt_height values or WaterElev values higher than Land_Elev values. Then added new columns of calculations: WaterElev = TsRefElev - Water_Leve DepthWater = WaterElev - Ref_pt_height Ref_pt_height = TsRefElev - LandElev Alternatively - Selected only those bores with sample dates between >=1/5/2006 and <1/7/2006 2012_Wat_Elev - This raster was created by interpolating Water_Elev field points from HydmeasJune2012_only.shp, using Spatial Analyst - Topo to Raster tool. And using the alluvium boundary (NAM_113_Aquifer1_NamoiAlluviums.shp) as a boundary input source. 12_dw_olp_enf - Select out only those bores that are in both source files. Then using depthwater in Topo to Raster, with alluvium as the boundary, ENFORCE field chosen, and using only those bores present in 2012 and 2006 dataset. 2012dw1km_alu - Clipped the 'watercourselines' layer to the Namoi Subregion, then selected 'Major' water courses only. Then used the Geoprocessing 'Buffer' tool to create a polygon delineating an area 1km around all the major streams in the Namoi subregion. selected points from HydmeasJune2012_only.shp that were within 1km of features the WatercourseLines then used the selected points and the 1km buffer around the major water courses and the Topo to Raster tool in Spatial analyst to create the raster. Then used the alluvium boundary to truncate the raster, to limit to the area of interest. 12_minus_06 - Select out bores from the 2006 dataset that are also in the 2012 dataset. Then create a raster using depth_water in topo to raster, with ENFORCE field chosen to remove sinks, and alluvium as boundary. Then, using Map Algebra - Raster Calculator, subtract the raster just created from 12_dw_olp_enf Dataset Citation Bioregional Assessment Programme (2017) Namoi bore analysis rasters - updated. Bioregional Assessment Derived Dataset. Viewed 10 December 2018, http://data.bioregionalassessments.gov.au/dataset/effa0039-ba15-459e-9211-232640609d44. Dataset Ancestors Derived From Bioregional Assessment areas v02 Derived From Gippsland Project boundary Derived From Bioregional Assessment areas v04 Derived From Upper Namoi groundwater management zones Derived From Natural Resource Management (NRM) Regions 2010 Derived From Bioregional Assessment areas v03 Derived From Victoria - Seamless Geology 2014 Derived From GIS analysis of HYDMEAS - Hydstra Groundwater Measurement Update: NSW Office of Water - Nov2013 Derived From Bioregional Assessment areas v01 Derived From GEODATA TOPO 250K Series 3, File Geodatabase format (.gdb) Derived From GEODATA TOPO 250K Series 3 Derived From NSW Catchment Management Authority Boundaries 20130917 Derived From Geological Provinces - Full Extent Derived From Hydstra Groundwater Measurement Update - NSW Office of Water, Nov2013
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This data is part of the Monthly aggregated Water Vapor MODIS MCD19A2 (1 km) dataset. Check the related identifiers section on the Zenodo side panel to access other parts of the dataset. General Description The monthly aggregated water vapor dataset is derived from MCD19A2 v061. The Water Vapor data measures the column above ground retrieved from MODIS near-IR bands at 0.94μm. The dataset time spans from 2000 to 2022 and provides data that covers the entire globe. The dataset can be used in many applications like water cycle modeling, vegetation mapping, and soil mapping. This dataset includes:
Monthly time-series:Derived from MCD19A2 v061, this data provides a monthly aggregated mean and standard deviation of daily water vapor time-series data from 2000 to 2022. Only positive non-cloudy pixels were considered valid observations to derive the mean and the standard deviation. The remaining no-data values were filled using the TMWM algorithm. This dataset also includes smoothed mean and standard deviation values using the Whittaker method. The quality assessment layers and the number of valid observations for each month can provide an indication of the reliability of the monthly mean and standard deviation values. Yearly time-series:Derived from monthly time-series, this data provides a yearly time-series aggregated statistics of the monthly time-series data. Long-term data (2000-2022):Derived from monthly time-series, this data provides long-term aggregated statistics for the whole series of monthly observations. Data Details
Time period: 2000–2011 Type of data: Water vapor column above the ground (0.001cm) How the data was collected or derived: Derived from MCD19A2 v061 using Google Earth Engine. Cloudy pixels were removed and only positive values of water vapor were considered to compute the statistics. The time-series gap-filling and time-series smoothing were computed using the Scikit-map Python package. Statistical methods used: Four statistics were derived: standard deviation, percentiles 25, 50, and 75. Limitations or exclusions in the data: The dataset does not include data for Antarctica. Coordinate reference system: EPSG:4326 Bounding box (Xmin, Ymin, Xmax, Ymax): (-180.00000, -62.00081, 179.99994, 87.37000) Spatial resolution: 1/120 d.d. = 0.008333333 (1km) Image size: 43,200 x 17,924 File format: Cloud Optimized Geotiff (COG) format. Support If you discover a bug, artifact, or inconsistency, or if you have a question please use some of the following channels:
Technical issues and questions about the code: GitLab Issues General questions and comments: LandGIS Forum Name convention To ensure consistency and ease of use across and within the projects, we follow the standard Open-Earth-Monitor file-naming convention. The convention works with 10 fields that describes important properties of the data. In this way users can search files, prepare data analysis etc, without needing to open files. The fields are:
generic variable name: wv = Water vapor variable procedure combination: mcd19a2v061.seasconv = MCD19A2 v061 with gap-filling algorithm Position in the probability distribution / variable type: m = mean | sd = standard deviation | n = number of observations | qa = quality assessment Spatial support: 1km Depth reference: s = surface Time reference begin time: 20000101 = 2000-01-01 Time reference end time: 20111231 = 2011-12-31 Bounding box: go = global (without Antarctica) EPSG code: epsg.4326 = EPSG:4326 Version code: v20230619 = 2023-06-19 (creation date)
The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Coordinate System: Web Mercator Auxiliary Sphere Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Number of Features: 3,035,617 flowlines, 473,936 waterbodies, 16,658 sinksSource: EPA and USGSPublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.
The Unpublished Digital Geologic-GIS Map of the Wind Cave National Park Area, South Dakota is composed of GIS data layers and GIS tables in a 10.1 file geodatabase (wcam_geology.gdb), a 10.1 ArcMap (.mxd) map document (wcam_geology.mxd), individual 10.1 layer (.lyr) files for each GIS data layer, an ancillary map information document (wica_geology.pdf) which contains source map unit descriptions, as well as other source map text, figures and tables, metadata in FGDC text (.txt) and FAQ (.pdf) formats, and a GIS readme file (wica_geology_gis_readme.pdf). Please read the wica_geology_gis_readme.pdf for information pertaining to the proper extraction of the file geodatabase and other map files. To request GIS data in ESRI 10.1 shapefile format contact Stephanie O'Meara (stephanie.omeara@colostate.edu; see contact information below). The data is also available as a 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. Google Earth software is available for free at: http://www.google.com/earth/index.html. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wcam_geology_metadata.txt or wcam_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data projection is NAD83, UTM Zone 13N, however, for the KML/KMZ format the data is projected upon export to WGS84 Geographic, the native coordinate system used by Google Earth. The data is within the area of interest of Wind Cave National Park.
The media analysis data was collected for commercial purposes. They are used in media planning as well as in the advertising planning of the different media genres (radio, press media, TV, poster and since 2010 also online). They are cross-sections that are merged together for one year. ag.ma kindly provides the data for scientific use on an annual basis – with a two-year notice period – to GESIS. In addition, agof has provided documentation regarding data collection (questionnaires, code plans, etc.) for the preparation of the MA IntermediaPlus online bundle.
In order to make the data accessible for scientific use, the datasets of the individual years were harmonized and pooled into a longitudinal data set starting in 2014 as part of the dissertation project ´Audience and Market Fragmentation online´ of the Digital Society research program NRW at the Heinrich-Heine-University (HHU) and the University of Applied Sciences Düsseldorf (HSD), funded by the Ministry of Culture and Science of the German State of North Rhine-Westphalia.
The prepared Longitudinal IntermediaPlus dataset 2014 to 2016 is a ´big data´, which is why the entire dataset will only be available in the form of a database (MySQL). In this database, the information of different variables of a respondent is organized in one column, one row per variable. The present data documentation shows the total database for online media use of the years 2014 to 2016. The data contains all variables of socio demography, free-time activities, additional information on a respondent and his household as well as the interview-specific variables and weights. Only the variables concerning the respondent´s media use are a selection:
The online media use of all full online as well as their single entities for all genres whose business model is the provision of content is included - e-commerce, games, etc. were excluded. The media use of radio, print and TV is not included.
Preparation for further years is possible, as is the preparation of cross-media media use for radio, press media and TV. Harmonization is available for radio and press media up to 2015 waiting to be applied. The digital process chain developed for data preparation and harmonization is published at GESIS and available for further projects updating the time series for further years. Recourse to these documents - Excel files, scripts, harmonization plans, etc. - is strongly recommended.
The process and harmonization for the Longitudinal IntermediaPlus for 2014 to 2016 database was made available in accordance with the FAIR principles (Wilkinson et al. 2016). By harmonizing and pooling the cross-sectional datasets to one longitudinal dataset – which is being carried out by Inga Brentel and Céline Fabienne Kampes as part of the dissertation project ´Audience and Market Fragmentation online´ –, the aim is to make the data source of the media analysis, accessible for research on social and media change in Germany.
The Digital Geologic-GIS Map of Washita Battlefield National Historic Site Area, Oklahoma is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (wbar_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (wbar_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (wbar_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (waba_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (waba_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (wbar_geology_metadata_faq.pdf). Please read the waba_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Oklahoma Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wbar_geology_metadata.txt or wbar_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The study was conducted in Serbia between October 2008 and February 2009 as part of the first round of The Management, Organization and Innovation Survey. Data from 135 manufacturing companies with 50 to 5,000 full-time employees was analyzed.
The survey topics include detailed information about a company and its management practices - production performance indicators, production target, ways employees are promoted/dealt with when underperforming. The study also focuses on organizational matters, innovation, spending on research and development, production outsourcing to other countries, competition, and workforce composition.
The primary sampling unit of the study is the establishment. An establishment is a physical location where business is carried out and where industrial operations take place or services are provided. A firm may be composed of one or more establishments. For example, a brewery may have several bottling plants and several establishments for distribution. For the purposes of this survey an establishment is defined as a separate production unit, regardless of whether or not it has its own financial statements separate from those of the firm, and whether it has it own management and control over payroll. So the bottling plant of a brewery would be counted as an establishment.
The survey universe was defined as manufacturing establishments with at least fifty, but less than 5,000, full-time employees.
Sample survey data [ssd]
Random sampling was used in the study. For all MOI countries, except Russia, there was a requirement that all regions must be covered and that the percentage of the sample in each region was required to be equal to at least one half of the percentage of the sample frame population in each region.
In most countries the sample frame used was an extract from the Orbis database of Bureau van Dijk, which was provided to the Consultant by the EBRD. The sample frame contained details of company names, location, company size (number of employees), company performance measures and contact details. The sample frame downloaded from Orbis was cleaned by the EBRD through the addition of regional variables, updating addresses and phone numbers of companies.
Examination of the Orbis sample frames showed their geographic distributions to be wide with many locations, a large number of which had only a small number of records. Each establishment was selected with two substitutes that can be used if it proves impossible to conduct an interview at the first establishment. In practice selection was confined to locations with the most records in the sample frame, so the sample frame was filtered to just the cities with the most establishments.
The quality of the frame was assessed at the onset of the project. The frame proved to be useful though it showed positive rates of non-eligibility, repetition, non-existent units, etc. These problems are typical of establishment surveys. For Serbia, the percentage of confirmed non-eligible units as a proportion of the total number of contacts to complete the survey was 26.7% (82 out of 307 establishments).
Face-to-face [f2f]
Two different versions of the questionnaire were used. Questionnaire A was used when interviewing establishments that are part of multiestablishment firms, while Questionnaire B was used when interviewing single-establishment firms. Questionnaire A incorporates all questions from Questionnaire B, the only difference is in the reference point, which is the so-called national firm in the first part of Questionnaire A and firm in Questionnaire B. Second part of the questionnaire refers to the interviewed establishment only in both Questionnaire A and Questionnaire B. Each variation of the questionnaire is identified by the index variable, a0.
Item non-response was addressed by two strategies: - For sensitive questions that may generate negative reactions from the respondent, such as ownership information, enumerators were instructed to collect the refusal to respond as (-8). - Establishments with incomplete information were re-contacted in order to complete this information, whenever necessary. However, there were clear cases of low response.
Survey non-response was addressed by maximising efforts to contact establishments that were initially selected for interviews. Up to 15 attempts (but at least 4 attempts) were made to contact an establishment for interview at different times/days of the week before a replacement establishment (with similar characteristics) was suggested for interview. Survey non-response did occur, but substitutions were made in order to potentially achieve the goals.
Additional information about sampling, response rates and survey implementation can be found in "MOI Survey Report on Methodology and Observations 2009" in "Technical Documents" folder.
Land cover describes the surface of the earth. This time-enabled service of the National Land Cover Database groups land cover into 20 classes based on a modified Anderson Level II classification system. Classes include vegetation type, development density, and agricultural use. Areas of water, ice and snow and barren lands are also identified.The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics Consortium (MRLC). The MRLC Consortium is a partnership of federal agencies, consisting of the U.S. Geological Survey, the National Oceanic and Atmospheric Administration, the U.S. Environmental Protection Agency, the U.S. Department of Agriculture, the U.S. Forest Service, the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Land Management and the USDA Natural Resources Conservation Service.Time Extent: 2001, 2004, 2006, 2008, 2011, 2013, 2016, 2019, and 2021 for the conterminous United States. The layer displays land cover for Alaska for the years 2001, 2011, and 2016. For Puerto Rico there is only data for 2001. For Hawaii, Esri reclassed land cover data from NOAA Office for Coastal Management, C-CAP into NLCD codes. These reclassed C-CAP data were available for Hawaii for the years 2001, 2005, and 2011. Hawaii C-CAP land cover in its original form can be used in your maps by adding the Hawaii CCAP Land Cover layer directly from the Living Atlas.Units: (Thematic dataset)Cell Size: 30m Source Type: Thematic Pixel Type: Unsigned 8 bitData Projection: North America Albers Equal Area Conic (102008)Mosaic Projection: North America Albers Equal Area Conic (102008)Extent: 50 US States, District of Columbia, Puerto RicoSource: National Land Cover DatabasePublication date: June 30, 2023Time SeriesThis layer is served as a time series. To display a particular year of land cover data, select the year of interest with the time slider in your map client. You may also use the time slider to play the service as an animation. We recommend a one year time interval when displaying the series. If you would like a particular year of data to use in analysis, be sure to use the analysis renderer along with the time slider to choose a valid year.North America Albers ProjectionThis layer is served in North America Albers projection. Albers is an equal area projection, and this allows users of this service to accurately calculate acreage without additional data preparation steps. This also means it takes a tiny bit longer to project on the fly into Web Mercator projection, if that is the destination projection of the service.Processing TemplatesCartographic Renderer - The default. Land cover drawn with Esri symbols. Each year's land cover data is displayed in the time series until there is a newer year of data available.Cartographic Renderer (saturated) - This renderer has the same symbols as the cartographic renderer, but the colors are extra saturated so a transparency may be applied to the layer. This renderer is useful for land cover over a basemap or relief. MRLC Cartographic Renderer - Cartographic renderer using the land cover symbols as issued by NLCD (the same symbols as is on the dataset when you download them from MRLC).Analytic Renderer - Use this in analysis. The time series is restricted by the analytic template to display a raster in only the year the land cover raster is valid. In a cartographic renderer, land cover data is displayed until a new year of data is available so that it plays well in a time series. In the analytic renderer, data is displayed for only the year it is valid. The analytic renderer won't look good in a time series animation, but in analysis this renderer will make sure you only use data for its appropriate year.Simplified Renderer - NLCD reclassified into 10 broad classes. These broad classes may be easier to use in some applications or maps.Forest Renderer - Cartographic renderer which only displays the three forest classes, deciduous, coniferous, and mixed forest.Developed Renderer - Cartographic renderer which only displays the four developed classes, developed open space plus low, medium, and high intensity development classes.Hawaii data has a different sourceMRLC redirects users interested in land cover data for Hawaii to a NOAA product called C-CAP or Coastal Change Analysis Program Regional Land Cover. This C-CAP land cover data was available for Hawaii for the years 2001, 2005, and 2011 at the time of the latest update of this layer. The USA NLCD Land Cover layer reclasses C-CAP land cover codes into NLCD land cover codes for display and analysis, although it may be beneficial for analytical purposes to use the original C-CAP data, which has finer resolution and untranslated land cover codes. The C-CAP land cover data for Hawaii is served as its own 2.4m resolution land cover layer in the Living Atlas.Because it's a different original data source than the rest of NLCD, different years for Hawaii may not be able to be compared in the same way different years for the other states can. But the same method was used to produce each year of this C-CAP derived land cover to make this layer. Note: Because there was no C-CAP data for Kaho'olawe Island in 2011, 2005 data were used for that island.The land cover is projected into the same projection and cellsize as the rest of the layer, using nearest neighbor method, then it is reclassed to approximate the NLCD codes. The following is the reclass table used to make Hawaii C-CAP data closely match the NLCD classification scheme:C-CAP code,NLCD code0,01,02,243,234,225,216,827,818,719,4110,4211,4312,5213,9014,9015,9516,9017,9018,9519,3120,3121,1122,1123,1124,025,12USA NLCD Land Cover service classes with corresponding index number (raster value):11. Open Water - areas of open water, generally with less than 25% cover of vegetation or soil.12. Perennial Ice/Snow - areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total cover.21. Developed, Open Space - areas with a mixture of some constructed materials, but mostly vegetation in the form of lawn grasses. Impervious surfaces account for less than 20% of total cover. These areas most commonly include large-lot single-family housing units, parks, golf courses, and vegetation planted in developed settings for recreation, erosion control, or aesthetic purposes.22. Developed, Low Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 20% to 49% percent of total cover. These areas most commonly include single-family housing units.23. Developed, Medium Intensity - areas with a mixture of constructed materials and vegetation. Impervious surfaces account for 50% to 79% of the total cover. These areas most commonly include single-family housing units.24. Developed High Intensity - highly developed areas where people reside or work in high numbers. Examples include apartment complexes, row houses and commercial/industrial. Impervious surfaces account for 80% to 100% of the total cover.31. Barren Land (Rock/Sand/Clay) - areas of bedrock, desert pavement, scarps, talus, slides, volcanic material, glacial debris, sand dunes, strip mines, gravel pits and other accumulations of earthen material. Generally, vegetation accounts for less than 15% of total cover.41. Deciduous Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species shed foliage simultaneously in response to seasonal change.42. Evergreen Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. More than 75% of the tree species maintain their leaves all year. Canopy is never without green foliage.43. Mixed Forest - areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. 51. Dwarf Scrub - Alaska only areas dominated by shrubs less than 20 centimeters tall with shrub canopy typically greater than 20% of total vegetation. This type is often co-associated with grasses, sedges, herbs, and non-vascular vegetation.52. Shrub/Scrub - areas dominated by shrubs; less than 5 meters tall with shrub canopy typically greater than 20% of total vegetation. This class includes true shrubs, young trees in an early successional stage or trees stunted from environmental conditions.71. Grassland/Herbaceous - areas dominated by gramanoid or herbaceous vegetation, generally greater than 80% of total vegetation. These areas are not subject to intensive management such as tilling, but can be utilized for grazing.72. Sedge/Herbaceous - Alaska only areas dominated by sedges and forbs, generally greater than 80% of total vegetation. This type can occur with significant other grasses or other grass like plants, and includes sedge tundra, and sedge tussock tundra.73. Lichens - Alaska only areas dominated by fruticose or foliose lichens generally greater than 80% of total vegetation.74. Moss - Alaska only areas dominated by mosses, generally greater than 80% of total vegetation.Planted/Cultivated 81. Pasture/Hay - areas of grasses, legumes, or grass-legume mixtures planted for livestock grazing or the production of seed or hay crops, typically on a perennial cycle. Pasture/hay vegetation accounts for greater than 20% of total vegetation.82. Cultivated Crops - areas used for the production of annual crops, such as corn, soybeans, vegetables, tobacco, and cotton, and also perennial woody crops such as orchards and vineyards. Crop vegetation accounts for greater than 20% of total vegetation. This class also includes all land being actively tilled.90. Woody Wetlands - areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or