100+ datasets found
  1. a

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +2more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV
    Explore at:
    Dataset updated
    Oct 28, 2019
    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. Egypt: Road Surface Data

    • data.humdata.org
    geojson, geopackage
    Updated Apr 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HeiGIT (Heidelberg Institute for Geoinformation Technology) (2025). Egypt: Road Surface Data [Dataset]. https://data.humdata.org/dataset/egypt-road-surface-data
    Explore at:
    geojson, geopackageAvailable download formats
    Dataset updated
    Apr 15, 2025
    Dataset provided by
    HeiGIThttps://heigit.org/
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    This dataset provides detailed information on road surfaces from OpenStreetMap (OSM) data, distinguishing between paved and unpaved surfaces across the region. This information is based on road surface prediction derived from hybrid deep learning approach. For more information on Methods, refer to the paper

    Roughly 0.6438 million km of roads are mapped in OSM in this region. Based on AI-mapped estimates the share of paved and unpaved roads is approximately 0.0602 and 0.0169 (in million kms), corressponding to 9.344% and 2.6252% respectively of the total road length in the dataset region. 0.5667 million km or 88.0308% of road surface information is missing in OSM. In order to fill this gap, Mapillary derived road surface dataset provides an additional 0.0022 million km of information (corressponding to 0.3924% of total missing information on road surface)

    It is intended for use in transportation planning, infrastructure analysis, climate emissions and geographic information system (GIS) applications.

    This dataset provides comprehensive information on road and urban area features, including location, surface quality, and classification metadata. This dataset includes attributes from OpenStreetMap (OSM) data, AI predictions for road surface, and urban classifications.

    AI features:

    • pred_class: Model-predicted class for the road surface, with values "paved" or "unpaved."

    • pred_label: Binary label associated with pred_class (0 = paved, 1 = unpaved).

    • osm_surface_class: Classification of the surface type from OSM, categorized as "paved" or "unpaved."

    • combined_surface_osm_priority: Surface classification combining pred_label and surface(OSM) while prioritizing the OSM surface tag, classified as "paved" or "unpaved."

    • combined_surface_DL_priority: Surface classification combining pred_label and surface(OSM) while prioritizing DL prediction pred_label, classified as "paved" or "unpaved."

    • n_of_predictions_used: Number of predictions used for the feature length estimation.

    • predicted_length: Predicted length based on the DL model’s estimations, in meters.

    • DL_mean_timestamp: Mean timestamp of the predictions used, for comparison.

    OSM features may have these attributes(Learn what tags mean here):

    • name: Name of the feature, if available in OSM.

    • name:en: Name of the feature in English, if available in OSM.

    • name:* (in local language): Name of the feature in the local official language, where available.

    • highway: Road classification based on OSM tags (e.g., residential, motorway, footway).

    • surface: Description of the surface material of the road (e.g., asphalt, gravel, dirt).

    • smoothness: Assessment of surface smoothness (e.g., excellent, good, intermediate, bad).

    • width: Width of the road, where available.

    • lanes: Number of lanes on the road.

    • oneway: Indicates if the road is one-way (yes or no).

    • bridge: Specifies if the feature is a bridge (yes or no).

    • layer: Indicates the layer of the feature in cases where multiple features are stacked (e.g., bridges, tunnels).

    • source: Source of the data, indicating the origin or authority of specific attributes.

    Urban classification features may have these attributes:

    • continent: The continent where the data point is located (e.g., Europe, Asia).

    • country_iso_a2: The ISO Alpha-2 code representing the country (e.g., "US" for the United States).

    • urban: Binary indicator for urban areas based on the GHSU Urban Layer 2019. (0 = rural, 1 = urban)

    • urban_area: Name of the urban area or city where the data point is located.

    • osm_id: Unique identifier assigned by OpenStreetMap (OSM) to each feature.

    • osm_type: Type of OSM element (e.g., node, way, relation).

    The data originates from OpenStreetMap (OSM) and is augmented with model predictions using images downloaded from Mapillary in combination with the GHSU Global Human Settlement Urban Layer 2019 and AFRICAPOLIS2020 urban layer.

    This dataset is one of many HeiGIT exports on HDX. See the HeiGIT website for more information.

    We are looking forward to hearing about your use-case! Feel free to reach out to us and tell us about your research at communications@heigit.org – we would be happy to amplify your work.

  3. Epidemiological geography at work. An exploratory review about the overall...

    • zenodo.org
    Updated Jul 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Marco Raffaele Pranzo; Andrea Marco Raffaele Pranzo (2024). Epidemiological geography at work. An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year (DATASET) [Dataset]. http://doi.org/10.5281/zenodo.4685964
    Explore at:
    Dataset updated
    Jul 19, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrea Marco Raffaele Pranzo; Andrea Marco Raffaele Pranzo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Literature review dataset

    This table lists the surveyed papers concerning the application of spatial analysis, GIS (Geographic Information Systems) as well as general geographic approaches and geostatistics, to the assessment of CoViD-19 dynamics. The period of survey is from January 1st, 2020 to December 15th, 2020. The first column lists the reference. The second lists the date of publication (preferably, the date of online publication). The third column lists the Country or the Countries and/or the subnational entities investigated. The fourth column lists the epidemiological data utilized in each paper. The fifth column lists other types of data utilized for the analysis. The sixth column lists the more traditionally statistically-based methods, if utilized. The seventh column lists the geo-statistical, GIS or geographic methods, if utilized. The eight column sums up the findings of each paper. The papers are also classified within seven thematic categories. The full references are available at the end of the table in alphabetical order.

    This table was the basis for the realization of a comprehensive geographic literature review. It aims to be a useful tool to ease the "due-diligence" activity of all the researchers interested in the spatial analysis of the pandemic.

    The reference to cite the related paper is the following:

    Pranzo, A.M.R., Dai Prà, E. & Besana, A. Epidemiological geography at work: An exploratory review about the overall findings of spatial analysis applied to the study of CoViD-19 propagation along the first pandemic year. GeoJournal (2022). https://doi.org/10.1007/s10708-022-10601-y

    To read the manuscript please follow this link: https://doi.org/10.1007/s10708-022-10601-y

  4. d

    Data from: Using Statistics Canada Geospatial Data with ArcGIS 9x (ArcInfo)

    • dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Barbara Znamirowski; Nancy Lemay; Jenny Marvin (2023). Using Statistics Canada Geospatial Data with ArcGIS 9x (ArcInfo) [Dataset]. http://doi.org/10.5683/SP3/ZU6RQG
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Barbara Znamirowski; Nancy Lemay; Jenny Marvin
    Description

    The primary intent of this workshop is to provide practical training in using Statistics Canada geography files with the leading industry standard software: Environmental Systems Research Institute, Inc.(ESRI) ArcGIS 9x. Participants will be introduced to the key features of ArcGIS 9x, as well as to geographic concepts and principles essential to understanding and working with geographic information systems (GIS) software. The workshop will review a range of geography and attribute files available from Statistics Canada, as well as some best practices for accessing this information. A brief overview of complementary data sets available from federal and provincial agencies will be provided. There will also be an opportunity to complete a practical exercise using ArcGIS9x. (Note: Data associated with this presentation is available on the DLI FTP site under folder 1873-221.)

  5. Data from: Geographic Names Information System: National Geographic Names...

    • icpsr.umich.edu
    • search.datacite.org
    ascii
    Updated Jan 18, 2006
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geographic Names Information System: National Geographic Names Data Base, Michigan Geographic Names [Dataset]. https://www.icpsr.umich.edu/web/ICPSR/studies/8374
    Explore at:
    asciiAvailable download formats
    Dataset updated
    Jan 18, 2006
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    United States Department of the Interior. United States Geological Survey
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/8374/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/8374/terms

    Area covered
    Michigan, United States
    Description

    The Geographic Names Information System (GNIS) was developed by the United States Geological Survey (USGS) to meet major national needs regarding geographic names and their standardization and dissemination. This dataset consists of standard report files written from the National Geographic Names Data Base, one of five data bases maintained in the GNIS. A standard format data file containing Michigan place names and geographic features such as towns, schools, reservoirs, parks, streams, valleys, springs and ridges is accompanied by a file that provides a Cross-Reference to USGS 7.5 x 7.5 minute quadrangle maps for each feature. The records in the data files are organized alphabetically by place or feature name. The other variables available in the dataset include: Federal Information Processing Standard (FIPS) state/county codes, Geographic Coordinates -- latitude and longitude to degrees, minutes, and seconds followed by a single digit alpha directional character, and a GNIS Map Code that can be used with the Cross-Reference file to provide the name of the 7.5 x 7.5 minute quadrangle map that contains that geographic feature.

  6. Land Use/Land Cover of New Jersey 2015 (Download)

    • hub.arcgis.com
    • opendata.rcmrd.org
    Updated Dec 25, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NJDEP Bureau of GIS (2020). Land Use/Land Cover of New Jersey 2015 (Download) [Dataset]. https://hub.arcgis.com/documents/6f76b90deda34cc98aec255e2defdb45
    Explore at:
    Dataset updated
    Dec 25, 2020
    Dataset provided by
    New Jersey Department of Environmental Protectionhttp://www.nj.gov/dep/
    Authors
    NJDEP Bureau of GIS
    Area covered
    New Jersey
    Description

    The 2015 LU/LC data set is the sixth in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007, 2012 and 2015. This present 2015 update was created by comparing the 2012 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2015 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2015 land use directly to the base data layer. All 2012 LU/LC polygons and attribute fields remain in this data set, so change analysis for the period 2012-2015 can be undertaken from this one layer. The classification system used was a modified Anderson et al., classification system. An impervious surface (IS) code was also assigned to each LU/LC polygon based on the percentage of impervious surface within each polygon as of 2015. Minimum mapping unit (MMU) is 1 acre. ADVISORY: This metadata file contains information for the 2015 Land Use/Land Cover (LU/LC) data sets, which were mapped by USGS Subbasin (HU8). There are additional reference documents listed in this file under Supplemental Information which should also be examined by users of these data sets. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.

  7. California Overlapping Cities and Counties and Identifiers with Coastal...

    • data.ca.gov
    • gis.data.ca.gov
    • +1more
    Updated Feb 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2025). California Overlapping Cities and Counties and Identifiers with Coastal Buffers [Dataset]. https://data.ca.gov/dataset/california-overlapping-cities-and-counties-and-identifiers-with-coastal-buffers
    Explore at:
    kml, gdb, zip, gpkg, xlsx, arcgis geoservices rest api, geojson, csv, txt, htmlAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Area covered
    California
    Description

    WARNING: This is a pre-release dataset and its fields names and data structures are subject to change. It should be considered pre-release until the end of 2024. Expected changes:

    • Metadata is missing or incomplete for some layers at this time and will be continuously improved.
    • We expect to update this layer roughly in line with CDTFA at some point, but will increase the update cadence over time as we are able to automate the final pieces of the process.
    This dataset is continuously updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.

    Purpose

    County and incorporated place (city) boundaries along with third party identifiers used to join in external data. Boundaries are from the authoritative source the California Department of Tax and Fee Administration (CDTFA), altered to show the counties as one polygon. This layer displays the city polygons on top of the County polygons so the area isn"t interrupted. The GEOID attribute information is added from the US Census. GEOID is based on merged State and County FIPS codes for the Counties. Abbreviations for Counties and Cities were added from Caltrans Division of Local Assistance (DLA) data. Place Type was populated with information extracted from the Census. Names and IDs from the US Board on Geographic Names (BGN), the authoritative source of place names as published in the Geographic Name Information System (GNIS), are attached as well. Finally, the coastline is used to separate coastal buffers from the land-based portions of jurisdictions. This feature layer is for public use.

    Related Layers

    This dataset is part of a grouping of many datasets:

    1. Cities: Only the city boundaries and attributes, without any unincorporated areas
    2. Counties: Full county boundaries and attributes, including all cities within as a single polygon
    3. Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.
    4. Place Abbreviations
    5. Unincorporated Areas (Coming Soon)
    6. Census Designated Places (Coming Soon)
    7. Cartographic Coastline
    Working with Coastal Buffers
    The dataset you are currently viewing includes the coastal buffers for cities and counties that have them in the authoritative source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except COASTAL, Area_SqMi, Shape_Area, and Shape_Length to get a version with the correct identifiers.

    Point of Contact

    California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov

    Field and Abbreviation Definitions

    • COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system
    • Place Name: CDTFA incorporated (city) or county name
    • County: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.
    • Legal Place Name: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information System
    • GNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.
    • GEOID: numeric geographic identifiers from the US Census Bureau Place Type: Board on Geographic Names authorized nomenclature for boundary type published in the Geographic Name Information System
    • Place Abbr: CalTrans Division of Local Assistance abbreviations of incorporated area names
    • CNTY Abbr: CalTrans Division of Local Assistance abbreviations of county names
    • Area_SqMi: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.
    • COASTAL: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".
    • GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.

    Accuracy

    CDTFA"s source data notes the following about accuracy:

    City boundary changes and county boundary line adjustments filed with the Board of Equalization per Government Code 54900. This GIS layer contains the boundaries of the unincorporated county and incorporated cities within the state of California. The initial dataset was created in March of 2015 and was based on the State Board of Equalization tax rate area boundaries. As of April 1, 2024, the maintenance of this dataset is provided by the California Department of Tax and Fee Administration for the purpose of determining sales and use tax rates. The boundaries are continuously being revised to align with aerial imagery when areas of conflict are discovered between the original boundary provided by the California State Board of Equalization and the boundary made publicly available by local, state, and federal government. Some differences may occur between actual recorded boundaries and the boundaries used for sales and use tax purposes. The boundaries in this map are representations of taxing jurisdictions for the purpose of determining sales and use tax rates and should not be used to determine precise city or county boundary line locations. COUNTY = county name; CITY = city name or unincorporated

  8. w

    Dataset of books series that contain Concepts and techniques of geographic...

    • workwithdata.com
    Updated Nov 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of books series that contain Concepts and techniques of geographic information systems [Dataset]. https://www.workwithdata.com/datasets/book-series?f=1&fcol0=j0-book&fop0=%3D&fval0=Concepts+and+techniques+of+geographic+information+systems&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 25, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book series. It has 1 row and is filtered where the books is Concepts and techniques of geographic information systems. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  9. 2025 Green Card Report for Geographic Information Systems (geoinformatics)

    • myvisajobs.com
    Updated Jan 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MyVisaJobs (2025). 2025 Green Card Report for Geographic Information Systems (geoinformatics) [Dataset]. https://www.myvisajobs.com/reports/green-card/major/geographic-information-systems-(geoinformatics)
    Explore at:
    Dataset updated
    Jan 16, 2025
    Dataset provided by
    MyVisaJobs.com
    Authors
    MyVisaJobs
    License

    https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/

    Variables measured
    Major, Salary, Petitions Filed
    Description

    A dataset that explores Green Card sponsorship trends, salary data, and employer insights for geographic information systems (geoinformatics) in the U.S.

  10. ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating...

    • zenodo.org
    • data.niaid.nih.gov
    bin, zip
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Gillreath-Brown; Andrew Gillreath-Brown; Lisa Nagaoka; Lisa Nagaoka; Steve Wolverton; Steve Wolverton (2024). ArcGIS Map Packages and GIS Data for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al. (2019) [Dataset]. http://doi.org/10.5281/zenodo.2572018
    Explore at:
    bin, zipAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Gillreath-Brown; Andrew Gillreath-Brown; Lisa Nagaoka; Lisa Nagaoka; Steve Wolverton; Steve Wolverton
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    ArcGIS Map Packages and GIS Data for Gillreath-Brown, Nagaoka, and Wolverton (2019)

    **When using the GIS data included in these map packages, please cite all of the following:

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, 2019. PLoSONE 14(8):e0220457. http://doi.org/10.1371/journal.pone.0220457

    Gillreath-Brown, Andrew, Lisa Nagaoka, and Steve Wolverton. ArcGIS Map Packages for: A Geospatial Method for Estimating Soil Moisture Variability in Prehistoric Agricultural Landscapes, Gillreath-Brown et al., 2019. Version 1. Zenodo. https://doi.org/10.5281/zenodo.2572018

    OVERVIEW OF CONTENTS

    This repository contains map packages for Gillreath-Brown, Nagaoka, and Wolverton (2019), as well as the raw digital elevation model (DEM) and soils data, of which the analyses was based on. The map packages contain all GIS data associated with the analyses described and presented in the publication. The map packages were created in ArcGIS 10.2.2; however, the packages will work in recent versions of ArcGIS. (Note: I was able to open the packages in ArcGIS 10.6.1, when tested on February 17, 2019). The primary files contained in this repository are:

    • Raw DEM and Soils data
      • Digital Elevation Model Data (Map services and data available from U.S. Geological Survey, National Geospatial Program, and can be downloaded from the National Elevation Dataset)
        • DEM_Individual_Tiles: Individual DEM tiles prior to being merged (1/3 arc second) from USGS National Elevation Dataset.
        • DEMs_Merged: DEMs were combined into one layer. Individual watersheds (i.e., Goodman, Coffey, and Crow Canyon) were clipped from this combined DEM.
      • Soils Data (Map services and data available from Natural Resources Conservation Service Web Soil Survey, U.S. Department of Agriculture)
        • Animas-Dolores_Area_Soils: Small portion of the soil mapunits cover the northeastern corner of the Coffey Watershed (CW).
        • Cortez_Area_Soils: Soils for Montezuma County, encompasses all of Goodman (GW) and Crow Canyon (CCW) watersheds, and a large portion of the Coffey watershed (CW).
    • ArcGIS Map Packages
      • Goodman_Watershed_Full_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the full Goodman Watershed (GW).
      • Goodman_Watershed_Mesa-Only_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the mesa-only Goodman Watershed.
      • Crow_Canyon_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Crow Canyon Watershed (CCW).
      • Coffey_Watershed_SMPM_Analysis: Map Package contains the necessary files to rerun the SMPM analysis on the Coffey Watershed (CW).

    For additional information on contents of the map packages, please see see "Map Packages Descriptions" or open a map package in ArcGIS and go to "properties" or "map document properties."

    LICENSES

    Code: MIT year: 2019
    Copyright holders: Andrew Gillreath-Brown, Lisa Nagaoka, and Steve Wolverton

    CONTACT

    Andrew Gillreath-Brown, PhD Candidate, RPA
    Department of Anthropology, Washington State University
    andrew.brown1234@gmail.com – Email
    andrewgillreathbrown.wordpress.com – Web

  11. a

    One hundred seventy environmental GIS data layers for the circumpolar Arctic...

    • arcticdata.io
    • search.dataone.org
    Updated Dec 18, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arctic Data Center (2020). One hundred seventy environmental GIS data layers for the circumpolar Arctic Ocean region [Dataset]. https://arcticdata.io/catalog/view/f63d0f6c-7d53-46ce-b755-42a368007601
    Explore at:
    Dataset updated
    Dec 18, 2020
    Dataset provided by
    Arctic Data Center
    Time period covered
    Jan 1, 1950 - Dec 31, 2100
    Area covered
    Arctic Ocean,
    Description

    This dataset represents a unique compiled environmental data set for the circumpolar Arctic ocean region 45N to 90N region. It consists of 170 layers (mostly marine, some terrestrial) in ArcGIS 10 format to be used with a Geographic Information System (GIS) and which are listed below in detail. Most layers are long-term average raster GRIDs for the summer season, often by ocean depth, and represent value-added products easy to use. The sources of the data are manifold such as the World Ocean Atlas 2009 (WOA09), International Bathimetric Chart of the Arctic Ocean (IBCAO), Canadian Earth System Model 2 (CanESM2) data (the newest generation of models available) and data sources such as plankton databases and OBIS. Ocean layers were modeled and predicted into the future and zooplankton species were modeled based on future data: Calanus hyperboreus (AphiaID104467), Metridia longa (AphiaID 104632), M. pacifica (AphiaID 196784) and Thysanoessa raschii (AphiaID 110711). Some layers are derived within ArcGIS. Layers have pixel sizes between 1215.819573 meters and 25257.72929 meters for the best pooled model, and between 224881.2644 and 672240.4095 meters for future climate data. Data was then reprojected into North Pole Stereographic projection in meters (WGS84 as the geographic datum). Also, future layers are included as a selected subset of proposed future climate layers from the Canadian CanESM2 for the next 100 years (scenario runs rcp26 and rcp85). The following layer groups are available: bathymetry (depth, derived slope and aspect); proximity layers (to,glaciers,sea ice, protected areas, wetlands, shelf edge); dissolved oxygen, apparent oxygen, percent oxygen, nitrogen, phosphate, salinity, silicate (all for August and for 9 depth classes); runoff (proximity, annual and August); sea surface temperature; waterbody temperature (12 depth classes); modeled ocean boundary layers (H1, H2, H3 and Wx).This dataset is used for a M.Sc. thesis by the author, and freely available upon request. For questions and details we suggest contacting the authors. Process_Description: Please contact Moritz Schmid for the thesis and detailed explanations. Short version: We model predicted here for the first time ocean layers in the Arctic Ocean based on a unique dataset of physical oceanography. Moreover, we developed presence/random absence models that indicate where the studied zooplankton species are most likely to be present in the Arctic Ocean. Apart from that, we develop the first spatially explicit models known to science that describe the depth in which the studied zooplankton species are most likely to be at, as well as their distribution of life stages. We do not only do this for one present day scenario. We modeled five different scenarios and for future climate data. First, we model predicted ocean layers using the most up to date data from various open access sources, referred here as best-pooled model data. We decided to model this set of stratification layers after discussions and input of expert knowledge by Professor Igor Polyakov from the International Arctic Research Center at the University of Alaska Fairbanks. We predicted those stratification layers because those are the boundaries and layers that the plankton has to cross for diel vertical migration and a change in those would most likely affect the migration. I assigned 4 variables to the stratification layers. H1, H2, H3 and Wx. H1 is the lower boundary of the mixed layer depth. Above this layer a lot of atmospheric disturbance is causing mixing of the water, giving the mixed layer its name. H2, the middle of the halocline is important because in this part of the ocean a strong gradient in salinity and temperature separates water layers. H3, the isotherm is important, because beneath it flows denser and colder Atlantic water. Wx summarizes the overall width of the described water column. Ocean layers were predicted using machine learning algorithms (TreeNet, Salford Systems). Second, ocean layers were included as predictors and used to predict the presence/random absence, most likely depth and life stage layers for the zooplankton species: Calanus hyperboreus, Metridia longa, Metridia pacifica and Thysanoessa raschii, This process was repeated for future predictions based on the CanESM2 data (see in the data section). For zooplankton species the following layers were developed and for the future. C. hyperboreus: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100.For parameters: Presence/random absence, most likely depth and life stage layers M. longa: Best-pooled model as well as future predictions (rcp26 including ocean layer(also excluding), rcp85 including oocean layers (also excluding) for 2010 and 2100. For parameters: Presence/rand... Visit https://dataone.org/datasets/f63d0f6c-7d53-46ce-b755-42a368007601 for complete metadata about this dataset.

  12. R

    Data from: Digital methods in archaeological research. Huarmey Valley case...

    • repod.icm.edu.pl
    7z, xlsx, xml
    Updated Jun 12, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chyla, Julia (2022). Digital methods in archaeological research. Huarmey Valley case study [Dataset]. http://doi.org/10.18150/FHZI3G
    Explore at:
    xlsx(81754), 7z(1148883133), xml(32681)Available download formats
    Dataset updated
    Jun 12, 2022
    Dataset provided by
    RepOD
    Authors
    Chyla, Julia
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    Huarmey
    Description

    Dissertation and dataset present an archaeological study of the Huarmey Valley region, located on the northern coast of Peru. My work uses modern and innovative digital methods. My research focuses on better understanding the location of one of the most important sites in the valley, Castillo de Huarmey, by learning about the context in which it functioned. The Imperial Mausoleum located at the site, along with the burial chamber beneath it, is considered one of the most important discoveries regarding the Wari culture in recent years.In the dissertation, I address issues concerning both the location of the site on a macro scale - in the entire Huarmey Valley, on a micro scale - the context of the Huarmey Valley delta – and the spatial relationships within the burial chamber located beneath the Mausoleum. I ask the questions (i) How did Castillo de Huarmey communicate with other sites dated to the same period located in the valley and also in adjacent valleys? Did this influence its role in the region? (ii) Is the Mausoleum at Castillo de Huarmey located intentionally and what was the meaning of this location at the micro and macro scale? (iii) What spatial relations existed between Castillo de Huarmey and other sites from the same period? (iv) Does the position of the artifacts, found in situ in the burial chamber, show important relationships between buried individuals? (v) Does spatial analysis show interesting spatial patterns within the burial inside the chamber?The questions can be answered by describing and testing the digital methods proposed in the doctoral dissertation related to both field data collection and their analysis and interpretation. These methods were selected and adapted to a specific area (the Northern Coast of Peru) and to the objective of answering the questions posed in the thesis. The wide range of digital methods used in archaeology is made possible by the use of Geographic Information Systems (abbreviated GIS) in research. To date, GIS in archaeology is used in three aspects (Wheatley and Gillings 2002): (i) statistical and spatial analysis to obtain new information, (ii) landscape archaeology, and (iii) Cultural Resource Management.My dissertation is divided into three main components that discuss the types of digital methods used in archaeology. The division of these methods will be adapted to the level of detail of the research (from the location of the site in the region, to the delta of the Huarmey Valley, to the burial chamber of the Mausoleum) and to the way they are used in archaeology (from Cultural Resource Management, to archaeological landscape analysis, to statistical-spatial analysis). One of the aims of the dissertation is to show the methodological path of the use of digital methods, i.e. from the acquisition of data in the field, through analysis, to their interpretation in a cultural context. However, the main objective of my research is to interpret the spatial relationships from the macro to the micro level, in the case described, against the background of other sites located in the valley, the location of Castillo de Huarmey in the context of the valley delta, and finally to the burial chamber of the Mausoleum. The uniqueness of the described burial makes the research and its results pioneering in nature.As a final result of my work I would like to determine whether relationships can be demonstrated between the women buried in the burial chamber and whether the location of particular categories of artifacts can illustrate specific spatial patterns of burial. Furthermore, my goal is to attempt to understand the relationship between the Imperial Mausoleum and other sites (archival as well as newly discovered) located in the Huarmey Valley and to understand the role of the site's location.Published dataset represents, described in the dissertation, mobile GIS survey on the site PV35-5 created in Survey123, ESRI application; xml and xls used for creating the survey that was used during the research of the site, as well as the results of the survey published in ArcGIS Pro package. The package includes collected data as points, saved as .shp, as well as ortophotomaps (as geotiff) and Digital Elevation Model and hillshade of PV35-5. The published dataset represents part of the dissertation describing archaeological landscape analysis of Huarmey Valley’s delta.

  13. u

    GIS Clipping and Summarization Toolbox

    • verso.uidaho.edu
    • data.nkn.uidaho.edu
    Updated Mar 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justin Welty; Michelle Jefferies; Robert Arkle; David Pilliod; Susan Kemp (2022). GIS Clipping and Summarization Toolbox [Dataset]. https://verso.uidaho.edu/esploro/outputs/dataset/GIS-Clipping-and-Summarization-Toolbox/996762913201851
    Explore at:
    Dataset updated
    Mar 9, 2022
    Dataset provided by
    Idaho EPSCoR, EPSCoR GEM3
    Authors
    Justin Welty; Michelle Jefferies; Robert Arkle; David Pilliod; Susan Kemp
    Time period covered
    Mar 9, 2022
    Description

    Geographic Information System (GIS) analyses are an essential part of natural resource management and research. Calculating and summarizing data within intersecting GIS layers is common practice for analysts and researchers. However, the various tools and steps required to complete this process are slow and tedious, requiring many tools iterating over hundreds, or even thousands of datasets. USGS scientists will combine a series of ArcGIS geoprocessing capabilities with custom scripts to create tools that will calculate, summarize, and organize large amounts of data that can span many temporal and spatial scales with minimal user input. The tools work with polygons, lines, points, and rasters to calculate relevant summary data and combine them into a single output table that can be easily incorporated into statistical analyses. These tools are useful for anyone interested in using an automated script to quickly compile summary information within all areas of interest in a GIS dataset.

    Toolbox Use
    License
    Creative Commons-PDDC
    Recommended Citation
    Welty JL, Jeffries MI, Arkle RS, Pilliod DS, Kemp SK. 2021. GIS Clipping and Summarization Toolbox: U.S. Geological Survey Software Release. https://doi.org/10.5066/P99X8558

  14. T

    1:100,000 desert (sand) distribution dataset in China

    • data.tpdc.ac.cn
    • tpdc.ac.cn
    zip
    Updated Apr 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jianhua WANG; Yimou WANG; Changzhen YAN; Yuan QI (2021). 1:100,000 desert (sand) distribution dataset in China [Dataset]. http://doi.org/10.3972/westdc.006.2013.db
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 19, 2021
    Dataset provided by
    TPDC
    Authors
    Jianhua WANG; Yimou WANG; Changzhen YAN; Yuan QI
    Area covered
    Description

    This dataset is the first 1: 100,000 desert spatial database in China based on the graphic data of desert thematic maps. It mainly reflects the geographical distribution, area size, and mobility of sand dunes in China. According to the system design requirements and relevant standards, the input data is standardized and uniformly converted into a standard format for various types of data input. Build a library to run the delivery system. This project uses the TM image in 2000 as the information source, and interprets, extracts, and edits the coverage of the national land use map and TM digital image information in 2000. It uses remote sensing and geographic information system technology to 1: 100,000 Thematic mapping requirements for scale bar maps were made on the desert, sandy land and gravel Gobi in China. The 1: 100,000 desert map across the country can save users a lot of data entry and editing work when they are engaged in research on resources and the environment. Digital maps can be easily converted into layout maps The dataset properties are as follows: Divided into two folders e00 and shp: Desert map name and province comparison table in each folder 01 Ahsm Anhui 02 Bjsm Beijing 03 Fjsm Fujian 04 Gdsm Guangdong 05 Gssm Gansu 06 Gxsm Guangxi Zhuang Autonomous Region 07 Gzsm Guizhou 08 Hebsm Hebei 09 Hensm Henan 10 Hljsm Heilongjiang 11 Hndsm Hainan 12 Hubsm Hubei 13 Jlsm Jilin Province 14 Jssm Jiangsu 15 Jxsm Jiangxi 16 Lnsm Liaoning 17 Nmsm Inner Mongolia Gu Autonomous Region 18 Nxsm Ningxia Hui Autonomous Region 19 Qhsm Qinghai 20 Scsm Sichuan 21 Sdsm Shandong 22 Sxsm Shaanxi Province 23 Tjsm Tianjin 24 Twsm Taiwan Province 25 Xjsm Xinjiang Uygur Autonomous Region 26 Xzsm Tibet Autonomous Region 27 Zjsm Zhejiang 28 Shxsm Shanxi 1. Data projection: Projection: Albers False_Easting: 0.000000 False_Northing: 0.000000 Central_Meridian: 105.000000 Standard_Parallel_1: 25.000000 Standard_Parallel_2: 47.000000 Latitude_Of_Origin: 0.000000 Linear Unit: Meter (1.000000) 2. Data attribute table: area (area) perimeter ashm_ (sequence code) class (desert encoding) ashm_id (desert encoding) 3. Desert coding: mobile sandy land 2341010 Semi-mobile sandy land Semi-fixed sandy land 2341030 Gobi 2342000 Saline land 2343000 4: File format: National, sub-provincial and county-level desert map data types are vector shapefiles and E00 5: File naming: Data organization based on the National Basic Resources and Environmental Remote Sensing Dynamic Information Service System is performed on the file management layer of Windows NT. The file and directory names are compound names of English characters and numbers. Pinyin + SM composition, such as the desert map of Gansu Province is GSSM. The flag and county desert map is the pinyin + xxxx of the province name, and xxxx is the last four digits of the flag and county code. The division of provinces, districts, flags and counties is based on the administrative division data files in the national basic resources and environmental remote sensing dynamic information service operation system.

  15. m

    Extended Evaluation of SnowPole Detection for Machine-Perceivable...

    • data.mendeley.com
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Durga Prasad Bavirisetti (2025). Extended Evaluation of SnowPole Detection for Machine-Perceivable Infrastructure for Nordic Winter Conditions: A Comparative Study of Object Detection Models [Dataset]. http://doi.org/10.17632/tt6rbx7s3h.3
    Explore at:
    Dataset updated
    Jun 30, 2025
    Authors
    Durga Prasad Bavirisetti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this study, we present an extensive evaluation of state-of-the-art YOLO object detection architectures for identifying snow poles in LiDAR-derived imagery captured under challenging Nordic conditions. Building upon our previous work on the SnowPole Detection dataset [1] and our LiDAR–GNSS-based localization framework [2], we expand the benchmark to include six YOLO models—YOLOv5s, YOLOv7-tiny, YOLOv8n, YOLOv9t, YOLOv10n, and YOLOv11n—evaluated across multiple input modalities. Specifically, we assess single-channel modalities (Reflectance, Signal, Near-Infrared) and six pseudo-color combinations derived by mapping these channels to RGB representations. Each model’s performance is quantified using Precision, Recall, mAP@50, mAP@50–95, and GPU inference latency. To facilitate systematic comparison, we define a composite Rank Score that integrates detection accuracy and real-time performance in a weighted formulation. Experimental results show that YOLOv9t consistently achieves the highest detection accuracy, while YOLOv11n provides the best trade-off between accuracy and inference speed, making it a promising candidate for real-time applications on embedded platforms. Among input modalities, pseudo-color combinations—particularly those fusing Near-Infrared, Signal, and Reflectance channels—outperformed single modalities across most configurations, achieving the highest Rank Scores and mAP metrics. Therefore, we recommend using multimodal LiDAR representations such as Combination 4 and Combination 5 to maximize detection robustness in practical deployments. All datasets, benchmarking code, and trained models are publicly avail- able to support reproducibility and further research through our GitHub repository (a).

    References [1] Durga Prasad Bavirisetti, Gabriel Hanssen Kiss, Petter Arnesen, Hanne Seter, Shaira Tabassum, and Frank Lindseth. Snowpole detection: A comprehensive dataset for detection and localization using lidar imaging in nordic winter conditions. Data in Brief, 59:111403, 2025. [2] Durga Prasad Bavirisetti, Gabriel Hanssen Kiss, and Frank Lindseth. A pole detection and geospatial localization framework using lidar-gnss data fusion. In 2024 27th International Conference on Information Fusion (FUSION), pages 1–8. IEEE, 2024. (a) https://github.com/MuhammadIbneRafiq/Extended-evaluation-snowpole-lidar-dataset

  16. d

    Data from: Geospatial database: Compiled geologic mapping in the area of the...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Division of Geological & Geophysical Surveys (Point of Contact) (2023). Geospatial database: Compiled geologic mapping in the area of the proposed Susitna-Watana hydroelectric project, south-central Alaska [Dataset]. https://catalog.data.gov/dataset/geospatial-database-compiled-geologic-mapping-in-the-area-of-the-proposed-susitna-watana-hydroe1
    Explore at:
    Dataset updated
    Jul 5, 2023
    Dataset provided by
    Alaska Division of Geological & Geophysical Surveys (Point of Contact)
    Area covered
    Southcentral Alaska, Susitna, Alaska
    Description

    In support of the proposed Susitna-Watana Hydroelectric Project, the Alaska Division of Geological & Geophysical Surveys (DGGS) developed a Geographic Information System (GIS)-based geologic compilation of published and unpublished maps for twelve, inch-to-mile (1:63,360-scale) quadrangles encompassing the proposed hydroelectric project footprint, including the anticipated reservoir and surrounding area. DGGS geologists reviewed and analyzed existing geologic mapping for quality and completeness, and the maps were converted for use in GIS. The conversion process included scanning and georeferencing the original hard-copy map documents, creating a geodatabase, digitizing the geologic data, assigning attributes, and producing a digital data product for public release. The best available geologic mapping was synthesized into a single compilation data layer, and is packaged along with georeferenced scans and digitized vector files of the original geologic source maps. Bedrock geology was reviewed and revised by an independent contractor to ensure consistency with current geologic interpretations of the area. This geodatabase product will be a valuable reference resource for developers, planners, and scientists working on the hydroelectric project, as well as for any other projects in the area.

  17. d

    Aging Services

    • catalog.data.gov
    • gimi9.com
    • +2more
    Updated Feb 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    D.C. Office of the Chief Technology Officer (2025). Aging Services [Dataset]. https://catalog.data.gov/dataset/aging-services
    Explore at:
    Dataset updated
    Feb 4, 2025
    Dataset provided by
    D.C. Office of the Chief Technology Officer
    Description

    Senior Service Network Service Locations. The dataset contains locations and attributes of select Office of Aging listed services, created as part of the DC Geographic Information System (DC GIS) for the D.C. Office of the Chief Technology Officer (OCTO) and participating D.C. government agencies. The DC Department of Aging and Community Living (DACL) website and Senior Service Directory identified aging service locations and DC GIS staff geo-processed the data. Services include adult day care, adult education, advocacy, case management, group housing, job training, group meals, health care support, legal assistance, recreation, transportation, and wellness.

  18. Links to all datasets and downloads for 80 A0/A3 digital image of map...

    • data.csiro.au
    • researchdata.edu.au
    Updated Jan 18, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober (2016). Links to all datasets and downloads for 80 A0/A3 digital image of map posters accompanying AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach [Dataset]. http://doi.org/10.4225/08/569C1F6F9DCC3
    Explore at:
    Dataset updated
    Jan 18, 2016
    Dataset provided by
    CSIROhttp://www.csiro.au/
    Authors
    Kristen Williams; Nat Raisbeck-Brown; Tom Harwood; Suzanne Prober
    License

    https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/

    Time period covered
    Jan 1, 2015 - Jan 10, 2015
    Area covered
    Dataset funded by
    CSIROhttp://www.csiro.au/
    Description

    This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.

    These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.

    The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.

    Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.

    Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.

    Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.

    An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.

    Example citations:

    Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.

    This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.

    Maps were generated using layout and drawing tools in ArcGIS 10.2.2

    A check list of map posters and datasets is provided with the collection.

    Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x

    8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)

    9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)

    9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)

    10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)

    10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)

    11.1 Refugial potential for vascular plants and mammals (1990-2050)

    11.1 Refugial potential for reptiles and amphibians (1990-2050)

    12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)

    12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)

  19. Data and code used for the work entitled "Content-location relationships: a...

    • figshare.com
    zip
    Updated May 3, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vicente Tang; Marco Painho (2023). Data and code used for the work entitled "Content-location relationships: a framework to explore correlations between space-based and place-based user-generated content" [Dataset]. http://doi.org/10.6084/m9.figshare.19307936.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 3, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Vicente Tang; Marco Painho
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The use of social media and location-based networks through GPS-enabled devices provides geospatial data for a plethora of applications in urban studies. However, the extent to which information found in geo-tagged social media activity corresponds to the spatial context is still a topic of debate. In this article, we developed a framework aimed at retrieving the thematic and spatial relationships between content originated from space-based (Twitter) and place-based (Google Places and OSM) sources of geographic user-generated content based on topics identified by the embedding-based BERTopic model. The contribution of the framework lies on the combination of methods that were selected to improve previous works focused on content-location relationships. Using the city of Lisbon (Portugal) to test our methodology, we first applied the embedding-based topic model to aggregated textual data coming from each source. Results of the analysis evidenced the complexity of content-location relationships, which are mostly based on thematic profiles. Nonetheless, the framework can be employed in other cities and extended with other metrics to enrich the research aimed at exploring the correlation between online discourse and geography.

  20. a

    Somerset County Land Use and Land Cover Dataset

    • scogis-open-data-somerset.hub.arcgis.com
    Updated Nov 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Somerset County GIS (2023). Somerset County Land Use and Land Cover Dataset [Dataset]. https://scogis-open-data-somerset.hub.arcgis.com/items/d8f9f6a8343748ffa8806264be637ce8
    Explore at:
    Dataset updated
    Nov 21, 2023
    Dataset authored and provided by
    Somerset County GIS
    Area covered
    Description

    This data set was generated through the 2020 LU/LC update mapping effort. The 2020 update is the seventh in a series of land use mapping efforts that was begun in 1986. Revisions and additions to the initial baseline layer were done in subsequent years from imagery captured in 1995/97, 2002, 2007, 2012, 2015 and now, 2020. This present 2020 update was created by comparing the 2015 LU/LC layer from NJDEP's Geographic Information Systems (GIS) database to 2020 color infrared (CIR) imagery and delineating and coding areas of change. Work for this data set was done by Aerial Information Systems, Inc., Redlands, CA, under direction of the New Jersey Department of Environmental Protection (NJDEP), Bureau of Geographic Information System (BGIS). LU/LC changes were captured by adding new line work and attribute data for the 2020 land use directly to the base data layer. All 2015 LU/LC polygons and 2015 LU/LC coding remains in this data set, so change analysis for the period 2015-2020 can be undertaken from this one layer. The mapping was done by USGS HUC8 basins, 13 of which cover portions of New Jersey. This statewide layer is composed of the final data sets generated for each HUC8 basin. Initial QA/QC was done on each HUC8 data set as it was produced with final QA/QC and basin-to-basin edgematching done on this statewide layer. The classification system used was a modified Anderson et al., classification system. Minimum mapping unit (MMU) is 1 acre for changes to non-water and non-wetland polygons. Changes to these two categories were mapped using .25 acres as the MMU. (See entry under the Advisory section concerning additional review being done on NHD waterbody attribute coding and impervious surface estimation.) ADVISORY This data set, edition 20231120, is a statewide layer that includes updated land use/land cover data for all HUC8 basins in New Jersey. The polygon delineations and associated land use code assignments are considered the final versions for this mapping effort. Note, however, that there is continuing review being done on this layer to update several additional attributes not presently evaluated in this edition. These attributes include several from the National Hydrography Database (NHD) that are specific to the waterbodies mapped in this layer, and several attributes containing impervious surface estimates for each polygon. Evaluating the NHD codes facilitates extracting the water features mapped in this layer and using them to update the New Jersey portion of the NHD. Those NHD specific attributes are still being evaluated and may be added to a future edition of this base data set. Similarly, additional review is being done to assess the feasibility of incorporating data on impervious surface (IS) amounts generated from two independent projects, one of which was just completed by NOAA, into this base land use layer. While the NHD and IS attributes will enhance the use of this base layer in several types of analyses, this present layer can be used for doing all primary land use analyses without having those attributes evaluated. Further, evaluating these extra attributes will result in few, if any, changes to the polygon delineations and standard land use coding that are the primary features of this layer. As such, the layer is being provided in its present edition for general use. As the additional attributes are evaluated, they may be added to a future edition of this data set. The basic land use features and codes, however, as mapped in this version of the data set will serve as the base 2020 LU/LC update. As stated in this metadata record's Use Constraints section, NJDEP makes no representations of any kind, including, but not limited to, the warranties of merchantability or fitness for a particular use, nor are any such warranties to be implied with respect to the digital data layers furnished hereunder. NJDEP assumes no responsibility to maintain them in any manner or form. By downloading this data, user agrees to the data use constraints listed within this metadata record.The data for Somerset County data was extracted & processed from the latest dataset by the Somerset County Office of GIS Services (SCOGIS).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
Dataset updated
Oct 28, 2019
Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu