Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The market for competitor analysis tools is experiencing robust growth, driven by the increasing importance of competitive intelligence in today's dynamic business landscape. The surge in digital marketing and the need for businesses, both SMEs and large enterprises, to understand their competitive positioning fuels demand for sophisticated tools offering comprehensive data analysis and actionable insights. Cloud-based solutions are dominating the market due to their scalability, accessibility, and cost-effectiveness compared to on-premises deployments. Key players like SEMrush, Ahrefs, and SimilarWeb are establishing strong market presence through continuous innovation, comprehensive feature sets, and targeted marketing strategies. However, the market also faces challenges, including the rising costs of data acquisition and the complexity of integrating various tools into existing workflows. The competitive landscape is characterized by a mix of established players and emerging niche providers. Differentiation is achieved through unique data sources, specialized analytics capabilities, and the ability to integrate seamlessly with other marketing and business intelligence platforms. The North American and European markets currently hold a significant share, owing to high technology adoption and established digital marketing ecosystems. However, growth is expected in Asia-Pacific regions as businesses in developing economies increasingly adopt digital strategies and seek competitive advantages. The forecast period (2025-2033) suggests continued expansion, propelled by technological advancements like AI-powered insights and the expanding use of social media analytics within competitor analysis. The market's segmentation reflects varying needs across different business sizes and deployment preferences. While large enterprises typically opt for comprehensive, feature-rich solutions capable of handling large datasets and integrating with various systems, SMEs often prioritize cost-effective, user-friendly tools providing essential insights. The choice between cloud-based and on-premises solutions depends on factors like IT infrastructure, security considerations, and budget constraints. As the market matures, we anticipate further consolidation through mergers and acquisitions, and the emergence of more specialized tools catering to specific industry needs. The overall trajectory indicates continued strong growth, with a focus on enhanced data analysis, improved user experiences, and seamless integration within broader business intelligence platforms.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Alternative Data Market size was valued at USD 7.20 billion in 2023 and is projected to reach USD 126.50 billion by 2032, exhibiting a CAGR of 50.6 % during the forecasts period. Recent developments include: In April 2023, Thinknum Alternative Data launched new data fields to its employee sentiment datasets for people analytics teams and investors to use this as an 'employee NPS' proxy, and support highly-rated employers set up interviews through employee referrals. , In September 2022, Thinknum Alternative Data announced its plan to combine data Similarweb, SensorTower, Thinknum, Caplight, and Pathmatics with Lagoon, a sophisticated infrastructure platform to deliver an alternative data source for investment research, due diligence, deal sourcing and origination, and post-acquisition strategies in private markets. , In May 2022, M Science LLC launched a consumer spending trends platform, providing daily, weekly, monthly, and semi-annual visibility into consumer behaviors and competitive benchmarking. The consumer spending platform provided real-time insights into consumer spending patterns for Australian brands and an unparalleled business performance analysis. .
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
Competitive Analysis of Industry Rivals The market for competitive analysis is expected to grow significantly over the forecast period, driven by increasing need for businesses to understand their competitive landscape. Key players in the market include BuiltWith, WooRank, SEMrush, Google, SpyFu, Owletter, SimilarWeb, Moz, SunTec Data, and TrendSource. These companies offer a range of services to help businesses track their competitors' online performance, including website traffic, social media engagement, and search engine rankings. Some of the key trends driving the growth of the market include the increasing adoption of digital marketing by businesses, the growing importance of social media, and the increasing availability of data and analytics tools. The market is segmented by type, application, and region. In terms of type, the market is divided into product analysis, traffic analytics, sales analytics, and others. In terms of application, the market is divided into SMEs and large enterprises. In terms of region, the market is divided into North America, South America, Europe, Middle East & Africa, and Asia Pacific. The North American region is expected to dominate the market during the forecast period, due to the presence of a large number of established players in the market. The Asia Pacific region is expected to grow at the highest CAGR during the forecast period, due to the increasing adoption of digital marketing by businesses in the region. This report provides a comprehensive analysis of the industry rivals, encompassing their concentration, product insights, regional trends, and key industry developments.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global market for website analytics and competitor analysis tools is experiencing robust growth, projected to reach $[Estimate based on available data, e.g., $5 billion] in 2025, with a Compound Annual Growth Rate (CAGR) of [Estimate, e.g., 12%] from 2025 to 2033. This expansion is driven by the increasing reliance of businesses, both large enterprises and SMEs, on data-driven decision-making for improved marketing strategies, website optimization, and competitive intelligence. Key trends shaping this market include the rising adoption of AI-powered analytics for deeper insights, the integration of website analytics with other marketing platforms, and the growing demand for comprehensive solutions that cover SEO, PPC, and social media analytics. While the market faces some restraints, such as the complexity of some analytics tools and the increasing cost of premium features, the overall growth trajectory remains positive. The competitive landscape is highly dynamic, with established players like Google, SEMrush, and SimilarWeb dominating the market through their comprehensive offerings and extensive user bases. However, smaller, specialized companies like BuiltWith, SpyFu, and WooRank are carving out niches for themselves by focusing on specific areas of website analytics or offering unique functionalities. The competitive intensity is driving innovation, leading to the development of more user-friendly interfaces, enhanced reporting capabilities, and improved data visualization tools. The market is also witnessing the emergence of new players offering innovative solutions leveraging cutting-edge technologies, promising further disruption and shaping the future of competitor analysis. Regional variations exist, with North America and Europe currently leading the market, but strong growth is expected from Asia-Pacific, particularly from countries like India and China, as digital adoption continues to accelerate.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Alternative Data Platform market is experiencing robust growth, driven by the increasing demand for non-traditional data sources within the financial services sector. The market's expansion is fueled by several key factors: the rise of quantitative investment strategies that heavily rely on alternative data for alpha generation; the growing sophistication of data analytics techniques capable of extracting meaningful insights from complex datasets; and the increasing availability of diverse alternative data streams, including social media sentiment, satellite imagery, and transactional data. This market is segmented across various data types (e.g., web traffic, social media, satellite imagery), industry verticals (e.g., finance, retail, healthcare), and deployment models (cloud-based, on-premise). The competitive landscape is characterized by both established players and emerging fintech companies, leading to ongoing innovation and consolidation. We estimate the market size in 2025 to be $5 billion, with a compound annual growth rate (CAGR) of 25% projected through 2033. This signifies substantial future opportunities for vendors and investors alike. Significant trends shaping this market include the increasing adoption of cloud-based platforms for scalability and cost-effectiveness, the rise of AI-powered data analytics for enhanced insight extraction, and a greater focus on data security and regulatory compliance. However, challenges remain. These include the high cost of alternative data acquisition and processing, the need for specialized expertise in data science and analytics, and concerns related to data quality and bias. Despite these restraints, the overall market outlook is positive, with continued growth driven by the expanding use of alternative data across a broader range of industries and investment strategies. The competitive landscape includes companies like Accelex, Exabel, Similarweb, Preqin, and many others actively innovating and expanding their offerings to meet the evolving needs of the market. This ongoing innovation and competition ensure a dynamic and rapidly changing marketplace.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming Advertising Intelligence Tool market! Explore key trends, leading companies like Semrush & SimilarWeb, and projected growth to 2033. Learn how AI-powered insights are transforming digital advertising strategies and maximizing ROI.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The competitive marketing software market is experiencing robust growth, driven by the increasing need for businesses to understand their competitive landscape and optimize their marketing strategies. The market, estimated at $5 billion in 2025, is projected to maintain a healthy Compound Annual Growth Rate (CAGR) of 15% through 2033, reaching approximately $15 billion by the end of the forecast period. This growth is fueled by several key factors: the rising adoption of digital marketing, the increasing complexity of online competitive analysis, and the growing demand for data-driven marketing decisions. Key players like SEMrush, Ahrefs, and Moz Pro are leading this market, offering comprehensive suites of tools for keyword research, backlink analysis, competitor monitoring, and SEO optimization. The market's segmentation is likely diversified across various functionalities (e.g., SEO tools, social media analytics, PPC analysis) and business sizes, catering to both small and large enterprises. Growth is further boosted by ongoing technological advancements in data analytics and artificial intelligence, leading to more sophisticated and actionable insights for marketers. Despite its rapid expansion, the market faces challenges. High initial investment costs and the need for specialized technical expertise can act as barriers to entry for smaller businesses. Furthermore, the constant evolution of search engine algorithms and online marketing landscapes requires continuous software updates and adaptation from vendors. The market is also prone to intense competition, with established players constantly innovating and new entrants vying for market share. Nevertheless, the overall market outlook remains positive, with ongoing growth driven by the increasing reliance on data-driven decision-making and the evolving complexity of the digital marketing landscape. Regional variations in market penetration will likely exist, with North America and Europe expected to hold significant shares, followed by the Asia-Pacific region witnessing faster growth.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Advertisement Intelligence Software market is poised for substantial growth, projected to reach approximately $5,800 million by 2025, with an estimated Compound Annual Growth Rate (CAGR) of 12.5% during the forecast period of 2025-2033. This robust expansion is primarily driven by the increasing need for advertisers and brands to gain deeper insights into competitor strategies, audience behavior, and campaign performance across various digital channels. The escalating complexity of the digital advertising landscape, coupled with the proliferation of ad fraud, necessitates sophisticated intelligence solutions to optimize ad spend, enhance ROI, and maintain a competitive edge. Large enterprises, leveraging extensive marketing budgets and complex campaigns, represent a significant segment, while Small and Medium-sized Enterprises (SMEs) are increasingly adopting these tools to democratize access to competitive intelligence and level the playing field. The shift towards cloud-based solutions further fuels market adoption due to their scalability, accessibility, and cost-effectiveness, although on-premises solutions continue to cater to organizations with stringent data security and compliance requirements. The market's dynamism is further shaped by emerging trends such as the integration of AI and machine learning for predictive analytics, the demand for cross-platform advertising intelligence, and the growing focus on privacy-compliant data analysis. These advancements enable businesses to anticipate market shifts, personalize ad messaging with greater precision, and identify new growth opportunities. However, the market faces certain restraints, including the high cost of advanced features, data privacy regulations like GDPR and CCPA, and the potential for data inaccuracies if not properly managed. Geographically, North America and Europe are expected to dominate the market due to their mature digital advertising ecosystems and high adoption rates of advanced analytics tools. Asia Pacific is anticipated to witness the fastest growth, driven by its rapidly expanding digital economy and increasing investment in ad tech. Key players like Sensor Tower, IronSource, SimilarWeb, and App Annie are at the forefront, offering a comprehensive suite of solutions that empower businesses to navigate the intricate world of digital advertising with confidence and strategic advantage. This in-depth report provides a strategic overview of the global Advertisement Intelligence Software market, forecasting its trajectory from 2019 to 2033, with a base year of 2025. Our analysis delves into the intricate dynamics shaping this sector, offering actionable insights for stakeholders.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The booming Digital Ad Intelligence Software market is projected to reach $45 billion by 2033, growing at a 15% CAGR. This comprehensive analysis explores market drivers, trends, restraints, key players (Pathmatics, SimilarWeb, etc.), and regional insights. Discover how data-driven decision-making is transforming digital advertising.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Notice: You can check the new version 0.9.6 at the official page of Information Management Lab and at the Google Data Studio as well.
Now that the ICTs have matured, Information Organizations such as Libraries, Archives and Museums, also known as LAMs, proceed into the utilization of web technologies that are capable to expand the visibility and findability of their content. Within the current flourishing era of the semantic web, LAMs have voluminous amounts of web-based collections that are presented and digitally preserved through their websites. However, prior efforts indicate that LAMs suffer from fragmentation regarding the determination of well-informed strategies for improving the visibility and findability of their content on the Web (Vállez and Ventura, 2020; Krstić and Masliković, 2019; Voorbij, 2010). Several reasons related to this drawback. As such, administrators’ lack of data analytics competency in extracting and utilizing technical and behavioral datasets for improving visibility and awareness from analytics platforms; the difficulties in understanding web metrics that integrated into performance measurement systems; and hence the reduced capabilities in defining key performance indicators for greater usability, visibility, and awareness.
In this enriched and updated technical report, the authors proceed into an examination of 504 unique websites of Libraries, Archives and Museums from all over the world. It is noted that the current report has been expanded by up to 14,81% of the prior one Version 0.9.5 of 439 domains examinations. The report aims to visualize the performance of the websites in terms of technical aspects such as their adequacy to metadata description of their content and collections, their loading speed, and security. This constitutes an important stepping-stone for optimization, as the higher the alignment with the technical compliencies, the greater the users’ behavior and usability within the examined websites, and thus their findability and visibility level in search engines (Drivas et al. 2020; Mavridis and Symeonidis 2015; Agarwal et al. 2012).
One step further, within this version, we include behavioral analytics about users engagement with the content of the LAMs websites. More specifically, web analytics metrics are included such as Visit Duration, Pages per Visit, and Bounce Rates for 121 domains. We also include web analytics regarding the channels that these websites acquire their users, such as Direct traffic, Search Engines, Referral, Social Media, Email, and Display Advertising. SimilarWeb API was used to gather web data about the involved metrics.
In the first pages of this report, general information is presented regarding the names of the examined organizations. This also includes their type, their geographical location, information about the adopted Content Management Systems (CMSs), and web server software types of integration per website. Furthermore, several other data are visualized related to the size of the examined Information Organizations in terms of the number of unique webpages within a website, the number of images, internal and external links and so on.
Moreover, as a team, we proceed into the development of several factors that are capable to quantify the performance of websites. Reliability analysis takes place for measuring the internal consistency and discriminant validity of the proposed factors and their included variables. For testing the reliability, cohesion, and consistency of the included metrics, Cronbach’s Alpha (a), McDonald’s ω and Guttman λ-2 and λ-6 are used.
- For Cronbach’s, a range of .550 up to .750 indicates an acceptable level of reliability and .800 or higher a very good level (Ursachi, Horodnic, and Zait, 2015).
- McDonald’s ω indicator has the advantage to measure the strength of the association between the proposed variables. More specifically, the closer to .999 the higher the strength association between the variables and vice versa (Şimşek and Noyan, 2013).
- Gutman’s λ-2 and λ-6 work verifiably to Cronbach’s a as they estimate the trustworthiness of variance of the gathered web analytics metrics. Low values less than .450 indicate high bias among the harvested web metrics, while values higher than .600 and above increase the trustworthiness of the sample (Callender and Osburn, 1979).
-Kaiser–Meyer–Olkin (KMO) and Bartlett’s Test of Sphericity indicators are used for measuring the cohesion of the involved metrics. KMO and Bartlett’s test indicates that the closer the value is to .999 amongst the involved items, the higher the cohesion and consistency of them for potential categorization (Dziuban and S...
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The Digital Ad Intelligence Software market is experiencing robust growth, driven by the increasing need for brands to optimize their advertising campaigns across diverse digital channels. This market, valued at approximately $15 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This expansion is fueled by several key factors, including the rising complexity of digital advertising landscapes, the demand for data-driven decision-making, and the proliferation of programmatic advertising. Businesses are increasingly relying on sophisticated software solutions to gain comprehensive insights into ad performance, competitor strategies, and audience behavior, leading to higher efficiency and return on investment. The market's segmentation encompasses various functionalities, including campaign tracking, competitor analysis, audience targeting optimization, and fraud detection. Key players like Pathmatics, SimilarWeb, and Sensor Tower are driving innovation through advanced analytics and AI-powered features, further consolidating the market's growth trajectory. The competitive landscape is characterized by a mix of established players and emerging startups, leading to continuous innovation and a diverse range of solutions. While the market enjoys significant growth potential, certain restraints exist, including the high cost of advanced software, data privacy concerns, and the need for specialized expertise to effectively utilize these tools. Despite these challenges, the overall outlook for the Digital Ad Intelligence Software market remains positive, with significant opportunities for growth in emerging markets and the continued adoption of advanced analytics capabilities. The forecast period of 2025-2033 presents substantial opportunities for both established vendors and new entrants to capitalize on the market's expanding potential and address the evolving needs of advertisers in an increasingly complex digital ecosystem. Further regional growth is expected, especially in Asia-Pacific and Latin America as digital advertising matures in these regions.
Facebook
TwitterBy Amber Thomas [source]
This dataset contains all of the data used in the Pudding essay When Women Make Headlines published in January 2022. This dataset was created to analyze gendered language, bias and language themes in news headlines from across the world. It contains headlines from top50 news publications and news agencies from four major countries - USA, UK, India and South Africa - as published by SimilarWeb (as of 2021-06-06).
To collect this data we used RapidAPI's google news API to query headlines containing one or more of keywords selected based on existing research done by Huimin Xu & team and The Swaddle team. We analyzed words used in headlines manually curating two dictionaries — gendered words about women (words that are explicitly gendered) and words that denote societal/behavioral stereotypes about women. To calculate bias scores, we utilized technology developed through Yasmeen Hitti & team’s research on gender bias text analysis. To categorize words used into themes (violence/crime, empowerment, race/ethnicity/identity etc), we manually curated four dictionaries utilizing Natural Language Processing packages for Python like spacy & nltk for our analysis. Plus, inverting polarity scores with vaderSentiment algorithm helped us shed light on differences between women-centered/non-women centered polarity levels as well as differences between global polarity baselines of each country's most visited publications & news agencies according to SimilarWeb 2020 statistics..
This dataset enables journalists, researchers and educators researching issues related to gender equity within media outlets around the world further insights into potential disparities with just a few lines of code! Any discoveries made by using this data should provide valuable support for evidence-based argumentation . Let us advocate for greater awareness towards female representation better quality coverage!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset provides a comprehensive look at the portrayal of women in headlines from 2010-2020. Using this dataset, researchers and data scientists can explore a range of topics including language used to describe women, bias associated with different topics or publications, and temporal patterns in headlines about women over time.
To use this dataset effectively, it is helpful to understand the structure of the data. The columns include headline_no_site (the text of the headline without any information about which publication it is from), time (the date and time that the article was published), country (the country where it was published), bias score (calculated using Gender Bias Taxonomy V1.0) and year (the year that the article was published).
By exploring these columns individually or combining them into groups such as by publication or by topic, there are many ways to make meaningful discoveries using this data set. For example, one could explore if certain news outlets employ more gender-biased language when writing about female subjects than other outlets or investigate whether female-centric stories have higher/lower bias scores than average for a particular topic across multiple countries over time. This type of analysis helps researchers to gain insight into how our culture's dialogue has evolved over recent years as relates to women in media coverage worldwide
- A comparative, cross-country study of the usage of gendered language and the prevalence of gender bias in headlines to better understand regional differences.
- Creating an interactive visualization showing the evolution of headline bias scores over time with respect to a certain topic or population group (such as women).
- Analyzing how different themes are covered in headlines featuring women compared to those without, such as crime or violence versus empowerment or race and ethnicity, to see if there’s any difference in how they are portrayed by the media
If you use this dataset in your research, please credit the original authors. Data Source
See the dataset description for more information.
File: headlines_reduced_temporal.csv | Column name | Description | |:---------------------|:-------------------------------------------------------------------------------------...
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The size of the Competitive Analysis of Industry Rivals market was valued at USD XXX million in 2024 and is projected to reach USD XXX million by 2033, with an expected CAGR of XX% during the forecast period.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Competitive Intelligence Tools Software market is booming, projected to reach $1.58 billion by 2033 with a CAGR of 6.8%. Learn about key drivers, trends, and top players like Crayon, Brandwatch, and SimilarWeb in this comprehensive market analysis. Discover the latest insights on CI tools and their impact on business strategy.
Facebook
TwitterОпределение: Общий трафик на 15 сайтов с искусственным интеллектом со стационарных и мобильных компьютеров в каждой стране. [Переведено с en: английского языка] Тематическая область: Информационно-коммуникационные технологии [Переведено с en: английского языка] Область применения: Искусственный интеллект [Переведено с en: английского языка] Единица измерения: Количество посещений [Переведено с en: английского языка] Примечание: Similarweb не предоставляет точных данных о количестве посещений веб-сайтов, которые посещают менее 5000 человек. В этих случаях используется приблизительная оценка в 4999 посещений. [Переведено с es: испанского языка] Источник данных: Цифровая обсерватория Десарролло (ODD) на основе Similarweb [Переведено с es: испанского языка] Последнее обновление: Feb 9 2024 1:04PM Организация-источник: Экономическая комиссия по Латинской Америке и Карибскому бассейну [Переведено с en: английского языка] Definition: Total traffic to 15 artificial intelligence sites from fixed and mobile computers per country. Thematic Area: Information and Communication Technologies Application Area: Artificial intelligence Unit of Measurement: Number of visits Note: Similarweb does not provide an exact number of visits for websites that receive fewer than 5,000 visits. In these cases, an approximate estimate of 4,999 is used. Data Source: Observatorio de Desarrollo Digital (ODD) based on Similarweb Last Update: Feb 9 2024 1:04PM Source Organization: Economic Comission for Latin America and the Caribbean
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Market Overview: The Competitive Analysis Tools market is expected to experience significant growth over the forecast period, with a CAGR of XX% from 2025 to 2033. The surge in digitalization and online competition has driven demand for tools that enable businesses to analyze their competitors' strategies, market share, and performance. Key market drivers include the growing need for data-driven decision-making, rising awareness of competitive advantages, and the adoption of cloud-based solutions. North America and Europe are the dominant regions for this market, but emerging markets in Asia-Pacific and Middle East & Africa are projected to exhibit strong growth potential. Competitive Landscape: The competitive analysis tools market is characterized by a diverse vendor landscape, with leading players such as Google, SEMrush, and Ahrefs. These companies offer comprehensive platforms that provide data on competitor website traffic, keyword rankings, social media presence, and other key metrics. Other notable vendors include Wappalyzer, WooRank, Moz, SpyFu, Owletter, and SimilarWeb. The market is expected to remain competitive as vendors focus on innovation and feature enhancement. Strategic partnerships, mergers, and acquisitions are also expected to shape the industry landscape in the coming years.
Facebook
TwitterThis statistic shows the leading online dating websites in the Netherlands as of January 2017, based on the number of visitors per month. The source mentions that dating websites in the Netherlands do not provide this information and the data comes from intelligence agency Similarweb. As of January 2017, Lexa.nl was the most popular online dating website in the Netherlands, with 426,000 monthly visitors.
During the second half of 2017, roughly 17 percent of the Dutch internet users indicated they visited an online dating website, service or app. Users aged 16 to 24 years did this the most: approximately 22 percent of all users in this age group indicated they did so.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Puff Bar, a disposable electronic nicotine delivery system (ENDS), was the ENDS brand most commonly used by U.S. youth in 2021. We explored whether Puff Bar’s rise in marketplace prominence was detectable through advertising, retail sales, social media, and web traffic data sources. We retrospectively documented potential signals of interest in and uptake of Puff Bar in the United States using metrics based on advertising (Numerator and Comperemedia), retail sales (NielsenIQ), social media (Twitter, via Sprinklr), and web traffic (Similarweb) data from January 2019 to June 2022. We selected metrics based on (1) data availability, (2) potential to graph metric longitudinally, and (3) variability in metric. We graphed metrics and assessed data patterns compared to data for Vuse, a comparator product, and in the context of regulatory events significant to Puff Bar. The number of Twitter posts that contained a Puff Bar term (social media), Puff Bar product sales measured in dollars (sales), and the number of visits to the Puff Bar website (web traffic) exhibited potential for surveilling Puff Bar due to ease of calculation, comprehensibility, and responsiveness to events. Advertising tracked through Numerator and Comperemedia did not appear to capture marketing from Puff Bar’s manufacturer or drive change in marketplace prominence. This study demonstrates how quantitative changes in metrics developed using advertising, retail sales, social media, and web traffic data sources detected changes in Puff Bar’s marketplace prominence. We conclude that low-effort, scalable, rapid signal detection capabilities can be an important part of a multi-component tobacco surveillance program.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General data recollected for the studio " Analysis of the Quantitative Impact of Social Networks on Web Traffic of Cybermedia in the 27 Countries of the European Union".
Four research questions are posed: what percentage of the total web traffic generated by cybermedia in the European Union comes from social networks? Is said percentage higher or lower than that provided through direct traffic and through the use of search engines via SEO positioning? Which social networks have a greater impact? And is there any degree of relationship between the specific weight of social networks in the web traffic of a cybermedia and circumstances such as the average duration of the user's visit, the number of page views or the bounce rate understood in its formal aspect of not performing any kind of interaction on the visited page beyond reading its content?
To answer these questions, we have first proceeded to a selection of the cybermedia with the highest web traffic of the 27 countries that are currently part of the European Union after the United Kingdom left on December 31, 2020. In each nation we have selected five media using a combination of the global web traffic metrics provided by the tools Alexa (https://www.alexa.com/), which ceased to be operational on May 1, 2022, and SimilarWeb (https:// www.similarweb.com/). We have not used local metrics by country since the results obtained with these first two tools were sufficiently significant and our objective is not to establish a ranking of cybermedia by nation but to examine the relevance of social networks in their web traffic.
In all cases, cybermedia whose property corresponds to a journalistic company have been selected, ruling out those belonging to telecommunications portals or service providers; in some cases they correspond to classic information companies (both newspapers and televisions) while in others they refer to digital natives, without this circumstance affecting the nature of the research proposed.
Below we have proceeded to examine the web traffic data of said cybermedia. The period corresponding to the months of October, November and December 2021 and January, February and March 2022 has been selected. We believe that this six-month stretch allows possible one-time variations to be overcome for a month, reinforcing the precision of the data obtained.
To secure this data, we have used the SimilarWeb tool, currently the most precise tool that exists when examining the web traffic of a portal, although it is limited to that coming from desktops and laptops, without taking into account those that come from mobile devices, currently impossible to determine with existing measurement tools on the market.
It includes:
Web traffic general data: average visit duration, pages per visit and bounce rate Web traffic origin by country Percentage of traffic generated from social media over total web traffic Distribution of web traffic generated from social networks Comparison of web traffic generated from social netwoks with direct and search procedures