The Job Openings and Labor Turnover Survey (JOLTS) program provides national estimates of rates and levels for job openings, hires, and total separations. Total separations are further broken out into quits, layoffs and discharges, and other separations. Unadjusted counts and rates of all data elements are published by supersector and select sector based on the North American Industry Classification System (NAICS). The number of unfilled jobs—used to calculate the job openings rate—is an important measure of the unmet demand for labor. With that statistic, it is possible to paint a more complete picture of the U.S. labor market than by looking solely at the unemployment rate, a measure of the excess supply of labor. Information on labor turnover is valuable in the proper analysis and interpretation of labor market developments and as a complement to the unemployment rate. For more information and data visit: https://www.bls.gov/jlt/
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Employment Rate in the United States remained unchanged at 59.60 percent in August. This dataset provides - United States Employment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in the United States increased to 4.30 percent in August from 4.20 percent in July of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Replication files for "Job-to-Job Mobility and Inflation" Authors: Renato Faccini and Leonardo Melosi Review of Economics and Statistics Date: February 2, 2023 -------------------------------------------------------------------------------------------- ORDERS OF TOPICS .Section 1. We explain the code to replicate all the figures in the paper (except Figure 6) .Section 2. We explain how Figure 6 is constructed .Section 3. We explain how the data are constructed SECTION 1 Replication_Main.m is used to reproduce all the figures of the paper except Figure 6. All the primitive variables are defined in the code and all the steps are commented in code to facilitate the replication of our results. Replication_Main.m, should be run in Matlab. The authors tested it on a DELL XPS 15 7590 laptop wih the follwoing characteristics: -------------------------------------------------------------------------------------------- Processor Intel(R) Core(TM) i9-9980HK CPU @ 2.40GHz 2.40 GHz Installed RAM 64.0 GB System type 64-bit operating system, x64-based processor -------------------------------------------------------------------------------------------- It took 2 minutes and 57 seconds for this machine to construct Figures 1, 2, 3, 4a, 4b, 5, 7a, and 7b. The following version of Matlab and Matlab toolboxes has been used for the test: -------------------------------------------------------------------------------------------- MATLAB Version: 9.7.0.1190202 (R2019b) MATLAB License Number: 363305 Operating System: Microsoft Windows 10 Enterprise Version 10.0 (Build 19045) Java Version: Java 1.8.0_202-b08 with Oracle Corporation Java HotSpot(TM) 64-Bit Server VM mixed mode -------------------------------------------------------------------------------------------- MATLAB Version 9.7 (R2019b) Financial Toolbox Version 5.14 (R2019b) Optimization Toolbox Version 8.4 (R2019b) Statistics and Machine Learning Toolbox Version 11.6 (R2019b) Symbolic Math Toolbox Version 8.4 (R2019b) -------------------------------------------------------------------------------------------- The replication code uses auxiliary files and save the pictures in various subfolders: \JL_models: It contains the equations describing the model including the observation equations and routine used to solve the model. To do so, the routine in this folder calls other routines located in some fo the subfolders below. \gensystoama: It contains a set of codes that allow us to solve linear rational expectations models. We use the AMA solver. More information are provided in the file AMASOLVE.m. The codes in this subfolder have been developed by Alejandro Justiniano. \filters: it contains the Kalman filter augmented with a routine to make sure that the zero lower bound constraint for the nominal interest rate is satisfied in every period in our sample. \SteadyStateSolver: It contains a set of routines that are used to solved the steady state of the model numerically. \NLEquations: It contains some of the equations of the model that are log-linearized using the symbolic toolbox of matlab. \NberDates: It contains a set of routines that allows to add shaded area to graphs to denote NBER recessions. \Graphics: It contains useful codes enabling features to construct some of the graphs in the paper. \Data: it contains the data set used in the paper. \Params: It contains a spreadsheet with the values attributes to the model parameters. \VAR_Estimation: It contains the forecasts implied by the Bayesian VAR model of Section 2. The output of Replication_Main.m are the figures of the paper that are stored in the subfolder \Figures SECTION 2 The Excel file "Figure-6.xlsx" is used to create the charts in Figure 6. All three panels of the charts (A, B, and C) plot a measure of unexpected wage inflation against the unemployment rate, then fits separate linear regressions for the periods 1960-1985,1986-2007, and 2008-2009. Unexpected wage inflation is given by the difference between wage growth and a measure of expected wage growth. In all three panels, the unemployment rate used is the civilian unemployment rate (UNRATE), seasonally adjusted, from the BLS. The sheet "Panel A" uses quarterly manufacturing sector average hourly earnings growth data, seasonally adjusted (CES3000000008), from the Bureau of Labor Statistics (BLS) Employment Situation report as the measure of wage inflation. The unexpected wage inflation is given by the difference between earnings growth at time t and the average of earnings growth across the previous four months. Growth rates are annualized quarterly values. The sheet "Panel B" uses quarterly Nonfarm Business Sector Compensation Per Hour, seasonally adjusted (COMPNFB), from the BLS Productivity and Costs report as its measure of wage inflation. As in Panel A, expected wage inflation is given by the... Visit https://dataone.org/datasets/sha256%3A44c88fe82380bfff217866cac93f85483766eb9364f66cfa03f1ebdaa0408335 for complete metadata about this dataset.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Non Farm Payrolls in the United States increased by 22 thousand in August of 2025. This dataset provides the latest reported value for - United States Non Farm Payrolls - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Job Quits Rate in the United States remained unchanged at 2 percent in July. This dataset includes a chart with historical data for the United States Job Quits Rate.
This is the monthly data for U.S. employment and unemployment by state including some numbers for Puerto Rico. This dataset was accessed on April 7th 2008. The data for February 2008 are preliminary. The data presented are seasonally adjusted although the unadjusted numbers are also available. Unavailable data are represented as -1. The dataset is taken from Tables 3 and 5 from the United States Department of Labor, Bureau of Labor Statistics. It includes the civilian labor force, the unemployed in numbers and percentages, and employment by industry. Data from table 3 "refer to place of residence. Data for Puerto Rico are derived from a monthly household survey similar to the Current Population Survey. Area definitions are based on Office of Management and Budget Bulletin No. 08-01, dated November 20, 2007, and are available at http://www.bls.gov/lau/lausmsa.htm. Estimates for the latest month are subject to revision the following month". Data from table 5 "are counts of jobs by place of work. Estimates are currently projected from 2007 benchmark levels. Estimates subsequent to the current benchmarks are provisional and will be revised when new information becomes available. Data reflect the conversion to the 2007 version of the North American Industry Classification System (NAICS) as the basis for the assignment and tabulation of economic data by industry, replacing NAICS 2002. For more details, see http://www.bls.gov/sae/saenaics07.htm.
The Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Emergency Solutions Grantee (ESG) areas spatial dataset for FY2018. The Emergency Solutions Grants (ESG), formally the Emergency Shelter Grants, program is designed to identify sheltered and unsheltered homeless persons, as well as those at risk of homelessness, and provide the services necessary to help those persons quickly regain stability in permanent housing after experiencing a housing crisis and/or homelessness. The ESG is a non-competitive formula grant awarded to recipients which are state governments, large cities, urban counties, and U.S. territories. Recipients make these funds available to eligible sub-recipients, which can be either local government agencies or private nonprofit organizations. The recipient agencies and organizations, which actually run the homeless assistance projects, apply for ESG funds to the governmental grantee, and not directly to HUD. Please note that this version of the data does not include Community Planning and Development (CPD) entitlement grantees. LED data for CPD entitlement areas can be obtained from the LED for CDBG Grantee Areas feature service. To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for ESG Grantee Areas
Date of Coverage: ESG-2021/LED-2018
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The net job and business growth indicator measures the annual change in both the number of firms and the number of employees between 1978 and 2022. The data is categorized by the size of the firm: those with 1-19 employees, those with between 20 and 499 employees, and those with more than 500 employees.
This data contributes to the big picture of economic conditions in Champaign County. More firms and larger employment numbers are generally positive economic indicators, but any strictly economic indicator should be considered in the context of other factors.
The number of firms and number of employees show very different trends.
Historically, there have been significantly more firms with 1-19 employees than firms in the larger two size categories. The number of firms with 1-19 employees has also been relatively consistent until 2021: there were 95 fewer such firms in 2021 than 1978, and the largest year-to-year change in that 43-year period of analysis was a -3.2% decrease between 1979 and 1980. However, there were 437 fewer such firms in 2022 than 1978. There was a decrease in these firms of 12.5% from 2021 to 2022, the only double-digit year-to-year change and the largest year-to-year change over 44 years.
The larger two size categories have shown an increasing trend over the period of analysis. There were 43 more firms with 20-499 employees in 2022 than 1978, a total increase of 9%. The number of firms with more than 500 employees almost doubled, increasing by 206 firms from 212 in 1978 to 418 in 2022, a total increase of 97.2%.
The trends of employment also vary based on firm size. Firms with 1-19 employees have consistently, and unsurprisingly, accounted for less of the total employment than the larger two categories. Employment in firms with 1-19 employees has also remained relatively consistent over the period of analysis. Employment in firms with more than 500 employees saw an overall trend of growth, interrupted by brief and intermittent decreases, between 1978 and 2022. Employment in the middle category (firms with between 20 and 499 employees) was also greater in 2022 than in 1978.
This data is from the U.S. Census Bureau’s Business Dynamics Statistics Data Tables. This data is at the geographic scale of the Champaign-Urbana Metropolitan Statistical Area (MSA), which is comprised of Champaign and Piatt Counties, or a larger area than the cities or Champaign County.
Source: U.S. Census Bureau; 2022 Business Dynamics Statistics Data Tables; "BDSFSIZE - Business Dynamics Statistics: Firm Size: 1978-2022"; retrieved 21 October 2024.
VITAL SIGNS INDICATOR Unemployment (EC3)
FULL MEASURE NAME Unemployment rate by residential location
LAST UPDATED July 2019
DESCRIPTION Unemployment refers to the share of the labor force – by place of residence – that is not currently employed full-time or part-time. The unemployment rate reflects the strength of the overall employment market.
DATA SOURCE California Employment Development Department: Historical Unemployment Rates 1990-2018 https://data.edd.ca.gov/Labor-Force-and-Unemployment-Rates/Local-Area-Unemployment-Statistics-LAUS-Annual-Ave/7jbb-3rb8
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Unemployment rates produced by EDD for the region and county levels are not adjusted for seasonality (as they reflect annual data) and are final data (i.e., not preliminary). Unemployment rates produced by BLS for the metro regions are adjusted for seasonality; they reflect the primary MSA for the named region, except for the San Francisco Bay Area which uses the nine-county region. The unemployment rate is calculated based on the number of unemployed persons divided by the total labor force. Note that the unemployment rate can decline or increase as a result of changes in either variable.
VITAL SIGNS INDICATOR Unemployment (EC3)
FULL MEASURE NAME Unemployment rate by residential location
LAST UPDATED July 2019
DESCRIPTION Unemployment refers to the share of the labor force – by place of residence – that is not currently employed full-time or part-time. The unemployment rate reflects the strength of the overall employment market.
DATA SOURCE California Employment Development Department: Historical Unemployment Rates 1990-2018 https://data.edd.ca.gov/Labor-Force-and-Unemployment-Rates/Local-Area-Unemployment-Statistics-LAUS-Annual-Ave/7jbb-3rb8
CONTACT INFORMATION vitalsigns.info@bayareametro.gov
METHODOLOGY NOTES (across all datasets for this indicator) Unemployment rates produced by EDD for the region and county levels are not adjusted for seasonality (as they reflect annual data) and are final data (i.e., not preliminary). Unemployment rates produced by BLS for the metro regions are adjusted for seasonality; they reflect the primary MSA for the named region, except for the San Francisco Bay Area which uses the nine-county region. The unemployment rate is calculated based on the number of unemployed persons divided by the total labor force. Note that the unemployment rate can decline or increase as a result of changes in either variable.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Wages in the United States increased 5.35 percent in July of 2025 over the same month in the previous year. This dataset provides the latest reported value for - United States Wages and Salaries Growth - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
The cleaned and harmonized version of the survey data produced and published by the Economic Research Forum represents 100% of the original survey data collected by the Central Agency for Public Mobilization and Statistics (CAPMAS)
In any society, the human element represents the basis of the work force which exercises all the service and production activities. Therefore, it is a mandate to produce labor force statistics and studies, that is related to the growth and distribution of manpower and labor force distribution by different types and characteristics.
In this context, the Central Agency for Public Mobilization and Statistics conducts "Quarterly Labor Force Survey" which includes data on the size of manpower and labor force (employed and unemployed) and their geographical distribution by their characteristics.
By the end of each year, CAPMAS issues the annual aggregated labor force bulletin publication that includes the results of the quarterly survey rounds that represent the manpower and labor force characteristics during the year.
----> Historical Review of the Labor Force Survey:
1- The First Labor Force survey was undertaken in 1957. The first round was conducted in November of that year, the survey continued to be conducted in successive rounds (quarterly, bi-annually, or annually) till now.
2- Starting the October 2006 round, the fieldwork of the labor force survey was developed to focus on the following two points: a. The importance of using the panel sample that is part of the survey sample, to monitor the dynamic changes of the labor market. b. Improving the used questionnaire to include more questions, that help in better defining of relationship to labor force of each household member (employed, unemployed, out of labor force ...etc.). In addition to re-order of some of the already existing questions in much logical way.
3- Starting the January 2008 round, the used methodology was developed to collect more representative sample during the survey year. this is done through distributing the sample of each governorate into five groups, the questionnaires are collected from each of them separately every 15 days for 3 months (in the middle and the end of the month)
----> The survey aims at covering the following topics:
1- Measuring the size of the Egyptian labor force among civilians (for all governorates of the republic) by their different characteristics. 2- Measuring the employment rate at national level and different geographical areas. 3- Measuring the distribution of employed people by the following characteristics: gender, age, educational status, occupation, economic activity, and sector. 4- Measuring unemployment rate at different geographic areas. 5- Measuring the distribution of unemployed people by the following characteristics: gender, age, educational status, unemployment type "ever employed/never employed", occupation, economic activity, and sector for people who have ever worked.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.
Covering a sample of urban and rural areas in all the governorates.
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
The cleaned and harmonized version of the survey data produced and published by the Economic Research Forum represents 100% of the original survey data collected by the Central Agency for Public Mobilization and Statistics (CAPMAS)
Sample Design and Selection
The sample of the LFS 2006 survey is a simple systematic random sample.
Sample Size
The sample size varied in each quarter (it is Q1=19429, Q2=19419, Q3=19119 and Q4=18835) households with a total number of 76802 households annually. These households are distributed on the governorate level (urban/rural).
A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among external resources in Arabic.
Face-to-face [f2f]
The questionnaire design follows the latest International Labor Organization (ILO) concepts and definitions of labor force, employment, and unemployment.
The questionnaire comprises 3 tables in addition to the identification and geographic data of household on the cover page.
----> Table 1- Demographic and employment characteristics and basic data for all household individuals
Including: gender, age, educational status, marital status, residence mobility and current work status
----> Table 2- Employment characteristics table
This table is filled by employed individuals at the time of the survey or those who were engaged to work during the reference week, and provided information on: - Relationship to employer: employer, self-employed, waged worker, and unpaid family worker - Economic activity - Sector - Occupation - Effective working hours - Work place - Average monthly wage
----> Table 3- Unemployment characteristics table
This table is filled by all unemployed individuals who satisfied the unemployment criteria, and provided information on: - Type of unemployment (unemployed, unemployed ever worked) - Economic activity and occupation in the last held job before being unemployed - Last unemployment duration in months - Main reason for unemployment
----> Raw Data
Office editing is one of the main stages of the survey. It started once the questionnaires were received from the field and accomplished by the selected work groups. It includes: a-Editing of coverage and completeness b-Editing of consistency
----> Harmonized Data
The Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Housing Opportunities for Person with AIDS (HOPWA) grantee areas spatial dataset for FY2018. The HOPWA program funds are distributed to states and cities by formula allocations and made available as part of the area's Consolidated Plan. Persons living with HIV/AIDS and their families may require housing that provides emergency, transitional, or long-term affordable solutions. In addition, some projects are selected in national competitions to serve as service delivery models or operate in non-formula areas. Grantees partner with nonprofit organizations and housing agencies to provide housing and support to beneficiaries. Please note that this version of the data does not include Community Planning and Development (CPD) entitlement grantees. LED data for CPD entitlement areas can be obtained from the LED for CDBG Grantee Areas feature service.
To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for HOPWA Grantee Areas
Date of Coverage: ESG-2021/LED-2018
The Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Community Development Block Grant (CDBG) Program grantee areas spatial dataset for FY2019. Established in 1974, the Community Development Block Grant Program provides annual grant funding to local and state governments to address a wide range of unique community development needs.
HUD determines the amount of each grant by using a formula comprised of several measures of community need, including the extent of poverty, population, housing density, age of housing, and population growth relative to other metropolitan areas.
The annual CDBG appropriation is allocated among states and local jurisdictions categorized as "entitlement" and "non-entitlement" communities respectively. Entitlement communities are comprised of the principal cities of Metropolitan Statistical Areas (MSAs); metropolitan cities with populations of at least 50,000; and qualified urban counties with a population of 200,000 or more (excluding the populations of entitlement cities). Non-entitlement communities receive CDBG funding from their respective states in accordance with requirements that state.
To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for CDBG Grantee Areas
Date of Coverage: CDBG-2021/LED-2018
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The O*NET Database contains hundreds of standardized and occupation-specific descriptors on almost 1,000 occupations covering the entire U.S. economy. The database, which is available to the public at no cost, is continually updated by a multi-method data collection program. Sources of data include: job incumbents, occupational experts, occupational analysts, employer job postings, and customer/professional association input.
Data content areas include:
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Employment Cost Index in the United States remained unchanged at 0.90 percent in the second quarter of 2025 from 0.90 percent in the first quarter of 2025. This dataset provides - United States Employment Cost Index- actual values, historical data, forecast, chart, statistics, economic calendar and news.
These economic estimates are used to provide an estimate of the contribution of DCMS sectors to the UK economy, measured by employment (number of filled jobs). These estimates are calculated based on the Office for National Statistics (ONS) Annual Population Survey (APS).They have been independently reviewed by the Office for Statistics Regulation (OSR) and are accredited official statistics.
The ONS has carried out analysis to assess the impact of falling sample sizes on the quality of Annual Population Survey (APS) estimates. Due to the ongoing challenges with response rates, response levels and weighting, the accreditation of ONS statistics based on Annual Population Survey (APS) was temporarily suspended on 9 October 2024. Because of the increased volatility of both Labour Force Survey (LFS) and APS estimates, the ONS advises that estimates produced using these datasets should be treated with additional caution.
ONS statistics based on both the APS and LFS will be considered official statistics in development until further review. We are reviewing the quality of our estimates and will update users about the accreditation of DCMS Employment Economic Estimates if this changes. In the interim, due to these smaller sample sizes, we have published data for this quarter with a slightly reduced set of demographic breakdowns for DCMS sectors and subsectors.
These statistics cover the contributions of the following DCMS sectors to the UK economy;
Tourism is not included as the data is not yet available. The release also includes estimates for the audio visual sector and computer games sector.
Users should note that there is overlap between DCMS sector definitions. In particular, several cultural sector industries are simultaneously creative industries.
A definition for each sector is available in the tables published alongside this release. Further information on all these sectors is available in the associated technical report along with details of methods and data limitations.
There were 4.0 million total filled jobs in the included DCMS sectors, representing 11.8% of UK total filled jobs. This is similar to the previous equivalent 12 month period of 11.9% and a 1.1 percentage point increase on pre-pandemic (2019), at 10.7%.
Growth in the included DCMS sectors was similar to all UK sectors when compared to the previous equivalent 12 month period (0.2% vs 0.6%).Growth in filled jobs within the included DCMS sectors has exceeded that of the UK overall compared to 2019 (11.6% vs 1.3%).
Within the included DCMS sectors, 24.1% of filled jobs were in London, a higher proportion compared to the UK economy overall, of which 15.9% were in London. However, this varies by sector.
First published on 12th December 2024.
A document is provided that contains a list of ministers and officials who have received privileged early access to this release. In line with best practice, the list has been kept to a minimum and those given access for briefing purposes had a maximum of 24 hours.
DCMS Economic Estimates Employment official statistics, calculated from the ONS Annual Population Survey (APS), were independently reviewed by the Office for Statistics Regulation (OSR) in June 2019. They comply with the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/" class="govuk-link">Code of Practice for Statistics and should be labelled accredited official statistics. Accredited official statistics are called National Statistics in the Statistics and Registration Service Act 2007.
Our statistical practice is regulated by the OSR. OSR sets the standards of trustworthiness, quality and value in the https://code.statisticsauthority.gov.uk/the-code/" class="govuk-link">Code of Practice for Statistics that all producers of official statistics should adhere to.
You are welcome to contact us directly with any comments about how we meet these standards by emailing evidence@dcms.gov.uk. Alternatively, you can contact OSR by emailing regulation@statistics.gov.uk or via the https://osr.statisticsauthority.gov.uk/" class="govuk-link">OSR website.
The responsible analyst for this release is Nicholas Hamilton Wu.
For further detail
The Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Home Investment Partnership (HOME) Program grantee areas spatial dataset for FY2018. Authorized under Title II of the Cranston-Gonzalez National Affordable Housing Act, the HOME Investment Partnership Program (HOME) is designed exclusively to create affordable housing for low-income households. Each year the HOME Program allocates approximately $2 billion to fund the development, purchase, or rehabilitation of affordable housing, and to provide direct rental assistance.
Please note that this version of the data does not include Community Planning and Development (CPD) entitlement grantees. LED data for CPD entitlement areas can be obtained from the LED for CDBG Grantee Areas feature service.
To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for HOME Grantee Areas
Date of Coverage: HOME-2021/LED-2018
The Local Employment Dynamics (LED) Partnership is a voluntary federal-state enterprise created for the purpose of merging employee, and employer data to provide a set of enhanced labor market statistics known collectively as Quarterly Workforce Indicators (QWI). The QWI are a set of economic indicators including employment, job creation, earnings, and other measures of employment flows. For the purposes of this dataset, LED data for 2018 is aggregated to Census Summary Level 070 (State + County + County Subdivision + Place/Remainder), and joined with the Continuum of Care Program grantee areas spatial dataset for FY2017. The Continuum of Care (CoC) Homeless Assistance Programs administered by HUD award funds competitively and require the development of a Continuum of Care system in the community where assistance is being sought. A continuum of care system is designed to address the critical problem of homelessness through a coordinated community-based process of identifying needs and building a system to address those needs. The approach is predicated on the understanding that homelessness is not caused merely by a lack of shelter, but involves a variety of underlying, unmet needs - physical, economic, and social. Funds are granted based on the competition following the Notice of Funding Availability (NOFA). Please note that this version of the data does not include Community Planning and Development (CPD) entitlement grantees. LED data for CPD entitlement areas can be obtained from the LED for CDBG Grantee Areas feature service. To learn more about the Local Employment Dynamics (LED) Partnership visit: https://lehd.ces.census.gov/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_LED for CoC Grantee Areas
Date of Coverage: CoC-2021/LED-2018
The Job Openings and Labor Turnover Survey (JOLTS) program provides national estimates of rates and levels for job openings, hires, and total separations. Total separations are further broken out into quits, layoffs and discharges, and other separations. Unadjusted counts and rates of all data elements are published by supersector and select sector based on the North American Industry Classification System (NAICS). The number of unfilled jobs—used to calculate the job openings rate—is an important measure of the unmet demand for labor. With that statistic, it is possible to paint a more complete picture of the U.S. labor market than by looking solely at the unemployment rate, a measure of the excess supply of labor. Information on labor turnover is valuable in the proper analysis and interpretation of labor market developments and as a complement to the unemployment rate. For more information and data visit: https://www.bls.gov/jlt/