22 datasets found
  1. Focus on Geodatabases in ArcGIS Pro

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 13, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Focus on Geodatabases in ArcGIS Pro [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/focus-on-geodatabases-in-arcgis-pro
    Explore at:
    Dataset updated
    Aug 13, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    Focus on Geodatabases in ArcGIS Pro introduces readers to the geodatabase, the comprehensive information model for representing and managing geographic information across the ArcGIS platform.Sharing best practices for creating and maintaining data integrity, chapter topics include the careful design of a geodatabase schema, building geodatabases that include data integrity rules, populating geodatabases with existing data, working with topologies, editing data using various techniques, building 3D views, and sharing data on the web. Each chapter includes important concepts with hands-on, step-by-step tutorials, sample projects and datasets, 'Your turn' segments with less instruction, study questions for classroom use, and an independent project. Instructor resources are available by request.AUDIENCEProfessional and scholarly.AUTHOR BIODavid W. Allen has been working in the GIS field for over 35 years, the last 30 with the City of Euless, Texas, and has seen many versions of ArcInfo and ArcGIS come along since he started with version 5. He spent 18 years as an adjunct professor at Tarrant County College in Fort Worth, Texas, and now serves as the State Director of Operations for a volunteer emergency response group developing databases and templates. Mr. Allen is the author of GIS Tutorial 2: Spatial Analysis Workbook (Esri Press, 2016).Pub Date: Print: 6/17/2019 Digital: 4/29/2019 Format: PaperbackISBN: Print: 9781589484450 Digital: 9781589484467 Trim: 7.5 x 9.25 in.Price: Print: $59.99 USD Digital: $59.99 USD Pages: 260

  2. National Hydrography Dataset Plus Version 2.1

    • oregonwaterdata.org
    • resilience.climate.gov
    • +4more
    Updated Aug 16, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). National Hydrography Dataset Plus Version 2.1 [Dataset]. https://www.oregonwaterdata.org/maps/4bd9b6892530404abfe13645fcb5099a
    Explore at:
    Dataset updated
    Aug 16, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses. For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.Dataset SummaryPhenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.Geographic Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaProjection: Web Mercator Auxiliary Sphere Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000Source: EPA and USGSUpdate Frequency: There is new new data since this 2019 version, so no updates planned in the futurePublication Date: March 13, 2019Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application. Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Apply filters. For example you can set a filter to show larger streams and rivers using the mean annual flow attribute or the stream order attribute. Change the layer’s style and symbologyAdd labels and set their propertiesCustomize the pop-upUse as an input to the ArcGIS Online analysis tools. This layer works well as a reference layer with the trace downstream and watershed tools. The buffer tool can be used to draw protective boundaries around streams and the extract data tool can be used to create copies of portions of the data.ArcGIS ProAdd this layer to a 2d or 3d map. Use as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the ArcGIS Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Questions?Please leave a comment below if you have a question about this layer, and we will get back to you as soon as possible.

  3. a

    Introduction to R Scripting with ArcGIS

    • edu.hub.arcgis.com
    Updated Jan 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2025). Introduction to R Scripting with ArcGIS [Dataset]. https://edu.hub.arcgis.com/documents/baec6865ffbc4c1c869a594b9cad8bc0
    Explore at:
    Dataset updated
    Jan 18, 2025
    Dataset authored and provided by
    Education and Research
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This Tutorial consists of four tutorials that deal with integrating the statistical programming language R with ArcGIS for Desktop. Several concepts are covered which include configuring ArcGIS with R, writing basic R scripts, writing R scripts that work with ArcGIS data, and constructing R Tools for use within ArcGIS Pro. It is recommended that the tutorials are completed in sequential order. Each of the four tutorials (as well as a version of this document), can viewed directly from your Web browser by following the links below. However, you must obtain a complete copy of the tutorial files by downloading the latest release (or by cloning the tutorial repository on GitHub) if you wish to follow the tutorials interactively using ArcGIS and R software, along with pre-configured sample data.To download the tutorial documents and datasets, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/r-arcgis-tutorials.gitSoftware & Solutions Used: ArcGIS Pro 3.4 Internet browser (e.g., Mozilla Firefox, Google Chrome, Safari) R Statistical Computing Language – version 4.3.3 R-ArcGIS Bindings – version 1.0.1.311RStudio Desktop – version 2024.09.0+375Time to Complete: 2.5 h (excludes installation time)File Size: 115 MBDate Created: November 2017Last Updated: December 2024

  4. Visualize Urban Sprawl

    • wb-sdgs.hub.arcgis.com
    • rwanda.africageoportal.com
    • +3more
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2020). Visualize Urban Sprawl [Dataset]. https://wb-sdgs.hub.arcgis.com/content/9d344a720f274f7fb331f8ae00fecdce
    Explore at:
    Dataset updated
    Sep 11, 2020
    Dataset authored and provided by
    Esrihttp://esri.com/
    Description

    This template is used to compute urban growth between two land cover datasets, that are classified into 20 classes based on the Anderson Level II classification system. This raster function template is used to generate a visual representation indicating urbanization across two different time periods. Typical datasets used for this template is the National Land Cover Database. A more detailed blog on the datasets can be found on ArcGIS Blogs. This template works in ArcGIS Pro Version 2.6 and higher. It's designed to work on Enterprise 10.8.1 and higher.References:Raster functionsWhen to use this raster function templateThe template is useful to generate an intuitive visualization of urbanization across two images.Sample Images to test this againstNLCD2006 and NLCD2011How to use this raster function templateIn ArcGIS Pro, search ArcGIS Living Atlas for raster function templates to apply them to your imagery layer. You can also download the raster function template, attach it to a mosaic dataset, and publish it as an image service. The output is a visual representation of urban sprawl across two images. Applicable geographiesThe template is designed to work globally.

  5. a

    Working with VGIN Services

    • hub.arcgis.com
    • vgin.vdem.virginia.gov
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2020). Working with VGIN Services [Dataset]. https://hub.arcgis.com/datasets/VGIN::working-with-vgin-services
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    Virginia Geographic Information Network
    Description

    This document explains Virginia Geographic Information Network (VGIN) map and feature services and how to work with them in ArcGIS Desktop and ArcGIS Pro. Instructions cover connecting to the server, adding services to a map, and extracting data from feature services. Particular focus is on the provisioning and PSAP boundary polygons used in NG9-1-1 deployment. The steps listed also apply to other VGIN feature services and publicly-facing or shared feature services from other sources.Feature services are supported in ArcGIS Pro. ArcMap support started in version 10.1. If you are working with a version of ArcGIS Desktop 10.0 or older, please contact us at NG911GIS@vdem.virginia.gov for support.Document updated October 2022 to reflect changes to https://vgin.vdem.virginia.gov/Additional resources and recommendations on GIS related topics are available on the VGIN 9-1-1 & GIS page.

  6. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, San Miguel Island
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  7. Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support)...

    • pacificgeoportal.com
    • sgie-wacaci.hub.arcgis.com
    • +1more
    Updated Feb 10, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2022). Sentinel-2 10m Land Use/Land Cover Change from 2018 to 2021 (Mature Support) [Dataset]. https://www.pacificgeoportal.com/datasets/30c4287128cc446b888ca020240c456b
    Explore at:
    Dataset updated
    Feb 10, 2022
    Dataset authored and provided by
    Esrihttp://esri.com/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation,
    clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com

  8. Digital Bedrock Geologic-GIS Map of Lincoln Boyhood National Memorial and...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Bedrock Geologic-GIS Map of Lincoln Boyhood National Memorial and Vicinity, Indiana (NPS, GRD, GRI, LIBO, LIBO_bedrock digital map) adapted from a Indiana Geological Survey unpublished working maps by Hutchinson (1959) [Dataset]. https://catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-lincoln-boyhood-national-memorial-and-vicinity-indiana
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Indiana
    Description

    The Digital Bedrock Geologic-GIS Map of Lincoln Boyhood National Memorial and Vicinity, Indiana is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (libo_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (libo_bedrock_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (libo_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (libo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (libo_bedrock_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (libo_bedrock_geology_metadata_faq.pdf). Please read the libo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Indiana Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (libo_bedrock_geology_metadata.txt or libo_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. d

    Digital Geologic-GIS Map of Wilson's Creek National Battlefield and...

    • datasets.ai
    • catalog.data.gov
    • +1more
    33, 57
    Updated Sep 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Digital Geologic-GIS Map of Wilson's Creek National Battlefield and Vicinity, Missouri (NPS, GRD, GRI, WICR, WICR digital map) adapted from Missouri Department of Natural Resources, Division of Geology and Land Survey unpublished maps by Robertson (1992), Work and Robertson (1991), Robertson (1990) and Thomson (1981) [Dataset]. https://datasets.ai/datasets/digital-geologic-gis-map-of-wilsons-creek-national-battlefield-and-vicinity-missouri-nps-g
    Explore at:
    57, 33Available download formats
    Dataset updated
    Sep 1, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Missouri, Wilsons Creek
    Description

    The Digital Geologic-GIS Map of Wilson's Creek National Battlefield and Vicinity, Missouri is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (wicr_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (wicr_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (wicr_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (wicr_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (wicr_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (wicr_geology_metadata_faq.pdf). Please read the wicr_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Missouri Department of Natural Resources, Division of Geology and Land Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (wicr_geology_metadata.txt or wicr_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  10. w

    Fuquay-Varina Utilities - Stormwater System - Stormwater Control Measures...

    • data.wake.gov
    Updated Mar 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Town of Fuquay-Varina (2022). Fuquay-Varina Utilities - Stormwater System - Stormwater Control Measures (SCM, BMP) [Dataset]. https://data.wake.gov/maps/tofv::fuquay-varina-utilities-stormwater-system-stormwater-control-measures-scm-bmp
    Explore at:
    Dataset updated
    Mar 23, 2022
    Dataset authored and provided by
    Town of Fuquay-Varina
    Area covered
    Description

    Stormwater Control Measures (SCM's) in Fuquay-Varina, represented as points. Please note that these SCM's (e.g. Wet Pond Detention Basins) are generally privately owned and maintained systems, but these are essential for mapping and understanding the stormwater drainage network sub-systems at the neighborhood level. These points do not currently contain much attribute information; rather, they are primarily an aid in locating and referencing these features, as there can be many on a single property or subdivision. Not all SCM features have been added to this dataset yet, but we are working on it. Please note that ALL public utility data layers can be downloaded in a single .mpkx (ArcGIS Pro map package file), updated every Friday evening. This .mpkx file can be opened directly with ArcGIS Pro version 3+. Alternatively, you can extract the file geodatabase within it by renaming the file ending .mpkx to .zip and treating it like a zip archive file, for use in any version of ArcGIS Pro or ArcMap software. You can also use QGIS, a powerful, free, and open-source GIS software.The Town of Fuquay-Varina creates, maintains, and serves out a variety of utility information to the public, including its Potable Water System, Sanitary Sewer System, and Stormwater Collection System features. This is the same utility data displayed in our public web map. This utility data includes some features designated as 'private' that are not owned or maintained by the Town, but may be helpful for modeling and other informational purposes. Please pay particular attention to the terms of use and disclaimer associated with these data. Some data includes the use of Subtypes and Domains that may not translate well to Shapefile or GeoJSON downloads available through our Open Data site. Please beware the dangers of cartographic misrepresentation if you are unfamiliar with filtering and symbolizing data based on attributes. Water System Layers:Water LinesWater ValvesWater ManholesFire HydrantsFire Department ConnectionsWater MetersWater Meter VaultsRPZ (Backflow Preventers)Water TankWater Booster StationsHarnett County Water District AreaSewer System Layers:Gravity Sewer LinesForced Sewer LinesSewer ManholesSewer ValvesSewer CleanoutsSewer Pump StationsWastewater Treatment PlantsStormwater System Layers:Stormwater Lines (Pipes)Stormwater Points (Inlets/Outlets/Manholes)Stormwater Control Measure Points (SCM's, such as Wet Ponds / Retention Basins)

  11. Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic...

    • s.cnmilf.com
    • catalog.data.gov
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic Site, Massachusetts (NPS, GRD, GRI, SAIR, SAIR_bedrock digital map) adapted from a Massachusetts Geological Survey Preliminary Report map by Kopera (2011) and a U.S. Geological Survey Miscellaneous Field Studies Map by Kaye (1980) [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/digital-bedrock-geologic-gis-map-of-saugus-iron-works-national-historic-site-massachusetts
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Saugus, Massachusetts
    Description

    The Digital Bedrock Geologic-GIS Map of Saugus Iron Works National Historic Site, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (sair_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (sair_bedrock_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (sair_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sair_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sair_bedrock_geology_metadata_faq.pdf). Please read the sair_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Massachusetts Geological Survey and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sair_bedrock_geology_metadata.txt or sair_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual _location as presented by this dataset. Users of this data should thus not assume the _location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  12. v

    VT Data - Radon Tests by Town

    • geodata.vermont.gov
    • geodata1-59998-vcgi.opendata.arcgis.com
    • +1more
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT-AHS (2024). VT Data - Radon Tests by Town [Dataset]. https://geodata.vermont.gov/datasets/ahs-vt::vt-data-radon-tests-by-town
    Explore at:
    Dataset updated
    Jun 28, 2024
    Dataset authored and provided by
    VT-AHS
    Area covered
    Description

    Data on aggregated radon test results in residential properties from January 1994 to December 2024 within each Vermont municipality. Radon data can inform public health outreach, educate stakeholders and the public, and encourage testing and mitigation. View this data in the Department of Health's radon risk map.Radon is a naturally occurring radioactive gas that is estimated to kill 50 Vermonters a year due to lung cancer. Radon can only be detected by testing and buildings with elevated radon levels (≥4 pCi/L (picocuries per Liter)) are found throughout the state. The average level of radon in Vermont homes is 2.4 pCi/L compared with the national average of 1.3 pCi/L. The EPA recommends that homes testing at or above 4 pCi/L be fixed, but as there is no known safe level of radon, the EPA suggests that homes testing between 2-4 pCi/L should also be fixed.This data set contains the Environmental Health Radon program’s radon in-air long term test data from 1994-2024, and the Vermont Department of Health Laboratory’s radon in-air short, medium, and long-term test data for 2020-2024. Data have been geocoded and aggregated to the town level to display the number and percent of residences tested by town and the number and percent of residences tested that exceed 4 pCi/L by town.Data SourceSource data for these maps comes from the highest radon test result ever found at a residence (many residences test more than once). Results are provided by the Radon Program long term test data (1994-2024) and the Vermont Department of Health Laboratory, short, medium, and long term test data (2020-2024). Radon results are aggregated by town based on whether the result was elevated (≥4.0 pCi/L) or not elevated (<4.0 pCi/L).Data LimitationsPrison, institutional residence, and nursing home E911 locations are not included in the aggregation of residences by town or geological area. For areas of low population density or low number of tests, data extremes carry more weight and can distort analytic results. Therefore, in the Rates of Radon Testing by Town, data for towns with fewer than 7 tested residences are not displayed; and in Elevated Radon Results, data for towns with fewer than 20 tested residences are not displayed.MethodologyRecord level radon in indoor air test results were extracted from the VDH-EH Radon database by Radon Program staff and from the LIMS system at the VDHL by laboratory staff. The Tracking analyst used SAS version 9.4 and ArcGIS Pro version 2.4.1 to process the data. Geocoded data from the Tracking program were used for the Radon Risk Maps. GIS work to populate the final maps was done collaboratively with partners from the Agency of Digital Services using ArcGIS Pro version 2.4.1.The residential data are from the VT Data – E911 Site Locations (address points) where the following were selected from the SITETYPE variable: mobile home, multi-family dwelling, other residential, single-family dwelling, residential farm, seasonal home, commercial with residence, condominium, and camp. The residential data in these maps is aggregated by town and geological area to provide the denominator for calculations.

  13. USA Protected Areas - GAP Status Code (Mature Support)

    • resilience.climate.gov
    • cgs-topics-lincolninstitute.hub.arcgis.com
    • +1more
    Updated Feb 18, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). USA Protected Areas - GAP Status Code (Mature Support) [Dataset]. https://resilience.climate.gov/datasets/e20f27c6af5a49b289bea1ba05b4986b
    Explore at:
    Dataset updated
    Feb 18, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.GAP 1 and 2 areas are primarily managed for biodiversity, GAP 3 are managed for multiple uses including conservation and extraction, GAP 4 no known mandate for biodiversity protection. Provides a general overview of protection status including management designations. PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.The USGS Protected Areas Database of the United States (PAD-US) classifies lands into four GAP Status classes:GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionIn the United States, areas that are protected from development and managed for biodiversity conservation include Wilderness Areas, National Parks, National Wildlife Refuges, and Wild & Scenic Rivers. Understanding the geographic distribution of these protected areas and their level of protection is an important part of landscape-scale planning. Dataset SummaryPhenomenon Mapped: Areas protected from development and managed to maintain biodiversity Coordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: USGS Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: July 2022Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, or 3GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

  14. Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming,...

    • catalog.data.gov
    Updated Jun 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming, Montana, and Idaho (NPS, GRD, GRI, YELL, YELL digital map) adapted from U.S. Geological Survey published and unpublished maps and digital data (1956-2007), a Montana Bureau of Mines and Geology Open-File Reports map by Berg et al. (1999), and a Montana State University unpublished master's thesis map by Kragh, N. and M. Myers (2023) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-yellowstone-national-park-and-vicinity-wyoming-montana-and-ida
    Explore at:
    Dataset updated
    Jun 20, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Wyoming, Montana
    Description

    The Digital Geologic-GIS Map of Yellowstone National Park and Vicinity, Wyoming, Montana, and Idaho is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (yell_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (yell_geology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (yell_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (yell_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (yell_geology_metadata_faq.pdf). Also included is a zip containing a Montana State University Master's thesis and supporting documents and data. The thesis focuses on addressing map boundary inconsistencies and remapping portions of the park. Data and documents supporting the thesis are 1.) a geodatabase containing field data points, 2.) a collection of documents describing field sites, 3.) spreadsheets containing geochemical analysis results, and 4.) photographs taken during field work. Please read the yell_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey, Montana Bureau of Mines and Geology and Montana State University. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (yell_geology_metadata.txt or yell_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:125,000 and United States National Map Accuracy Standards features are within (horizontally) 63.5 meters or 208.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  15. a

    VT Data - Radon Tests by Bedrock Belt

    • geodata1-59998-vcgi.opendata.arcgis.com
    • geodata.vermont.gov
    • +1more
    Updated Jun 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VT-AHS (2024). VT Data - Radon Tests by Bedrock Belt [Dataset]. https://geodata1-59998-vcgi.opendata.arcgis.com/maps/ahs-vt::vt-data-radon-tests-by-bedrock-belt
    Explore at:
    Dataset updated
    Jun 28, 2024
    Dataset authored and provided by
    VT-AHS
    Area covered
    Description

    Data on aggregated radon test results in residential properties from January 1994 to December 2024 within each geological area. View this data in the Department of Health's radon risk map.Radon is a naturally occurring radioactive gas that is estimated to kill 50 Vermonters a year due to lung cancer. Radon can only be detected by testing and buildings with elevated radon levels (≥4 pCi/L (picocuries per Liter)) are found throughout the state. The average level of radon in Vermont homes is 2.4 pCi/L compared with the national average of 1.3 pCi/L. The EPA recommends that homes testing at or above 4 pCi/L be fixed, but as there is no known safe level of radon, the EPA suggests that homes testing between 2-4 pCi/L should also be fixed. This data set contains the Environmental Health Radon program’s radon in-air long term test data from 1994-2024, and the Vermont Department of Health Laboratory’s radon in-air short, medium, and long-term test data for 2020-2024.Bedrock geology influences the amount of radon in air and water. Data is aggregated by bedrock geology type to better understand how geology affects radon in air in residences across the state. For a detailed explanation of the process used to develop the Bedrock zones map see the Read me file on DEC’s Radon page.Data SourceSource data for these maps comes from the highest radon test result ever found at a residence (many residences test more than once). Results are provided by the Radon Program long term test data (1994-2024) and the Vermont Department of Health Laboratory, short, medium, and long term test data (2020-2024). Radon results are aggregated by bedrock geology type based on whether the result was elevated (≥4.0 picocuries per liter (pCi/L)) or not elevated (<4.0 pCi/L).Data LimitationsPrison, institutional residence, and nursing home E911 locations are not included in the aggregation of residences by town or geological area. For areas of low population density or low number of tests, data extremes carry more weight and can distort analytic results. MethodologyRecord level radon in indoor air test results were extracted from the VDH-EH Radon database by Radon Program staff and from the LIMS system at the VDHL by laboratory staff. The Tracking analyst used SAS version 9.4 and ArcGIS Pro version 2.4.1 to process the data. Geocoded data from the Tracking program were used for the Radon Risk Maps. GIS work to populate the final maps was done collaboratively with partners from the Agency of Digital Services using ArcGIS Pro version 2.4.1.The residential data are from the VT Data – E911 Site Locations (address points) where the following were selected from the SITETYPE variable: mobile home, multi-family dwelling, other residential, single-family dwelling, residential farm, seasonal home, commercial with residence, condominium, and camp. The residential data in these maps is aggregated by town and geological area to provide the denominator for calculations.

  16. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  17. d

    National Vegetation Information System (NVIS) Version 7.0 - Pre1750 Vectors...

    • fed.dcceew.gov.au
    Updated Dec 12, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dept of Climate Change, Energy, the Environment & Water (2024). National Vegetation Information System (NVIS) Version 7.0 - Pre1750 Vectors Download [Dataset]. https://fed.dcceew.gov.au/datasets/0f192b24bb9042c38a49adca7966d836
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Dept of Climate Change, Energy, the Environment & Water
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The NVIS vegetation attributes contain information on vegetation structure (growth form, height and cover) and floristics (genus and species) as documented in the Australian Vegetation Attribute Manual Version 7.0 (NVIS Technical Working Group, 2017).The NVIS detailed Level 1-6 vegetation descriptions make up the NVIS Information Hierarchy and are used to assign the Major Vegetation Groups and Major Vegetation Subgroups classifications. The hierarchy is based on structural and floristic information including dominant genus, growth form, height and cover and are preferably collected at the Level 6 Sub-Association (sub-stratum) level. For many reasons including different scales and classification methods, not all data is collected at this level of detail. Currently there are over 19,300 distinct NVIS vegetation descriptions in the NVIS database. For more information refer to the Australian Vegetation Attribute Manual V7.0.These detailed vector data products may be used at a regional scale and allow for more complex analyses when joined with the associated Lookup Table of Flat File. They are available in Present (Extant) and Estimated Pre-1750 (pre-European - where available) themes. Data is available under CC BY. It is recommended the datasets be used alongside the Key Layers to better understand the source data attributes such as differing scales, age of data etc.For this update, Version 7.0, the extant datasets for Queensland, Australian Capital Territory, New South Wales and Tasmania have been updated. An automated, data-driven procedure, followed by thorough manual checks, was undertaken to make any necessary updates to MVG/MVS assignments for Australian Capital Territory, New South Wales and Tasmania. Conversely, Queensland directly provided the MVG/MVS assignments for the state.This dataset is not comparable with earlier versions of NVIS.Reference: NVIS Technical Working Group (2017) Australian Vegetation Attribute Manual: National Vegetation Information System, Version 7.0. Department of the Environment and Energy, Canberra. Prep by Bolton, M.P., de Lacey, C. and Bossard, K.B. (Eds)USE INSTRUCTIONS----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Datasets: the File Geodatabase contains the following information: ItemExplanation NVIS6_0_AUST_PREThis dataset is a vector layer delineating the estimated pre-1750 native vegetation types across Australia NVIS6_0_LUT_AUST_DETAIL This table: is a lookup table containing NVIS Version 7.0 vegetation descriptions. The table contains a total of 19,519 NVIS vegetation types. NVIS6_0_LUT_AUST_FLATThis table is a lookup table containing NVIS Version 7.0 vegetation descriptions in a simpler, deconstructed table, allowing for improved analyses and use of the NVIS detailed vegetation descriptions. The table contains a total of 19,519 NVIS vegetation types.Table Joins:NVIS7_0_LUT_AUST_DETAIL This table joins to the NVIS 7.0 spatial data for all states and territories (NVIS_ID in this table to NVISDSC1 in NVIS7_0_AUST_EXT_[STATE] and NVIS7_0_AUST_PRE_[STATE] ). For complex analyses and to extract maximum information from NVIS spatial data, this LUT can also be linked to NVISDSC2-6. It is recommended that users refer to the Australian Vegetation Attribute Manual V7.0 for understanding of the NVIS hierarchy (Level 1-6 descriptions) - https://www.dcceew.gov.au/environment/land/publications/australian-vegetation-attribute-manual-version-7. Once this table has been joined, a simple display option is to use the field "NVIS7_0_LUT_AUST_DETAIL.MVG_NAME" (or MVS_NAME if preferred) which includes the names of the NVIS Major Vegetation Groups (MVGs). A legend or 'shadeset' for the MVGs and MVSs can be found packaged with the detailed vector data: NVIS7_0_AUST_EXT_[STATE] and NVIS7_0_AUST_PRE_[STATE].Use the field "MVG_NUMBER" or "MVS_NUMBER" for the symbology.NVIS7_0_LUT_AUST_FLAT For complex analyses and to extract maximum information from NVIS spatial data, this LUT can also be linked to NVISDSC1-6. This LUT is a deconstruction of the Level 5 string within the NVIS detailed data (for NVIS Level 1-6 strings use NVIS7_0_LUT_AUST_DETAIL) where provided by the state/territory (not all veg descriptions have Level 5/6). It is recommended that users refer to the Australian Vegetation Attribute Manual V7.0 for understanding of the NVIS hierarchy (Level 1-6 descriptions) and structural information - https://www.dcceew.gov.au/environment/land/publications/australian-vegetation-attribute-manual-version-7. A legend or 'shadeset' for the MVGs and MVSs can be found packaged with the detailed vector data: NVIS7_0_AUST_EXT_[STATE] and NVIS7_0_AUST_PRE_[STATE]. This table joins to the NVIS 7.0 spatial data for all states and territories (NVIS_ID in this table to NVISDSC1 in NVIS7_0_EXT_[STATE] and NVIS7_0_PRE_[STATE] ). For complex analyses and to extract maximum information from NVIS spatial data, this LUT can also be linked to NVISDSC2-6. Once this table has been joined, a simple display option is to use the field "NVIS7_0_LUT_AUST_FLAT.MVG_NAME" (or MVS_NAME if preferred) which includes the names of the NVIS Major Vegetation Groups (MVGs).Retrieving data by state or territory: the first number of the NVIS_ID corresponds to a specific state or territory and can be used to subset the larger datasetCodeExplanation 1 Australian Capital Territory 2 New South Wales 3 Northern Territory 4 Queensland 5 South Australia 6 Tasmania 7 Victoria 8 Western AustraliaSymbology: To enable full Major Vegetation Group descriptions to appear in the legend in an ArcGIS Desktop map or ArcGIS Pro project, the following layer files will need to be imported and the symbology set using the relevant attribute field. Layer files are within the zipped package.

  18. a

    Python for ArcGIS - Working with ArcGIS Notebooks

    • edu.hub.arcgis.com
    Updated Oct 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Education and Research (2024). Python for ArcGIS - Working with ArcGIS Notebooks [Dataset]. https://edu.hub.arcgis.com/documents/16fbaf21dc7b41c187ebcfd9f6ea1d58
    Explore at:
    Dataset updated
    Oct 8, 2024
    Dataset authored and provided by
    Education and Research
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    This resource was created by Esri Canada Education and Research. To browse our full collection of higher-education learning resources, please visit https://hed.esri.ca/resourcefinder/.This tutorial introduces you to using Python code in a Jupyter Notebook, an open source web application that enables you to create and share documents that contain rich text, equations and multimedia, alongside executable code and visualization of analysis outputs. The tutorial begins by stepping through the basics of setting up and being productive with Python notebooks. You will be introduced to ArcGIS Notebooks, which are Python Notebooks that are well-integrated within the ArcGIS platform. Finally, you will be guided through a series of ArcGIS Notebooks that illustrate how to create compelling notebooks for data science that integrate your own Python scripts using the ArcGIS API for Python and ArcPy in combination with thousands of open source Python libraries to enhance your analysis and visualization.To download the dataset Labs, click the Open button to the top right. This will automatically download a ZIP file containing all files and data required.You can also clone the tutorial documents and datasets for this GitHub repo: https://github.com/highered-esricanada/arcgis-notebooks-tutorial.git.Software & Solutions Used: Required: This tutorial was last tested on August 27th, 2024, using ArcGIS Pro 3.3. If you're using a different version of ArcGIS Pro, you may encounter different functionality and results.Recommended: ArcGIS Online subscription account with permissions to use advanced Notebooks and GeoEnrichmentOptional: Notebook Server for ArcGIS Enterprise 11.3+Time to Complete: 2 h (excludes processing time)File Size: 196 MBDate Created: January 2022Last Updated: August 27, 2024

  19. a

    National Hydrography Dataset Plus Version 2.1 Monthly Flow and Velocity

    • hub.arcgis.com
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Fish & Wildlife Service (2024). National Hydrography Dataset Plus Version 2.1 Monthly Flow and Velocity [Dataset]. https://hub.arcgis.com/datasets/fws::usgs-huwbd-and-nhdplus-v2-1-flow-and-velocity?layer=11
    Explore at:
    Dataset updated
    Feb 22, 2024
    Dataset authored and provided by
    U.S. Fish & Wildlife Service
    Area covered
    Description

    The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.

    For more information on the NHDPlus dataset see the NHDPlus v2 User Guide.

    Dataset Summary
    Phenomenon Mapped: Surface waters and related features of the United States and associated territories not including Alaska.
    Coordinate System: Web Mercator Auxiliary Sphere
    Extent: The United States not including Alaska, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American Samoa
    Visible Scale: Visible at all scales but layer draws best at scales larger than 1:1,000,000
    Resolution/Tolerance: 1 meter/2 meters
    Number of Features: 3,035,617 flowlines, 473,936 waterbodies, 16,658 sinks
    Feature Request Limit: 5,000
    Source: EPA and USGS
    Publication Date: March 13, 2019

    Prior to publication, the NHDPlus network and non-network flowline feature classes were combined into a single flowline layer. Similarly, the NHDPlus Area and Waterbody feature classes were merged under a single schema.

    Attribute fields were added to the flowline and waterbody layers to simplify symbology and enhance the layer's pop-ups. Fields added include Pop-up Title, Pop-up Subtitle, On or Off Network (flowlines only), Esri Symbology (waterbodies only), and Feature Code Description. All other attributes are from the original NHDPlus dataset. No data values -9999 and -9998 were converted to Null values for many of the flowline fields.

    What can you do with this Feature Layer?

    Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.

    ArcGIS Online
    • Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.

  20. USA Protected Areas - Protection Mechanism Category (Mature Support)

    • hub.arcgis.com
    Updated Apr 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2021). USA Protected Areas - Protection Mechanism Category (Mature Support) [Dataset]. https://hub.arcgis.com/datasets/fba78a10327e404faabfeda17419d745
    Explore at:
    Dataset updated
    Apr 9, 2021
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    United States,
    Description

    Important Note: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.

    The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations.The protection mechanism category includes fee simple, easements, leases and agreements, and marine areas. Proclamation category shown as gray outline. PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.Dataset SummaryPhenomenon Mapped: This layer displays protected areas symbolized by protection mechanism categoryCoordinate System: Web Mercator Auxiliary SphereExtent: 50 United States plus Puerto Rico, the US Virgin Islands, the Northern Mariana Islands and other Pacific Ocean IslandsVisible Scale: 1:1,000,000 and largerSource: U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP) PAD-US version 3.0Publication Date: September 2020Attributes included in this layer are: CategoryOwner TypeOwner NameLocal OwnerManager TypeManager NameLocal ManagerDesignation TypeLocal DesignationUnit NameLocal NameSourcePublic AccessGAP Status - Status 1, 2, 3 or 4GAP Status DescriptionInternational Union for Conservation of Nature (IUCN) Description - I: Strict Nature Reserve, II: National Park, III: Natural Monument or Feature, IV: Habitat/Species Management Area, V: Protected Landscape/Seascape, VI: Protected area with sustainable use of natural resources, Other conservation area, UnassignedDate of EstablishmentThe source data for this layer are available here. What can you do with this Feature Layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS OnlineAdd this layer to a map in the map viewer. The layer is limited to scales of approximately 1:1,000,000 or larger but a vector tile layer created from the same data can be used at smaller scales to produce a webmap that displays across the full range of scales. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter for Gap Status Code = 3 to create a map of only the GAP Status 3 areas.Add labels and set their propertiesCustomize the pop-upArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class. Note that many features in the PAD-US database overlap. For example wilderness area designations overlap US Forest Service and other federal lands. Any analysis should take this into consideration. An imagery layer created from the same data set can be used for geoprocessing analysis with larger extents and eliminates some of the complications arising from overlapping polygons.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of the Living Atlas of the World that provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). Focus on Geodatabases in ArcGIS Pro [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/focus-on-geodatabases-in-arcgis-pro
Organization logo

Focus on Geodatabases in ArcGIS Pro

Explore at:
Dataset updated
Aug 13, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

Focus on Geodatabases in ArcGIS Pro introduces readers to the geodatabase, the comprehensive information model for representing and managing geographic information across the ArcGIS platform.Sharing best practices for creating and maintaining data integrity, chapter topics include the careful design of a geodatabase schema, building geodatabases that include data integrity rules, populating geodatabases with existing data, working with topologies, editing data using various techniques, building 3D views, and sharing data on the web. Each chapter includes important concepts with hands-on, step-by-step tutorials, sample projects and datasets, 'Your turn' segments with less instruction, study questions for classroom use, and an independent project. Instructor resources are available by request.AUDIENCEProfessional and scholarly.AUTHOR BIODavid W. Allen has been working in the GIS field for over 35 years, the last 30 with the City of Euless, Texas, and has seen many versions of ArcInfo and ArcGIS come along since he started with version 5. He spent 18 years as an adjunct professor at Tarrant County College in Fort Worth, Texas, and now serves as the State Director of Operations for a volunteer emergency response group developing databases and templates. Mr. Allen is the author of GIS Tutorial 2: Spatial Analysis Workbook (Esri Press, 2016).Pub Date: Print: 6/17/2019 Digital: 4/29/2019 Format: PaperbackISBN: Print: 9781589484450 Digital: 9781589484467 Trim: 7.5 x 9.25 in.Price: Print: $59.99 USD Digital: $59.99 USD Pages: 260

Search
Clear search
Close search
Google apps
Main menu