100+ datasets found
  1. d

    Associated Data for Predicting Flood Damage Across the Conterminous United...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Associated Data for Predicting Flood Damage Across the Conterminous United States [Dataset]. https://catalog.data.gov/dataset/associated-data-for-predicting-flood-damage-across-the-conterminous-united-states
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    Contiguous United States, United States
    Description

    This data release contains the associated data described in the related primary publication, “Predicting Flood Damage Probability Across the Conterminous United States” (Collins et al. [2022], see Cross Reference section). Publicly available geospatial datasets and random forest algorithms were used to analyze the spatial distribution and underlying drivers of flood damage probability caused by excessive rainfall and overflowing water bodies across the conterminous United States. Datasets contain input files for predictor and response variables used in the analysis and output files of flood damage probabilities generated from the analysis.

  2. g

    Dataset Long term performance of six air sensors across the United States |...

    • gimi9.com
    Updated Feb 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Dataset Long term performance of six air sensors across the United States | gimi9.com [Dataset]. https://gimi9.com/dataset/data-gov_dataset-long-term-performance-of-six-air-sensors-across-the-united-states
    Explore at:
    Dataset updated
    Feb 16, 2025
    Area covered
    United States
    Description

    From July 2019 until January 2021, six models of air sensors were operated at seven air quality monitoring sites across the U.S. in Phoenix, Arizona, Denver, Colorado, Wilmington, Delaware, Decatur, Georgia, Research Triangle Park, North Carolina, Oklahoma City, Oklahoma, and Milwaukee, Wisconsin. Sensors testing included the Aeroqual AQY, Clarity Node, Clarity Node-S, Applied Particle Technology Maxima, PurpleAir PA-II-SD, Sensit RAPM, and Aerodyne Arisense. This dataset includes the processed data from the paper "Long term performance of six PM2.5 sensors across the United States" loaded here in sciencehub and also the raw datasets from the sensors loaded into Zenodo.

  3. N

    United States Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). United States Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e2062df4-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of United States by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for United States. The dataset can be utilized to understand the population distribution of United States by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in United States. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for United States.

    Key observations

    Largest age group (population): Male # 30-34 years (11.65 million) | Female # 30-34 years (11.41 million). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the United States population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the United States is shown in the following column.
    • Population (Female): The female population in the United States is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in United States for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Gender. You can refer the same here

  4. o

    States - United States of America

    • public.opendatasoft.com
    • data.smartidf.services
    • +1more
    csv, excel, geojson +1
    Updated Jun 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). States - United States of America [Dataset]. https://public.opendatasoft.com/explore/dataset/georef-united-states-of-america-state/
    Explore at:
    excel, csv, geojson, jsonAvailable download formats
    Dataset updated
    Jun 6, 2024
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for states and equivalent entities in United States of America. Processors and tools are using this data. States and equivalent entities are the primary governmental divisions of the United States. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services.

  5. N

    Far Hills, NJ Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Far Hills, NJ Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Far Hills from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/far-hills-nj-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Jersey, Far Hills
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Far Hills population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Far Hills across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Far Hills was 914, a 0.33% decrease year-by-year from 2022. Previously, in 2022, Far Hills population was 917, a decline of 0.33% compared to a population of 920 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Far Hills increased by 46. In this period, the peak population was 926 in the year 2011. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Far Hills is shown in this column.
    • Year on Year Change: This column displays the change in Far Hills population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Far Hills Population by Year. You can refer the same here

  6. N

    United States Population Dataset: Yearly Figures, Population Change, and...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6f93a357-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of United States across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of United States was 333,287,557, a 0.38% increase year-by-year from 2021. Previously, in 2021, United States population was 332,031,554, an increase of 0.16% compared to a population of 331,511,512 in 2020. Over the last 20 plus years, between 2000 and 2022, population of United States increased by 51,125,146. In this period, the peak population was 333,287,557 in the year 2022. The numbers suggest that the population has not reached its peak yet and is showing a trend of further growth. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the United States is shown in this column.
    • Year on Year Change: This column displays the change in United States population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Year. You can refer the same here

  7. d

    Combined wildfire datasets for the United States and certain territories,...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Combined wildfire datasets for the United States and certain territories, 1800s-Present (summary rasters) [Dataset]. https://catalog.data.gov/dataset/combined-wildfire-datasets-for-the-united-states-and-certain-territories-1800s-present-sum
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    United States
    Description

    First, we would like to thank the wildland fire advisory group. Their wisdom and guidance helped us build the dataset as it currently exists. Currently, there are multiple, freely available wildland fire datasets that identify wildfire and prescribed fire areas across the United States. However, these datasets are all limited in some way. Time periods, spatial extents, attributes, and maintenance for these datasets are highly variable, and none of the existing datasets provide a comprehensive picture of wildfires that have burned since the 1800s. Utilizing a series of both manual processes and ArcGIS Python (arcpy) scripts, we merged 40 of these disparate datasets into a single dataset that encompasses the known wildfires within the United States from the 1800s to the present. These datasets were ranked by order of observed quality, and overlapping polygons in the same year were used individually or dissolved together with other polygons based on ranked quality (see individual steps in the polygon metadata for full details). The fire polygons were turned into 30 meter rasters representing various summary counts: (a) count of all wildland fires that burned a pixel, (b) count of wildfires that burned a pixel, (c) the first year a wildfire burned a pixel, (d) the most recent year a wildfire burned a pixel, and (e) count of prescribed fires that burned a pixel.

  8. Estimated stand-off distance between ADS-B equipped aircraft and obstacles

    • zenodo.org
    • data.niaid.nih.gov
    jpeg, zip
    Updated Jul 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Weinert; Andrew Weinert (2024). Estimated stand-off distance between ADS-B equipped aircraft and obstacles [Dataset]. http://doi.org/10.5281/zenodo.7741273
    Explore at:
    zip, jpegAvailable download formats
    Dataset updated
    Jul 12, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Andrew Weinert; Andrew Weinert
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Summary:

    Estimated stand-off distance between ADS-B equipped aircraft and obstacles. Obstacle information was sourced from the FAA Digital Obstacle File and the FHWA National Bridge Inventory. Aircraft tracks were sourced from processed data curated from the OpenSky Network. Results are presented as histograms organized by aircraft type and distance away from runways.

    Description:

    For many aviation safety studies, aircraft behavior is represented using encounter models, which are statistical models of how aircraft behave during close encounters. They are used to provide a realistic representation of the range of encounter flight dynamics where an aircraft collision avoidance system would be likely to alert. These models currently and have historically have been limited to interactions between aircraft; they have not represented the specific interactions between obstacles and aircraft equipped transponders. In response, we calculated the standoff distance between obstacles and ADS-B equipped manned aircraft.

    For robustness, this assessment considered two different datasets of manned aircraft tracks and two datasets of obstacles. For robustness, MIT LL calculated the standoff distance using two different datasets of aircraft tracks and two datasets of obstacles. This approach aligned with the foundational research used to support the ASTM F3442/F3442M-20 well clear criteria of 2000 feet laterally and 250 feet AGL vertically.

    The two datasets of processed tracks of ADS-B equipped aircraft curated from the OpenSky Network. It is likely that rotorcraft were underrepresented in these datasets. There were also no considerations for aircraft equipped only with Mode C or not equipped with any transponders. The first dataset was used to train the v1.3 uncorrelated encounter models and referred to as the “Monday” dataset. The second dataset is referred to as the “aerodrome” dataset and was used to train the v2.0 and v3.x terminal encounter model. The Monday dataset consisted of 104 Mondays across North America. The other dataset was based on observations at least 8 nautical miles within Class B, C, D aerodromes in the United States for the first 14 days of each month from January 2019 through February 2020. Prior to any processing, the datasets required 714 and 847 Gigabytes of storage. For more details on these datasets, please refer to "Correlated Bayesian Model of Aircraft Encounters in the Terminal Area Given a Straight Takeoff or Landing" and “Benchmarking the Processing of Aircraft Tracks with Triples Mode and Self-Scheduling.”

    Two different datasets of obstacles were also considered. First was point obstacles defined by the FAA digital obstacle file (DOF) and consisted of point obstacle structures of antenna, lighthouse, meteorological tower (met), monument, sign, silo, spire (steeple), stack (chimney; industrial smokestack), transmission line tower (t-l tower), tank (water; fuel), tramway, utility pole (telephone pole, or pole of similar height, supporting wires), windmill (wind turbine), and windsock. Each obstacle was represented by a cylinder with the height reported by the DOF and a radius based on the report horizontal accuracy. We did not consider the actual width and height of the structure itself. Additionally, we only considered obstacles at least 50 feet tall and marked as verified in the DOF.

    The other obstacle dataset, termed as “bridges,” was based on the identified bridges in the FAA DOF and additional information provided by the National Bridge Inventory. Due to the potential size and extent of bridges, it would not be appropriate to model them as point obstacles; however, the FAA DOF only provides a point location and no information about the size of the bridge. In response, we correlated the FAA DOF with the National Bridge Inventory, which provides information about the length of many bridges. Instead of sizing the simulated bridge based on horizontal accuracy, like with the point obstacles, the bridges were represented as circles with a radius of the longest, nearest bridge from the NBI. A circle representation was required because neither the FAA DOF or NBI provided sufficient information about orientation to represent bridges as rectangular cuboid. Similar to the point obstacles, the height of the obstacle was based on the height reported by the FAA DOF. Accordingly, the analysis using the bridge dataset should be viewed as risk averse and conservative. It is possible that a manned aircraft was hundreds of feet away from an obstacle in actuality but the estimated standoff distance could be significantly less. Additionally, all obstacles are represented with a fixed height, the potentially flat and low level entrances of the bridge are assumed to have the same height as the tall bridge towers. The attached figure illustrates an example simulated bridge.

    It would had been extremely computational inefficient to calculate the standoff distance for all possible track points. Instead, we define an encounter between an aircraft and obstacle as when an aircraft flying 3069 feet AGL or less comes within 3000 feet laterally of any obstacle in a 60 second time interval. If the criteria were satisfied, then for that 60 second track segment we calculate the standoff distance to all nearby obstacles. Vertical separation was based on the MSL altitude of the track and the maximum MSL height of an obstacle.

    For each combination of aircraft track and obstacle datasets, the results were organized seven different ways. Filtering criteria were based on aircraft type and distance away from runways. Runway data was sourced from the FAA runways of the United States, Puerto Rico, and Virgin Islands open dataset. Aircraft type was identified as part of the em-processing-opensky workflow.

    • All: No filter, all observations that satisfied encounter conditions
    • nearRunway: Aircraft within or at 2 nautical miles of a runway
    • awayRunway: Observations more than 2 nautical miles from a runway
    • glider: Observations when aircraft type is a glider
    • fwme: Observations when aircraft type is a fixed-wing multi-engine
    • fwse: Observations when aircraft type is a fixed-wing single engine
    • rotorcraft: Observations when aircraft type is a rotorcraft

    License

    This dataset is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International(CC BY-NC-ND 4.0).

    This license requires that reusers give credit to the creator. It allows reusers to copy and distribute the material in any medium or format in unadapted form and for noncommercial purposes only. Only noncommercial use of your work is permitted. Noncommercial means not primarily intended for or directed towards commercial advantage or monetary compensation. Exceptions are given for the not for profit standards organizations of ASTM International and RTCA.

    MIT is releasing this dataset in good faith to promote open and transparent research of the low altitude airspace. Given the limitations of the dataset and a need for more research, a more restrictive license was warranted. Namely it is based only on only observations of ADS-B equipped aircraft, which not all aircraft in the airspace are required to employ; and observations were source from a crowdsourced network whose surveillance coverage has not been robustly characterized.

    As more research is conducted and the low altitude airspace is further characterized or regulated, it is expected that a future version of this dataset may have a more permissive license.

    Distribution Statement

    DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

    © 2021 Massachusetts Institute of Technology.

    Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S. Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically authorized by the U.S. Government may violate any copyrights that exist in this work.

    This material is based upon work supported by the Federal Aviation Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Federal Aviation Administration.

    This document is derived from work done for the FAA (and possibly others); it is not the direct product of work done for the FAA. The information provided herein may include content supplied by third parties. Although the data and information contained herein has been produced or processed from sources believed to be reliable, the Federal Aviation Administration makes no warranty, expressed or implied, regarding the accuracy, adequacy, completeness, legality, reliability or usefulness of any information, conclusions or recommendations provided herein. Distribution of the information contained herein does not constitute an endorsement or warranty of the data or information provided herein by the Federal Aviation Administration or the U.S. Department of Transportation. Neither the Federal Aviation Administration nor the U.S. Department of

  9. a

    Population Density in the US 2020 Census

    • hub.arcgis.com
    • data-bgky.hub.arcgis.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of South Florida GIS (2024). Population Density in the US 2020 Census [Dataset]. https://hub.arcgis.com/maps/58e4ee07a0e24e28949903511506a8e4
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset authored and provided by
    University of South Florida GIS
    Area covered
    Description

    This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  10. o

    Counties - United States of America

    • public.opendatasoft.com
    • bfortune.opendatasoft.com
    csv, excel, geojson +1
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Counties - United States of America [Dataset]. https://public.opendatasoft.com/explore/dataset/georef-united-states-of-america-county/
    Explore at:
    excel, json, geojson, csvAvailable download formats
    Dataset updated
    Jun 6, 2024
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for counties and equivalent entities in United States of America. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.

  11. T

    United States Unemployment Rate

    • tradingeconomics.com
    • pt.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Unemployment Rate [Dataset]. https://tradingeconomics.com/united-states/unemployment-rate
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 31, 1948 - Jun 30, 2025
    Area covered
    United States
    Description

    Unemployment Rate in the United States decreased to 4.10 percent in June from 4.20 percent in May of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.

  12. u

    Data from: USHAP: Big Data Seamless 1 km Ground-level PM2.5 Dataset for the...

    • iro.uiowa.edu
    • data.niaid.nih.gov
    Updated May 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jing Wei; Jun Wang; Zhanqing Li (2023). USHAP: Big Data Seamless 1 km Ground-level PM2.5 Dataset for the United States [Dataset]. https://iro.uiowa.edu/esploro/outputs/dataset/USHAP-Big-Data-Seamless-1-km/9984702835302771
    Explore at:
    Dataset updated
    May 1, 2023
    Dataset provided by
    Zenodo
    Authors
    Jing Wei; Jun Wang; Zhanqing Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    May 1, 2023
    Area covered
    United States
    Description

    USHAP (USHighAirPollutants) is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for the United States. It is generated from the big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution. This is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) ground-level PM2.5 dataset in the United States from 2000 to 2020. Our daily PM2.5 estimates agree well with ground measurements with an average cross-validation coefficient of determination (CV-R2) of 0.82 and normalized root-mean-square error (NRMSE) of 0.40, respectively. All the data will be made public online once our paper is accepted, and if you want to use the USHighPM2.5 dataset for related scientific research, please contact us (Email: weijing_rs@163.com; weijing@umd.edu). Wei, J., Wang, J., Li, Z., Kondragunta, S., Anenberg, S., Wang, Y., Zhang, H., Diner, D., Hand, J., Lyapustin, A., Kahn, R., Colarco, P., da Silva, A., and Ichoku, C. Long-term mortality burden trends attributed to black carbon and PM2.5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. The Lancet Planetary Health, 2023, 7, e963–e975. https://doi.org/10.1016/S2542-5196(23)00235-8 More air quality datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html

  13. Hourly Dynamic Line Ratings for Existing Transmission Across the Contiguous...

    • data.openei.org
    • s.cnmilf.com
    • +2more
    code, data +3
    Updated Sep 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kodi Obika; Sophie Bredenkamp; Le Helen Lu; Kodi Obika; Sophie Bredenkamp; Le Helen Lu (2024). Hourly Dynamic Line Ratings for Existing Transmission Across the Contiguous United States (Preliminary) [Dataset]. https://data.openei.org/submissions/6231
    Explore at:
    data, website, presentation, text_document, codeAvailable download formats
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Open Energy Data Initiative (OEDI)
    National Renewable Energy Laboratory
    Authors
    Kodi Obika; Sophie Bredenkamp; Le Helen Lu; Kodi Obika; Sophie Bredenkamp; Le Helen Lu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Contiguous United States, United States
    Description

    This dataset provides estimated hourly dynamic line ratings for ~84,000 transmission lines across the contiguous United States from 2007-2013. The calculation methods are described in the presentation linked below, and the associated open-source Python code repository is linked in the Resources section below.

    Abbreviations used in filenames and descriptions are: - SLR: static line ratings - ALR: ambient-temperature-adjusted line ratings - NLR: ambient-temperature- and day/night-irradiance-adjusted line ratings - CLR: ambient-temperature- and clear-sky-irradiance-adjusted line ratings - ILR: ambient-temperature- and measured-irradiance-adjusted line ratings - DLR: full dynamic line ratings (including air temperature/pressure, wind speed/direction, and measured irradiance)

    Transmission lines are referenced by their ID in the Homeland Infrastructure Foundation-Level Data (HIFLD) on Transmission Lines (linked in Resources section). Time indices are in UTC. The data files contain ratios between modeled hourly ratings and modeled static ratings. Columns are indexed by HIFLD ID; rows are indexed by hourly timestamps from 2007-2013 (UTC). A data directory is also included in the Resources section.

    The SLR files contain modeled static ratings (the denominator of the ratios in the files described above) in amps. As described in the presentation linked in the Resources section below, SLR calculations assume an ambient air temperature of 40 C, air pressure of 101 kPa, wind speed of 2 feet per second (0.61 m/s) perpendicular to the conductor, global horizontal irradiance of 1000 W/m^2, and conductor absorptivity and emissivity of 0.8. Conductor assumptions are Linnet for ~69 kV and below, Condor for ~115 kV, Martin for ~230 kV, and Cardinal for ~345 kV and above.

    Caveats and Limitations

    Results are sensitive to the weather data used. Validation studies on the WIND Toolkit and NSRDB are available at: - King, J. et al. "Validation of Power Output for the WIND Toolkit", 2014 (https://www.nrel.gov/docs/fy14osti/61714.pdf) - Draxl, C. et al. "Overview and Meteorological Validation of the Wind Integration National Dataset Toolkit", 2015 (https://www.nrel.gov/docs/fy15osti/61740.pdf) - Sengupta, M. et al. "Validation of the National Solar Radiation Database (NSRDB) (2005-2012)", 2015 (https://www.nrel.gov/docs/fy15osti/64981.pdf) - Habte, A. et al. "Evaluation of the National Solar Radiation Database (NSRDB Version 2): 1998-2015", 2017 (https://www.nrel.gov/docs/fy17osti/67722.pdf)

    More work is required to determine how well ratings calculated from NSRDB and WIND Toolkit data reflect the actual ratings observed by installed sensors (such as sag or tension monitors). In general, ratings calculated from modeled weather data are not a substitute for direct sensor data.

    Assuming a single representative conductor type (ACSR of a single diameter) for each voltage level is an important simplification; reported line ratings at a given voltage level can vary widely.

    HIFLD line routes are primarily based on imagery instead of exact construction data and may have errors.

    We use historical weather data directly; calculated line ratings are thus more indicative of real-time ratings than forecasted ratings

  14. U

    Data for generating statistical maps of soil lithium concentrations in the...

    • data.usgs.gov
    • datasets.ai
    • +1more
    Updated Mar 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karl Ellefsen (2022). Data for generating statistical maps of soil lithium concentrations in the conterminous United States [Dataset]. http://doi.org/10.5066/P9UVYMVW
    Explore at:
    Dataset updated
    Mar 23, 2022
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Karl Ellefsen
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jul 15, 2020
    Area covered
    Contiguous United States, United States
    Description

    The product data are six statistics that were estimated for the chemical concentration of lithium in the soil C horizon of the conterminous United States. The estimates are made at 9998 locations that are uniformly distributed across the conterminous United States. The six statistics are the mean for the isometric log-ratio transform of the concentrations, the equivalent mean for the concentrations, the standard deviation for the isometric log-ratio transform of the concentrations, the probability of exceeding a concentration of 55 milligrams per kilogram, the 0.95 quantile for the isometric log-ratio transform of the concentrations, and the equivalent 0.95 quantile for the concentrations. Each statistic may be used to generate a statistical map that shows an attribute of the distribution of lithium concentration.

  15. o

    Data from: US County Boundaries

    • public.opendatasoft.com
    csv, excel, geojson +1
    Updated Jun 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US County Boundaries [Dataset]. https://public.opendatasoft.com/explore/dataset/us-county-boundaries/
    Explore at:
    json, csv, excel, geojsonAvailable download formats
    Dataset updated
    Jun 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2017, primarily as reported through the Census Bureau's Boundary and Annexation Survey (BAS).

  16. United States COVID-19 County Level Data Sources - ARCHIVED

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 County Level Data Sources - ARCHIVED [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-County-Level-Data-Sources-A/7pvw-pdbr
    Explore at:
    application/rssxml, csv, json, application/rdfxml, xml, tsvAvailable download formats
    Dataset updated
    Nov 11, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    Area covered
    United States
    Description

    The Public Health Emergency (PHE) declaration for COVID-19 expired on May 11, 2023. As a result, the Aggregate Case and Death Surveillance System will be discontinued. Although these data will continue to be publicly available, this dataset will no longer be updated.

    On October 20, 2022, CDC began retrieving aggregate case and death data from jurisdictional and state partners weekly instead of daily.

    This dataset includes the URLs that were used by the aggregate county data collection process that compiled aggregate case and death counts by county. Within this file, each of the states (plus select jurisdictions and territories) are listed along with the county web sources which were used for pulling these numbers. Some states had a single statewide source for collecting the county data, while other states and local health jurisdictions may have had standalone sources for individual counties. In the cases where both local and state web sources were listed, a composite approach was taken so that the maximum value reported for a location from either source was used. The initial raw data were sourced from these links and ingested into the CDC aggregate county dataset before being published on the COVID Data Tracker.

  17. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  18. d

    Ocean wave time-series data along the U.S. Atlantic, Gulf of Mexico, and...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Ocean wave time-series data along the U.S. Atlantic, Gulf of Mexico, and Puerto Rico coasts simulated with a global-scale numerical wave model under the influence of CMIP6 wind and sea ice fields [Dataset]. https://catalog.data.gov/dataset/ocean-wave-time-series-data-along-the-u-s-atlantic-gulf-of-mexico-and-puerto-rico-coasts-s
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Atlantic Ocean, Gulf of Mexico (Gulf of America), United States
    Description

    This dataset presents projected hourly time-series of wave heights, wave periods, incident wave directions, and directional spreading at distinct points along the U.S. Atlantic, Gulf of Mexico, and Puerto Rico coasts for the years 2020 through 2050. The projections were developed by running the National Oceanic and Atmospheric Administration’s (NOAA’s) WAVEWATCHIII model. Wind and sea ice fields from seven different Global Climate or General Circulation Models from the CMIP6 High-Resolution Model Intercomparison Project were used to simulate waves across the globe at a 0.5-degree resolution (approximately 50 kms, depending on latitude) and further downscaled to 10- (approximately 18 km) and 4-arc-minute (approximately 7 km) model grids. Point model output data extracted from NOAA’s 4-arc-minute grid for the Gulf of Mexico and NW Atlantic (at_4m) are provided herein.

  19. Closed Loop Pumped Storage Hydropower Resource Assessment of the United...

    • data.openei.org
    • datasets.ai
    • +2more
    data, image_document
    Updated Jan 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Evan Rosenlieb; Evan Rosenlieb (2022). Closed Loop Pumped Storage Hydropower Resource Assessment of the United States [Dataset]. http://doi.org/10.25984/1872470
    Explore at:
    data, image_documentAvailable download formats
    Dataset updated
    Jan 5, 2022
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Office of Energy Efficiency and Renewable Energyhttp://energy.gov/eere
    Open Energy Data Initiative (OEDI)
    National Renewable Energy Laboratory
    Authors
    Evan Rosenlieb; Evan Rosenlieb
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The data includes a geospatial and spreadsheet representation of a resource analysis for closed loop pumped storage systems across the Continental United States, Alaska, Hawaii, and Puerto Rico. The data includes energy storage potential, water volume, distance from source to storage, hydraulic head, dollars per kilowatt of storage, and transmission spurline cost for each pumped storage hydropower (PHS) reservoir. Each reservoir represented in this dataset is represented on potential 10 hour storage duration PSH system comprised of two reservoirs. Units of measure are laid out in the dataset.

    Pumped storage hydropower (PSH) represents the bulk of the United States' current energy storage capacity: 23 gigawatts (GW) of the 24 GW national total (Denholm et al. 2021). This capacity was largely built between 1960 and 1990. PSH is a mature and proven method of energy storage with competitive round-trip efficiency and long life spans. These qualities make PSH a very attractive potential solution to energy storage needs, particularly for longer-duration storage (8 hours or more); such storage will be crucial to bridge gaps in electricity production as variable wind and solar production continue to comprise an ever-larger portion of the United States' energy portfolio. This study seeks to better understand the technical potential for PSH development in the United States by developing a national-scale resource assessment for closed-loop PSH.

    For more information, please refer to the Closed Loop Pumped Storage Hydropower Resource Assessment for the United States linked in the resources.

  20. Data from: A Unified Ensemble Soil Moisture Dataset Across the Continental...

    • zenodo.org
    zip
    Updated Dec 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lingcheng Li; Lingcheng Li; Xinming Lin; Yilin Fang; Jason Hou; Ruby Leung; Ruby Leung; Yaoping Wang; Yaoping Wang; Jiafu Mao; Jiafu Mao; Yaping Xu; Elias Massoud; Mingjie Shi; Mingjie Shi; Xinming Lin; Yilin Fang; Jason Hou; Yaping Xu; Elias Massoud (2024). A Unified Ensemble Soil Moisture Dataset Across the Continental United States [Dataset]. http://doi.org/10.5281/zenodo.14542239
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Lingcheng Li; Lingcheng Li; Xinming Lin; Yilin Fang; Jason Hou; Ruby Leung; Ruby Leung; Yaoping Wang; Yaoping Wang; Jiafu Mao; Jiafu Mao; Yaping Xu; Elias Massoud; Mingjie Shi; Mingjie Shi; Xinming Lin; Yilin Fang; Jason Hou; Yaping Xu; Elias Massoud
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 14, 2024
    Description

    A unified ensemble soil moisture (SM) package has been developed over the Continental United States (CONUS). The data package includes 19 products from land surface models, remote sensing, reanalysis, and machine learning models. All datasets are unified to a 0.25-degree and monthly spatiotemporal resolution, covering various temporal spans and providing a comprehensive view of surface SM dynamics. The statistical analysis of the datasets leverages the Koppen-Geiger Climate Classification to explore surface SM’s spatiotemporal variabilities. The extracted SM characteristics highlight distinct patterns, with the western CONUS showing larger coefficient of variation values and the eastern CONUS exhibiting higher SM values. Remote sensing datasets tend to be drier, while reanalysis products present wetter conditions. In-situ SM observations serve as the basis for wavelet power spectrum analyses to explain discrepancies with respect to temporal scales across the 16 datasets facilitating daily SM records. This study provides a comprehensive soil moisture data package and an analysis framework that can be used for Earth system model evaluations and uncertainty quantification, quantifying drought impacts and land–atmosphere interactions, and making recommendations for drought response planning.

    Data details: 1. scripts: 1) process data from original spatial resolution to 0.25 degree; 2) process data from original temporal resolution to monthly; 3) process the monthly data to seasonal mean analysis; 4) wavelet analysis. 2. data: 1) monthly 0.25deg data processed from raw datasets; 2) monthly and seasonal climatology data for comparison; 3) site data for wavelet analysis.

    Reference: The data manuscript is under review now and will add it here later.

    Contact: Mingjie Shi

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). Associated Data for Predicting Flood Damage Across the Conterminous United States [Dataset]. https://catalog.data.gov/dataset/associated-data-for-predicting-flood-damage-across-the-conterminous-united-states

Associated Data for Predicting Flood Damage Across the Conterminous United States

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
U.S. Geological Survey
Area covered
Contiguous United States, United States
Description

This data release contains the associated data described in the related primary publication, “Predicting Flood Damage Probability Across the Conterminous United States” (Collins et al. [2022], see Cross Reference section). Publicly available geospatial datasets and random forest algorithms were used to analyze the spatial distribution and underlying drivers of flood damage probability caused by excessive rainfall and overflowing water bodies across the conterminous United States. Datasets contain input files for predictor and response variables used in the analysis and output files of flood damage probabilities generated from the analysis.

Search
Clear search
Close search
Google apps
Main menu