Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 2 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.72 percent in July 31 from 6.74 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The International Bank for Reconstruction and Development (IBRD) loans are public and publicly guaranteed debt extended by the World Bank Group. IBRD loans are made to, or guaranteed by, countries that are members of IBRD. IBRD may also make loans to IFC. IBRD lends at market rates. Data are in U.S. dollars calculated using historical rates. This dataset contains the latest available snapshot of the Statement of Loans. The World Bank complies with all sanctions applicable to World Bank transactions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.83 percent in the week ending July 25 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Interest is charged if payment is not received by the due date. Remember: if the due date falls on a weekend or holiday, your payment is due the next working day.
The Ministry of Finance also applies interest to amounts the ministry owes to individuals and corporations.
Tax interest is compounded daily and interest rates are reset every 3 months.
Note: Provincial land tax interest rates are not reset every three months. Provincial land tax interest rates are summarized on the "https://www.ontario.ca/document/provincial-land-tax">provincial land tax webpage.
Note: Interest rates do not apply to the Estate Administration Tax Act, 1998.
Current interest rates (July 1, 2025 to September 30, 2025):
You can download the dataset to view the historical tax interest rates.
Non-Resident Speculation Tax (NRST)
(1) Interest on tax you overpaid begins to accrue 40 business days after a complete NRST rebate or refund application is received by the Ministry of Finance to the date the rebate or refund is paid.
(2) On refunds you are eligible for as a result of a successful appeal or objection of a NRST refund/rebate disallowance, the interest rate is the same rate as though you had overpaid and will begin to accrue 40 business days after a complete NRST rebate or refund application is received by the Ministry of Finance to the date the rebate or refund is paid. Refunds as a result of a successful appeal or objection of NRST that was paid pursuant to a Notice of Assessment, interest will accrue at the higher appeals/objection rate, beginning to accrue from the date of payment to the date the rebate or refund is paid.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Description
This dataset contains the actual and predicted federal funds target rate for the United States from 1990 to 2023. The federal funds target rate is the interest rate at which depository institutions lend their excess reserves to each other overnight. It is set by the Federal Open Market Committee (FOMC) and is a key tool used by the Federal Reserve to influence the economy.
The dataset includes the following five columns:
Release Date: The date on which the data was released by the Federal Reserve. Time: The time of day at which the data was released. Actual: The actual federal funds target rate. Predicted: The predicted federal funds target rate. Forecast: The forecast federal funds target rate.
Data Usage
This dataset can be used for a variety of purposes, including: - Analyzing trends in the federal funds target rate over time. - Forecasting the future path of the federal funds target rate. - Assessing the effectiveness of monetary policy. - Data Quality
The data for this dataset is of high quality. The Federal Reserve is a reputable source of data and the data is updated regularly.
Data Limitations
The data for this dataset is limited to the United States. Additionally, the data does not include information on the factors that influenced the Federal Open Market Committee's decision to set the federal funds target rate.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Mexico was last recorded at 8 percent. This dataset provides - Mexico Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
This dataset contains a wealth of information from 52,000 loan applications, offering detailed insights into the factors that influence loan approval decisions. Collected from financial institutions, this data is highly valuable for credit risk analysis, financial modeling, and predictive analytics. The dataset is particularly useful for anyone interested in applying machine learning techniques to real-world financial decision-making scenarios.
Overview: This dataset provides information about various applicants and the loans they applied for, including their demographic details, income, loan terms, and approval status. By analyzing this data, one can gain an understanding of which factors are most critical for determining the likelihood of loan approval. The dataset can also help in evaluating credit risk and building robust credit scoring systems.
Dataset Columns: Applicant_ID: Unique identifier for each loan application. Gender: Gender of the applicant (Male/Female). Age: Age of the applicant. Marital_Status: Marital status of the applicant (Single/Married). Dependents: Number of dependents the applicant has. Education: Education level of the applicant (Graduate/Not Graduate). Employment_Status: Employment status of the applicant (Employed, Self-Employed, Unemployed). Occupation_Type: Type of occupation, which provides insights into the nature of the applicant’s job (Salaried, Business, Others). Residential_Status: Type of residence (Owned, Rented, Mortgage). City/Town: The city or town where the applicant resides. Annual_Income: The total annual income of the applicant, a key factor in loan eligibility. Monthly_Expenses: The monthly expenses of the applicant, indicating their financial obligations. Credit_Score: The applicant's credit score, reflecting their creditworthiness. Existing_Loans: Number of existing loans the applicant is servicing. Total_Existing_Loan_Amount: The total amount of all existing loans the applicant has. Outstanding_Debt: The remaining amount of debt yet to be paid by the applicant. Loan_History: The applicant’s previous loan history (Good/Bad), indicating their repayment reliability. Loan_Amount_Requested: The loan amount the applicant has applied for. Loan_Term: The term of the loan in months. Loan_Purpose: The purpose of the loan (e.g., Home, Car, Education, Personal, Business). Interest_Rate: The interest rate applied to the loan. Loan_Type: The type of loan (Secured/Unsecured). Co-Applicant: Indicates if there is a co-applicant for the loan (Yes/No). Bank_Account_History: Applicant’s banking history, showing past transactions and reliability. Transaction_Frequency: The frequency of financial transactions in the applicant’s bank account (Low/Medium/High). Default_Risk: The risk level of the applicant defaulting on the loan (Low/Medium/High). Loan_Approval_Status: Final decision on the loan application (Approved/Rejected).
An important indicator of the financial strength of governmental entity is its bond rating. The bond rating is similar in nature to the credit score of an individual – the higher the score, the better the ability to borrow money to finance purchases at a lower interest rate. Similarly, the higher the bond rating for a governmental entity, the more opportunities to borrow money for capital needs at lower interest rates. A high bond rating is in excellent indicator of the overall financial health of a government.This measure is obtained each year when the city seeks to issue bonds to finance its’ projects. As part of this process, bond ratings are always obtained from the rating agencies: Standard & Poor’s. Fitch Ratings and Moody's Investor Service.This page provides data for the Bond Rating performance measure.Bond ratings are a reflection of the financial strength of an entity. A high rating means an entity can issue bonds to finance capital projects at lower interest rates; lower rates result in less interest to be paid on the repayment of the bonds. Ultimately, this lowers the costs of our capital projects to our taxpayers.The performance measure dashboard is available at 5.04 Bond Rating.Additional InformationSource: Standard & Poors, Moody's Investor Service, and Fitch Ratings are the major bond rating agencies in the United States and are widely used by governmental and non-governmental entities throughout the country.Contact: Jerry HartContact E-Mail: Jerry_Hart@tempe.govData Source Type: ExcelPreparation Method: ManualPublish Frequency: AnnuallyPublish Method: ManualData Dictionary
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains news headlines relevant to key forex pairs: AUDUSD, EURCHF, EURUSD, GBPUSD, and USDJPY. The data was extracted from reputable platforms Forex Live and FXstreet over a period of 86 days, from January to May 2023. The dataset comprises 2,291 unique news headlines. Each headline includes an associated forex pair, timestamp, source, author, URL, and the corresponding article text. Data was collected using web scraping techniques executed via a custom service on a virtual machine. This service periodically retrieves the latest news for a specified forex pair (ticker) from each platform, parsing all available information. The collected data is then processed to extract details such as the article's timestamp, author, and URL. The URL is further used to retrieve the full text of each article. This data acquisition process repeats approximately every 15 minutes.
To ensure the reliability of the dataset, we manually annotated each headline for sentiment. Instead of solely focusing on the textual content, we ascertained sentiment based on the potential short-term impact of the headline on its corresponding forex pair. This method recognizes the currency market's acute sensitivity to economic news, which significantly influences many trading strategies. As such, this dataset could serve as an invaluable resource for fine-tuning sentiment analysis models in the financial realm.
We used three categories for annotation: 'positive', 'negative', and 'neutral', which correspond to bullish, bearish, and hold sentiments, respectively, for the forex pair linked to each headline. The following Table provides examples of annotated headlines along with brief explanations of the assigned sentiment.
Examples of Annotated Headlines
Forex Pair
Headline
Sentiment
Explanation
GBPUSD
Diminishing bets for a move to 12400
Neutral
Lack of strong sentiment in either direction
GBPUSD
No reasons to dislike Cable in the very near term as long as the Dollar momentum remains soft
Positive
Positive sentiment towards GBPUSD (Cable) in the near term
GBPUSD
When are the UK jobs and how could they affect GBPUSD
Neutral
Poses a question and does not express a clear sentiment
JPYUSD
Appropriate to continue monetary easing to achieve 2% inflation target with wage growth
Positive
Monetary easing from Bank of Japan (BoJ) could lead to a weaker JPY in the short term due to increased money supply
USDJPY
Dollar rebounds despite US data. Yen gains amid lower yields
Neutral
Since both the USD and JPY are gaining, the effects on the USDJPY forex pair might offset each other
USDJPY
USDJPY to reach 124 by Q4 as the likelihood of a BoJ policy shift should accelerate Yen gains
Negative
USDJPY is expected to reach a lower value, with the USD losing value against the JPY
AUDUSD
RBA Governor Lowe’s Testimony High inflation is damaging and corrosive
Positive
Reserve Bank of Australia (RBA) expresses concerns about inflation. Typically, central banks combat high inflation with higher interest rates, which could strengthen AUD.
Moreover, the dataset includes two columns with the predicted sentiment class and score as predicted by the FinBERT model. Specifically, the FinBERT model outputs a set of probabilities for each sentiment class (positive, negative, and neutral), representing the model's confidence in associating the input headline with each sentiment category. These probabilities are used to determine the predicted class and a sentiment score for each headline. The sentiment score is computed by subtracting the negative class probability from the positive one.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dominican Republic DO: Deposit Interest Rate data was reported at 7.181 % pa in 2016. This records an increase from the previous number of 6.561 % pa for 2015. Dominican Republic DO: Deposit Interest Rate data is updated yearly, averaging 10.348 % pa from Dec 1996 (Median) to 2016, with 21 observations. The data reached an all-time high of 21.117 % pa in 2004 and a record low of 4.856 % pa in 2010. Dominican Republic DO: Deposit Interest Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Dominican Republic – Table DO.World Bank.WDI: Interest Rates. Deposit interest rate is the rate paid by commercial or similar banks for demand, time, or savings deposits. The terms and conditions attached to these rates differ by country, however, limiting their comparability.; ; International Monetary Fund, International Financial Statistics and data files.; ;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Norway was last recorded at 4.25 percent. This dataset provides the latest reported value for - Norway Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India Repo Rate data was reported at 6.000 % pa in 18 May 2025. This stayed constant from the previous number of 6.000 % pa for 17 May 2025. India Repo Rate data is updated daily, averaging 6.250 % pa from Apr 2001 (Median) to 18 May 2025, with 8788 observations. The data reached an all-time high of 7.500 % pa in 01 Jun 2015 and a record low of 4.000 % pa in 03 May 2022. India Repo Rate data remains active status in CEIC and is reported by Reserve Bank of India. The data is categorized under High Frequency Database’s Lending Rates – Table IN.MB001: Bank Interest Rate. [COVID-19-IMPACT]
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in China was last recorded at 3 percent. This dataset provides the latest reported value for - China Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Loan Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/itssuru/loan-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
publicly available data from LendingClub.com. Lending Club connects people who need money (borrowers) with people who have money (investors). Hopefully, as an investor you would want to invest in people who showed a profile of having a high probability of paying you back.
We will use lending data from 2007-2010 and be trying to classify and predict whether or not the borrower paid back their loan in full. You can download the data from here.
Here are what the columns represent:
credit.policy: 1 if the customer meets the credit underwriting criteria of LendingClub.com, and 0 otherwise. purpose: The purpose of the loan (takes values "credit_card", "debt_consolidation", "educational", "major_purchase", "small_business", and "all_other"). int.rate: The interest rate of the loan, as a proportion (a rate of 11% would be stored as 0.11). Borrowers judged by LendingClub.com to be more risky are assigned higher interest rates. installment: The monthly installments owed by the borrower if the loan is funded. log.annual.inc: The natural log of the self-reported annual income of the borrower. dti: The debt-to-income ratio of the borrower (amount of debt divided by annual income). fico: The FICO credit score of the borrower. days.with.cr.line: The number of days the borrower has had a credit line. revol.bal: The borrower's revolving balance (amount unpaid at the end of the credit card billing cycle). revol.util: The borrower's revolving line utilization rate (the amount of the credit line used relative to total credit available). inq.last.6mths: The borrower's number of inquiries by creditors in the last 6 months. delinq.2yrs: The number of times the borrower had been 30+ days past due on a payment in the past 2 years. pub.rec: The borrower's number of derogatory public records (bankruptcy filings, tax liens, or judgments).
--- Original source retains full ownership of the source dataset ---
The Cassini Radio and Plasma Wave Science (RPWS) calibrated full resolution data set includes all spectral information calibrated in units of spectral density for the entire Cassini mission. This data set includes calibrated values for each frequency channel for each sensor for all times during the mission including the two Venus flybys, the Earth flyby, the Jupiter flyby, interplanetary cruise, and the entire Saturn tour. Data for this data set are acquired from the RPWS Low Frequency Receiver (LFR), Medium Frequency Receiver (MFR), Medium Frequency Digital Receiver (MFDR) (which can be used to replace MFR band 2 data) and High Frequency Receiver (HFR). Data are presented in a set of tables organized so as to have fixed-length records for ease in data handling. This data set is intended to be the most comprehensive and complete data set included in the Cassini RPWS archive. A browse data set is included with these data which provides for a graphical search of the data using a series of thumbnail and full-sized spectrograms which lead the user to the particular data file(s) of interest. This data set should be among the first used by a user of any of the RPWS archive as it will lead one to information required to search for more detailed or highly specialized products.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for INTEREST RATE reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Canada was last recorded at 2.75 percent. This dataset provides - Canada Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Russia was last recorded at 18 percent. This dataset provides the latest reported value for - Russia Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in the United States was last recorded at 4.50 percent. This dataset provides the latest reported value for - United States Fed Funds Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.