94 datasets found
  1. s

    Death Rate Calculation - Datasets - Falkland Islands Data Portal

    • dataportal.saeri.org
    Updated May 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Death Rate Calculation - Datasets - Falkland Islands Data Portal [Dataset]. https://dataportal.saeri.org/dataset/death-rate-calculation
    Explore at:
    Dataset updated
    May 29, 2024
    Area covered
    Falkland Islands (Islas Malvinas)
    Description

    Contains equation used to calculate death rates for farms. Data held within the Department of Agriculture

  2. d

    Population Health Measures: Age-Adjusted Mortality Rates

    • catalog.data.gov
    • data.montgomerycountymd.gov
    • +2more
    Updated Jun 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.montgomerycountymd.gov (2025). Population Health Measures: Age-Adjusted Mortality Rates [Dataset]. https://catalog.data.gov/dataset/population-health-measures-age-adjusted-mortality-rates
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.montgomerycountymd.gov
    Description

    Age-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents). Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.

  3. NCHS - Childhood Mortality Rates

    • catalog.data.gov
    • healthdata.gov
    • +5more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Childhood Mortality Rates [Dataset]. https://catalog.data.gov/dataset/nchs-childhood-mortality-rates
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights childhood mortality rates by age group for age at death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Age groups for childhood death rates are based on age at death. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  4. d

    Infant Mortality

    • catalog.data.gov
    • nycopendata.socrata.com
    • +4more
    Updated Nov 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Infant Mortality [Dataset]. https://catalog.data.gov/dataset/infant-mortality
    Explore at:
    Dataset updated
    Nov 15, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Infant Mortality Rate by Maternal Race/Ethnicity for New York City, 2007-2016 Counts of infant deaths (age <1 year) are based on NYC death certificates. The rate is calculated using the counts of infant deaths as the numerator and the count of live births from NYC birth certificates as the denominator.

  5. NCHS - Age-adjusted Death Rates for Selected Major Causes of Death

    • catalog.data.gov
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Age-adjusted Death Rates for Selected Major Causes of Death [Dataset]. https://catalog.data.gov/dataset/nchs-age-adjusted-death-rates-for-selected-major-causes-of-death
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  6. Global Subnational Infant Mortality Rates, Version 2.01 - Dataset - NASA...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    Updated Apr 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nasa.gov (2025). Global Subnational Infant Mortality Rates, Version 2.01 - Dataset - NASA Open Data Portal [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/global-subnational-infant-mortality-rates-version-2-01
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    The Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.

  7. NCHS - Death rates and life expectancy at birth

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Death rates and life expectancy at birth [Dataset]. https://catalog.data.gov/dataset/nchs-death-rates-and-life-expectancy-at-birth
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  8. T

    Vital Signs: Life Expectancy – Bay Area

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Apr 7, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California, Department of Health: Death Records (2017). Vital Signs: Life Expectancy – Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Life-Expectancy-Bay-Area/emjt-svg9
    Explore at:
    xml, csv, tsv, application/rssxml, json, application/rdfxmlAvailable download formats
    Dataset updated
    Apr 7, 2017
    Dataset authored and provided by
    State of California, Department of Health: Death Records
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Life Expectancy (EQ6)

    FULL MEASURE NAME Life Expectancy

    LAST UPDATED April 2017

    DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.

    DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link

    California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/

    CONTACT INFORMATION vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.

    Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.

    Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.

  9. d

    Human Mortality Database

    • dknet.org
    • neuinfo.org
    • +2more
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Human Mortality Database [Dataset]. http://identifiers.org/RRID:SCR_002370
    Explore at:
    Dataset updated
    Jan 29, 2022
    Description

    A database providing detailed mortality and population data to those interested in the history of human longevity. For each country, the database includes calculated death rates and life tables by age, time, and sex, along with all of the raw data (vital statistics, census counts, population estimates) used in computing these quantities. Data are presented in a variety of formats with regard to age groups and time periods. The main goal of the database is to document the longevity revolution of the modern era and to facilitate research into its causes and consequences. New data series is continually added to this collection. However, the database is limited by design to populations where death registration and census data are virtually complete, since this type of information is required for the uniform method used to reconstruct historical data series. As a result, the countries and areas included are relatively wealthy and for the most part highly industrialized. The database replaces an earlier NIA-funded project, known as the Berkeley Mortality Database. * Dates of Study: 1751-present * Study Features: Longitudinal, International * Sample Size: 37 countries or areas

  10. A

    ‘NCHS - Age-adjusted Death Rates for Selected Major Causes of Death’...

    • analyst-2.ai
    Updated Jun 30, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2019). ‘NCHS - Age-adjusted Death Rates for Selected Major Causes of Death’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-nchs-age-adjusted-death-rates-for-selected-major-causes-of-death-d43f/bec771d2/?iid=002-328&v=presentation
    Explore at:
    Dataset updated
    Jun 30, 2019
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘NCHS - Age-adjusted Death Rates for Selected Major Causes of Death’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/b8b41f23-4561-4b54-8d2d-5c1aacf0a227 on 27 January 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset of U.S. mortality trends since 1900 highlights trends in age-adjusted death rates for five selected major causes of death.

    Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).

    Revisions to the International Classification of Diseases (ICD) over time may result in discontinuities in cause-of-death trends.

    SOURCES

    CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).

    REFERENCES

    1. National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.

    2. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.

    3. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.

    4. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.

    5. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

    --- Original source retains full ownership of the source dataset ---

  11. A

    ‘Population Health Measures: Age-Adjusted Mortality Rates’ analyzed by...

    • analyst-2.ai
    Updated Dec 27, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2014). ‘Population Health Measures: Age-Adjusted Mortality Rates’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-population-health-measures-age-adjusted-mortality-rates-05cb/ec25bdff/?iid=005-484&v=presentation
    Explore at:
    Dataset updated
    Dec 27, 2014
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Population Health Measures: Age-Adjusted Mortality Rates’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/ee3e6dd8-3d28-43b1-98e9-1d49f084649a on 12 February 2022.

    --- Dataset description provided by original source is as follows ---

    Age-adjustment mortality rates are rates of deaths that are computed using a statistical method to create a metric based on the true death rate so that it can be compared over time for a single population (i.e. comparing 2006-2008 to 2010-2012), as well as enable comparisons across different populations with possibly different age distributions in their populations (i.e. comparing Hispanic residents to Asian residents).
    Age adjustment methods applied to Montgomery County rates are consistent with US Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS) as well as Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA). PHS Planning and Epidemiology receives an annual data file of Montgomery County resident deaths registered with Maryland Department of Health and Mental Hygiene’s Vital Statistics Administration (DHMH VSA).
    Using SAS analytic software, MCDHHS standardizes, aggregates, and calculates age-adjusted rates for each of the leading causes of death category consistent with state and national methods and by subgroups based on age, gender, race, and ethnicity combinations. Data are released in compliance with Data Use Agreements between DHMH VSA and MCDHHS. This dataset will be updated Annually.

    --- Original source retains full ownership of the source dataset ---

  12. d

    Year and State wise Estimated Birth, Death and Infant Mortality Rates by...

    • dataful.in
    Updated Jun 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataful (Factly) (2025). Year and State wise Estimated Birth, Death and Infant Mortality Rates by Residence [Dataset]. https://dataful.in/datasets/748
    Explore at:
    xlsx, csv, application/x-parquetAvailable download formats
    Dataset updated
    Jun 13, 2025
    Dataset authored and provided by
    Dataful (Factly)
    License

    https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions

    Time period covered
    2009 - 2015
    Area covered
    States of India
    Variables measured
    Rates
    Description

    The data shows the year, state and region wise estimated birth rates, death rates, infant mortality rates by residence

    Note: Infant Mortality Rate for smaller States & Union Territories are based on three-years period 2013-15.

  13. Z

    Russian Short-Term Mortality Fluctuations database

    • data.niaid.nih.gov
    • zenodo.org
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jdanov, Dmitri (2023). Russian Short-Term Mortality Fluctuations database [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10280663
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    Rodina, Olga
    Churilova, Elena
    Sergeev, Egor
    Jdanov, Dmitri
    Timonin, Sergei
    Shchur, Aleksey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    1. Database contents The Russian Short-Term Mortality Fluctuations database (RusSTMF) contains a series of standardized and crude death rates for men, women and both sexes for Russia as a whole and its regions for the period from 2000 to 2021. All the output indicators presented in the database are calculated based on data of deaths registered by the Vital Registry Office. The weekly death counts are calculated based on depersonalized individual data provided by the Russian Federal State Statistics Service (Rosstat) at the request of the HSE. Time coverage: 03.01.2000 (Week 1) – 31.12.2021 (Week 1148)
    2. A brief description of the input data on deaths Date of death: date of occurrence Unit of time: week First and last days of the week: Monday – Sunday First and last week of the year: The weeks are organized according to ISO 8601:2004 guidelines. Each week of the year, including the first and last, contains 7 days. In order to get 7-day weeks, the days of previous years are included in this first week (if January 1 fell on Tuesday, Wednesday or Thursday) or in the last calendar week (if December 31 fell on Thursday, Friday or Saturday). Age groups: the entire population Sex: men, women, both sexes (men and women combined) Restrictions and data changes: data on deaths in the Pskov region were excluded for weeks 9-13 of 2012 Note: Deaths with an unknown date of occurrence (unknown year, month, or day) account for about 0.3% of all deaths and are excluded from the calculation of week-age-specific and standardized death rates.
    3. Description of the week-specific mortality rates data file Week-specific standardized death rates for Russia as a whole and its regions are contained in a single data file presented in .csv format. The format of data allows its uploading into any system for statistical analysis. Each record (row) in the data file contains data for one calendar year, one week, one territory, one sex. The decimal point is dot (.) The first element of the row is the territory code ("PopCode" column), the second element is the year ("Year" column), the third element ("Week" column) is the week of the year, the fourth element ("Sex" column) is sex (F – female, M – male, B – both sexes combined). This is followed by a column "CDR" with the value of the crude death rate and "SDR" with the value of the standardized death rate. If the indicator cannot be calculated for some combination of year, sex, and territory, then the corresponding meaningful data elements in the data file are replaced with ".".
  14. O

    ARCHIVED - Sudden Infant Death Syndrome (SIDS), VRBIS Dataset

    • data.sandiegocounty.gov
    application/rdfxml +5
    Updated Feb 13, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of San Diego (2020). ARCHIVED - Sudden Infant Death Syndrome (SIDS), VRBIS Dataset [Dataset]. https://data.sandiegocounty.gov/Health/ARCHIVED-Sudden-Infant-Death-Syndrome-SIDS-VRBIS-D/yw6c-secr
    Explore at:
    application/rssxml, application/rdfxml, csv, xml, tsv, jsonAvailable download formats
    Dataset updated
    Feb 13, 2020
    Dataset authored and provided by
    County of San Diego
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset is no longer updated as of April 2023.

    Basic Metadata Note: The Sudden Infant Death Syndrome (SIDS) Rate is infant deaths (under one year of age) due to SIDS per 1,000 live births, by geography. Data set includes registered deaths only. Numerator represents infant's race/ethnicity. Denominator represents mother's race/ethnicity.

    **Blank Cells: Rates not calculated for fewer than 5 events. Rates not calculated in cases where zip code is unknown.

    ***API: Asian/Pacific Islander. ***AIAN: American Indian/Alaska Native.

    Sources: California Department of Public Health, Center for Health Statistics, Office of Health Information and Research, Vital Records Business Intelligence System, 2016. Prepared by: County of San Diego, Health & Human Services Agency, Public Health Services, Community Health Statistics Unit, 2019.

    Codes: ICD‐10 Mortality code R95.

    Data Guide, Dictionary, and Codebook: https://www.sandiegocounty.gov/content/dam/sdc/hhsa/programs/phs/CHS/Community%20Profiles/Public%20Health%20Services%20Codebook_Data%20Guide_Metadata_10.2.19.xlsx

    Interpretation: "There were 5 SIDS deaths per 1,000 live births in Geography X".

  15. NCHS - Drug Poisoning Mortality by County: United States

    • data.virginia.gov
    • catalog.data.gov
    • +1more
    csv, json, rdf, xsl
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Drug Poisoning Mortality by County: United States [Dataset]. https://data.virginia.gov/dataset/nchs-drug-poisoning-mortality-by-county-united-states2
    Explore at:
    json, csv, xsl, rdfAvailable download formats
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Area covered
    United States
    Description

    This dataset describes drug poisoning deaths at the county level by selected demographic characteristics and includes age-adjusted death rates for drug poisoning from 1999 to 2015.

    Deaths are classified using the International Classification of Diseases, Tenth Revision (ICD–10). Drug-poisoning deaths are defined as having ICD–10 underlying cause-of-death codes X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent).

    Estimates are based on the National Vital Statistics System multiple cause-of-death mortality files (1). Age-adjusted death rates (deaths per 100,000 U.S. standard population for 2000) are calculated using the direct method. Populations used for computing death rates for 2011–2015 are postcensal estimates based on the 2010 U.S. census. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years before 2010 are revised using updated intercensal population estimates and may differ from rates previously published.

    Estimate does not meet standards of reliability or precision. Death rates are flagged as “Unreliable” in the chart when the rate is calculated with a numerator of 20 or less.

    Death rates for some states and years may be low due to a high number of unresolved pending cases or misclassification of ICD–10 codes for unintentional poisoning as R99, “Other ill-defined and unspecified causes of mortality” (2). For example, this issue is known to affect New Jersey in 2009 and West Virginia in 2005 and 2009 but also may affect other years and other states. Estimates should be interpreted with caution.

    Smoothed county age-adjusted death rates (deaths per 100,000 population) were obtained according to methods described elsewhere (3–5). Briefly, two-stage hierarchical models were used to generate empirical Bayes estimates of county age-adjusted death rates due to drug poisoning for each year during 1999–2015. These annual county-level estimates “borrow strength” across counties to generate stable estimates of death rates where data are sparse due to small population size (3,5). Estimates are unavailable for Broomfield County, Colo., and Denali County, Alaska, before 2003 (6,7). Additionally, Bedford City, Virginia was added to Bedford County in 2015 and no longer appears in the mortality file in 2015. County boundaries are consistent with the vintage 2005-2007 bridged-race population file geographies (6).

  16. c

    Fetal and Infant Mortality - 5-Year Aggregations by Town - Datasets -...

    • data.ctdata.org
    Updated Mar 24, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Fetal and Infant Mortality - 5-Year Aggregations by Town - Datasets - CTData.org [Dataset]. http://data.ctdata.org/dataset/fetal-and-infant-mortality---5-year-aggregations-by-town
    Explore at:
    Dataset updated
    Mar 24, 2016
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Fetal mortality occurs after 20 weeks of gestation and before labor. Infant mortality occurs before the first year of age and is a sum of Neonatal (the first 28 days after birth) and Postneonatal (from 28 days up to 1 year) mortality. Rates are calculated per every 1000 births; rates are not available for disaggregated race/ethnicities. Fetal and infant mortality values are available for given race/ethnicities. Connecticut Department of Public Health collects and reports data annually. CTData.org carries 1-, 3- and 5-Year aggregations.

  17. d

    Global Subnational Infant Mortality Rates, Version 2.01

    • catalog.data.gov
    • datasets.ai
    • +3more
    Updated Apr 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SEDAC (2025). Global Subnational Infant Mortality Rates, Version 2.01 [Dataset]. https://catalog.data.gov/dataset/global-subnational-infant-mortality-rates-version-2-01-a5279
    Explore at:
    Dataset updated
    Apr 24, 2025
    Dataset provided by
    SEDAC
    Description

    The Global Subnational Infant Mortality Rates, Version 2.01 consist of Infant Mortality Rate (IMR) estimates for 234 countries and territories, 143 of which include subnational Units. The data are benchmarked to the year 2015 (Version 1 was benchmarked to the year 2000), and are drawn from national offices, Demographic and Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), and other sources from 2006 to 2014. In addition to Infant Mortality Rates, Version 2.01 includes crude estimates of births and infant deaths, which could be aggregated or disaggregated to different geographies to calculate infant mortality rates at different scales or resolutions, where births are the rate denominator and infant deaths are the rate numerator. Boundary inputs are derived primarily from the Gridded Population of the World, Version 4 (GPWv4) data collection. National and subnational data are mapped to grid cells at a spatial resolution of 30 arc-seconds (~1 km) (Version 1 has a spatial resolution of 1/4 degree, ~28 km at the equator), allowing for easy integration with demographic, environmental, and other spatial data.

  18. d

    Unintentional Drug Overdose Death Rate by Race/Ethnicity

    • catalog.data.gov
    • data.sfgov.org
    • +1more
    Updated May 31, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.sfgov.org (2025). Unintentional Drug Overdose Death Rate by Race/Ethnicity [Dataset]. https://catalog.data.gov/dataset/unintentional-drug-overdose-death-rate-by-race-ethnicity
    Explore at:
    Dataset updated
    May 31, 2025
    Dataset provided by
    data.sfgov.org
    Description

    A. SUMMARY This dataset includes unintentional drug overdose death rates by race/ethnicity by year. This dataset is created using data from the California Electronic Death Registration System (CA-EDRS) via the Vital Records Business Intelligence System (VRBIS). Substance-related deaths are identified by reviewing the cause of death. Deaths caused by opioids, methamphetamine, and cocaine are included. Homicides and suicides are excluded. Ethnic and racial groups with fewer than 10 events are not tallied separately for privacy reasons but are included in the “all races” total. Unintentional drug overdose death rates are calculated by dividing the total number of overdose deaths by race/ethnicity by the total population size for that demographic group and year and then multiplying by 100,000. The total population size is based on estimates from the US Census Bureau County Population Characteristics for San Francisco, 2022 Vintage by age, sex, race, and Hispanic origin. These data differ from the data shared in the Preliminary Unintentional Drug Overdose Death by Year dataset since this dataset uses finalized counts of overdose deaths associated with cocaine, methamphetamine, and opioids only. B. HOW THE DATASET IS CREATED This dataset is created by copying data from the Annual Substance Use Trends in San Francisco report from the San Francisco Department of Public Health Center on Substance Use and Health. C. UPDATE PROCESS This dataset will be updated annually, typically at the end of the year. D. HOW TO USE THIS DATASET N/A E. RELATED DATASETS Overdose-Related 911 Responses by Emergency Medical Services Preliminary Unintentional Drug Overdose Deaths San Francisco Department of Public Health Substance Use Services F. CHANGE LOG 12/16/2024 - Updated with 2023 data. Asian/Pacific Islander race/ethnicity group was changed to Asian. 12/16/2024 - Past year totals by race/ethnicity were revised after obtaining accurate race/ethnicity for some decedents that were previously marked as “unknown” race/ethnicity.

  19. T

    Strategic Measure_Infant mortality rate (number of deaths of infants younger...

    • datahub.austintexas.gov
    • data.austintexas.gov
    • +2more
    application/rdfxml +5
    Updated Aug 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin, Texas - data.austintexas.gov (2020). Strategic Measure_Infant mortality rate (number of deaths of infants younger than 1-year-old per 1,000 live births) [Dataset]. https://datahub.austintexas.gov/Health-and-Community-Services/Strategic-Measure_Infant-mortality-rate-number-of-/qxch-wiie
    Explore at:
    xml, json, application/rdfxml, tsv, csv, application/rssxmlAvailable download formats
    Dataset updated
    Aug 27, 2020
    Dataset authored and provided by
    City of Austin, Texas - data.austintexas.gov
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset includes counts of infant births and deaths within Austin city limits by year. The counts are calculated into an infant mortality rate for each year. Both infant deaths and infant births are reported through the Office of Vital Records.

    View more details and insights related to this data set on the story page: https://data.austintexas.gov/stories/s/HE-B-3-Infant-mortality-rate-number-of-deaths-of-i/jwg4-2djc/

  20. d

    SHMI primary diagnosis coding contextual indicators

    • digital.nhs.uk
    csv, pdf, xls, xlsx
    Updated Jun 13, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SHMI primary diagnosis coding contextual indicators [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/shmi/2024-06
    Explore at:
    csv(8.7 kB), xls(85.5 kB), pdf(228.8 kB), pdf(231.3 kB), csv(9.0 kB), xlsx(76.7 kB)Available download formats
    Dataset updated
    Jun 13, 2024
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Feb 1, 2023 - Jan 31, 2024
    Area covered
    England
    Description

    These indicators are designed to accompany the SHMI publication. Information on the main condition the patient is in hospital for (the primary diagnosis) is used to calculate the expected number of deaths used in the calculation of the SHMI. A high percentage of records with an invalid primary diagnosis may indicate a data quality problem. A high percentage of records with a primary diagnosis which is a symptom or sign may indicate problems with data quality or timely diagnosis of patients, but may also reflect the case-mix of patients or the service model of the trust (e.g. a high level of admissions to acute admissions wards for assessment and stabilisation). Contextual indicators on the percentage of provider spells with an invalid primary diagnosis and the percentage of provider spells with a primary diagnosis which is a symptom or sign are produced to support the interpretation of the SHMI. Notes: 1. There is a shortfall in the number of records for East Lancashire Hospitals NHS Trust (trust code RXR), Guy’s and St Thomas’ NHS Foundation Trust (trust code RJ1), and King’s College Hospital NHS Foundation Trust (trust code RJZ). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 2. Frimley Health NHS Foundation Trust (trust code RDU) stopped submitting data to the Secondary Uses Service (SUS) during June 2022 and did not start submitting data again until April 2023 due to an issue with their patient records system. This is causing a large shortfall in records and values for this trust should be viewed in the context of this issue. 3. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 4. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Death Rate Calculation - Datasets - Falkland Islands Data Portal [Dataset]. https://dataportal.saeri.org/dataset/death-rate-calculation

Death Rate Calculation - Datasets - Falkland Islands Data Portal

Explore at:
Dataset updated
May 29, 2024
Area covered
Falkland Islands (Islas Malvinas)
Description

Contains equation used to calculate death rates for farms. Data held within the Department of Agriculture

Search
Clear search
Close search
Google apps
Main menu