Facebook
Twitter
According to our latest research, the AI-Generated Synthetic Tabular Dataset market size reached USD 1.42 billion in 2024 globally, reflecting the rapid adoption of artificial intelligence-driven data generation solutions across numerous industries. The market is expected to expand at a robust CAGR of 34.7% from 2025 to 2033, reaching a forecasted value of USD 19.17 billion by 2033. This exceptional growth is primarily driven by the increasing need for high-quality, privacy-preserving datasets for analytics, model training, and regulatory compliance, particularly in sectors with stringent data privacy requirements.
One of the principal growth factors propelling the AI-Generated Synthetic Tabular Dataset market is the escalating demand for data-driven innovation amidst tightening data privacy regulations. Organizations across healthcare, finance, and government sectors are facing mounting challenges in accessing and sharing real-world data due to GDPR, HIPAA, and other global privacy laws. Synthetic data, generated by advanced AI algorithms, offers a solution by mimicking the statistical properties of real datasets without exposing sensitive information. This enables organizations to accelerate AI and machine learning development, conduct robust analytics, and facilitate collaborative research without risking data breaches or non-compliance. The growing sophistication of generative models, such as GANs and VAEs, has further increased confidence in the utility and realism of synthetic tabular data, fueling adoption across both large enterprises and research institutions.
Another significant driver is the surge in digital transformation initiatives and the proliferation of AI and machine learning applications across industries. As businesses strive to leverage predictive analytics, automation, and intelligent decision-making, the need for large, diverse, and high-quality datasets has become paramount. However, real-world data is often siloed, incomplete, or inaccessible due to privacy concerns. AI-generated synthetic tabular datasets bridge this gap by providing scalable, customizable, and bias-mitigated data for model training and validation. This not only accelerates AI deployment but also enhances model robustness and generalizability. The flexibility of synthetic data generation platforms, which can simulate rare events and edge cases, is particularly valuable in sectors like finance and healthcare, where such scenarios are underrepresented in real datasets but critical for risk assessment and decision support.
The rapid evolution of the AI-Generated Synthetic Tabular Dataset market is also underpinned by technological advancements and growing investments in AI infrastructure. The availability of cloud-based synthetic data generation platforms, coupled with advancements in natural language processing and tabular data modeling, has democratized access to synthetic datasets for organizations of all sizes. Strategic partnerships between technology providers, research institutions, and regulatory bodies are fostering innovation and establishing best practices for synthetic data quality, utility, and governance. Furthermore, the integration of synthetic data solutions with existing data management and analytics ecosystems is streamlining workflows and reducing barriers to adoption, thereby accelerating market growth.
Regionally, North America dominates the AI-Generated Synthetic Tabular Dataset market, accounting for the largest share in 2024 due to the presence of leading AI technology firms, strong regulatory frameworks, and early adoption across industries. Europe follows closely, driven by stringent data protection laws and a vibrant research ecosystem. The Asia Pacific region is emerging as a high-growth market, fueled by rapid digitalization, government initiatives, and increasing investments in AI research and development. Latin America and the Middle East & Africa are also witnessing growing interest, particularly in sectors like finance and government, though market maturity varies across countries. The regional landscape is expected to evolve dynamically as regulatory harmonization, cross-border data collaboration, and technological advancements continue to shape market trajectories globally.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundClinical data is instrumental to medical research, machine learning (ML) model development, and advancing surgical care, but access is often constrained by privacy regulations and missing data. Synthetic data offers a promising solution to preserve privacy while enabling broader data access. Recent advances in large language models (LLMs) provide an opportunity to generate synthetic data with reduced reliance on domain expertise, computational resources, and pre-training.ObjectiveThis study aims to assess the feasibility of generating realistic tabular clinical data with OpenAIās GPT-4o using zero-shot prompting, and evaluate the fidelity of LLM-generated data by comparing its statistical properties to the Vital Signs DataBase (VitalDB), a real-world open-source perioperative dataset.MethodsIn Phase 1, GPT-4o was prompted to generate a dataset with qualitative descriptions of 13 clinical parameters. The resultant data was assessed for general errors, plausibility of outputs, and cross-verification of related parameters. In Phase 2, GPT-4o was prompted to generate a dataset using descriptive statistics of the VitalDB dataset. Fidelity was assessed using two-sample t-tests, two-sample proportion tests, and 95% confidence interval (CI) overlap.ResultsIn Phase 1, GPT-4o generated a complete and structured dataset comprising 6,166 case files. The dataset was plausible in range and correctly calculated body mass index for all case files based on respective heights and weights. Statistical comparison between the LLM-generated datasets and VitalDB revealed that Phase 2 data achieved significant fidelity. Phase 2 data demonstrated statistical similarity in 12/13 (92.31%) parameters, whereby no statistically significant differences were observed in 6/6 (100.0%) categorical/binary and 6/7 (85.71%) continuous parameters. Overlap of 95% CIs were observed in 6/7 (85.71%) continuous parameters.ConclusionZero-shot prompting with GPT-4o can generate realistic tabular synthetic datasets, which can replicate key statistical properties of real-world perioperative data. This study highlights the potential of LLMs as a novel and accessible modality for synthetic data generation, which may address critical barriers in clinical data access and eliminate the need for technical expertise, extensive computational resources, and pre-training. Further research is warranted to enhance fidelity and investigate the use of LLMs to amplify and augment datasets, preserve multivariate relationships, and train robust ML models.
Facebook
TwitterThis dataset was created to pilot techniques for creating synthetic data from datasets containing sensitive and protected information in the local government context. Synthetic data generation replaces actual data with representative data generated from statistical models; this preserves the key data properties that allow insights to be drawn from the data while protecting the privacy of the people included in the data. We invite you to read the Understanding Synthetic Data white paper for a concise introduction to synthetic data.
This effort was a collaboration of the Urban Institute, Allegheny Countyās Department of Human Services (DHS) and CountyStat, and the University of Pittsburghās Western Pennsylvania Regional Data Center.
The source data for this project consisted of 1) month-by-month records of services included in Allegheny County's data warehouse and 2) demographic data about the individuals who received the services. As the Countyās data warehouse combines this service and client data, this data is referred to as āIntegrated Services dataā. Read more about the data warehouse and the kinds of services it includes here.
Synthetic data are typically generated from probability distributions or models identified as being representative of the confidential data. For this dataset, a model of the Integrated Services data was used to generate multiple versions of the synthetic dataset. These different candidate datasets were evaluated to select for publication the dataset version that best balances utility and privacy. For high-level information about this evaluation, see the Synthetic Data User Guide.
For more information about the creation of the synthetic version of this data, see the technical brief for this project, which discusses the technical decision making and modeling process in more detail.
This disaggregated synthetic data allows for many analyses that are not possible with aggregate data (summary statistics). Broadly, this synthetic version of this data could be analyzed to better understand the usage of human services by people in Allegheny County, including the interplay in the usage of multiple services and demographic information about clients.
Some amount of deviation from the original data is inherent to the synthetic data generation process. Specific examples of limitations (including undercounts and overcounts for the usage of different services) are given in the Synthetic Data User Guide and the technical report describing this dataset's creation.
Please reach out to this dataset's data steward (listed below) to let us know how you are using this data and if you found it to be helpful. Please also provide any feedback on how to make this dataset more applicable to your work, any suggestions of future synthetic datasets, or any additional information that would make this more useful. Also, please copy wprdc@pitt.edu on any such feedback (as the WPRDC always loves to hear about how people use the data that they publish and how the data could be improved).
1) A high-level overview of synthetic data generation as a method for protecting privacy can be found in the Understanding Synthetic Data white paper.
2) The Synthetic Data User Guide provides high-level information to help users understand the motivation, evaluation process, and limitations of the synthetic version of Allegheny County DHS's Human Services data published here.
3) Generating a Fully Synthetic Human Services Dataset: A Technical Report on Synthesis and Evaluation Methodologies describes the full technical methodology used for generating the synthetic data, evaluating the various options, and selecting the final candidate for publication.
4) The WPRDC also hosts the Allegheny County Human Services Community Profiles dataset, which provides annual updates on human-services usage, aggregated by neighborhood/municipality. That data can be explored using the County's Human Services Community Profile web site.
Facebook
TwitterDataset Card for synthetic-data-generation-with-llama3-405B
This dataset has been created with distilabel.
Dataset Summary
This dataset contains a pipeline.yaml which can be used to reproduce the pipeline that generated it in distilabel using the distilabel CLI: distilabel pipeline run --config "https://huggingface.co/datasets/lukmanaj/synthetic-data-generation-with-llama3-405B/raw/main/pipeline.yaml"
or explore the configuration: distilabel pipeline info⦠See the full description on the dataset page: https://huggingface.co/datasets/lukmanaj/synthetic-data-generation-with-llama3-405B.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Dataset Description
Overview: This dataset contains three distinct fake datasets generated using the Faker and Mimesis libraries. These libraries are commonly used for generating realistic-looking synthetic data for testing, prototyping, and data science projects. The datasets were created to simulate real-world scenarios while ensuring no sensitive or private information is included.
Data Generation Process: The data creation process is documented in the accompanying notebook, Creating_simple_Sintetic_data.ipynb. This notebook showcases the step-by-step procedure for generating synthetic datasets with customizable structures and fields using the Faker and Mimesis libraries.
File Contents:
Datasets: CSV files containing the three synthetic datasets. Notebook: Creating_simple_Sintetic_data.ipynb detailing the data generation process and the code used to create these datasets.
Facebook
Twitter
According to our latest research, the global synthetic training data market size in 2024 is valued at USD 1.45 billion, demonstrating robust momentum as organizations increasingly adopt artificial intelligence and machine learning solutions. The market is projected to grow at a remarkable CAGR of 38.7% from 2025 to 2033, reaching an estimated USD 22.46 billion by 2033. This exponential growth is primarily driven by the rising demand for high-quality, diverse, and privacy-compliant datasets that fuel advanced AI models, as well as the escalating need for scalable data solutions across various industries.
One of the primary growth factors propelling the synthetic training data market is the escalating complexity and diversity of AI and machine learning applications. As organizations strive to develop more accurate and robust AI models, the need for vast amounts of annotated and high-quality training data has surged. Traditional data collection methods are often hampered by privacy concerns, high costs, and time-consuming processes. Synthetic training data, generated through advanced algorithms and simulation tools, offers a compelling alternative by providing scalable, customizable, and bias-mitigated datasets. This enables organizations to accelerate model development, improve performance, and comply with evolving data privacy regulations such as GDPR and CCPA, thus driving widespread adoption across sectors like healthcare, finance, autonomous vehicles, and robotics.
Another significant driver is the increasing adoption of synthetic data for data augmentation and rare event simulation. In sectors such as autonomous vehicles, manufacturing, and robotics, real-world data for edge-case scenarios or rare events is often scarce or difficult to capture. Synthetic training data allows for the generation of these critical scenarios at scale, enabling AI systems to learn and adapt to complex, unpredictable environments. This not only enhances model robustness but also reduces the risk associated with deploying AI in safety-critical applications. The flexibility to generate diverse data types, including images, text, audio, video, and tabular data, further expands the applicability of synthetic data solutions, making them indispensable tools for innovation and competitive advantage.
The synthetic training data market is also experiencing rapid growth due to the heightened focus on data privacy and regulatory compliance. As data protection regulations become more stringent worldwide, organizations face increasing challenges in accessing and utilizing real-world data for AI training without violating user privacy. Synthetic data addresses this challenge by creating realistic yet entirely artificial datasets that preserve the statistical properties of original data without exposing sensitive information. This capability is particularly valuable for industries such as BFSI, healthcare, and government, where data sensitivity and compliance requirements are paramount. As a result, the adoption of synthetic training data is expected to accelerate further as organizations seek to balance innovation with ethical and legal responsibilities.
From a regional perspective, North America currently leads the synthetic training data market, driven by the presence of major technology companies, robust R&D investments, and early adoption of AI technologies. However, the Asia Pacific region is anticipated to witness the highest growth rate during the forecast period, fueled by expanding AI initiatives, government support, and the rapid digital transformation of industries. Europe is also emerging as a key market, particularly in sectors where data privacy and regulatory compliance are critical. Latin America and the Middle East & Africa are gradually increasing their market share as awareness and adoption of synthetic data solutions grow. Overall, the global landscape is characterized by dynamic regional trends, with each region contributing uniquely to the marketĆās expansion.
The introduction of a Synthetic Data Generation Engine has revolutionized the way organizations approach data creation and management. This engine leverages cutting-edge algorithms to produce high-quality synthetic datasets that mirror real-world data without compromising privacy. By sim
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data Description
We release the synthetic data generated using the method described in the paper Knowledge-Infused Prompting: Assessing and Advancing Clinical Text Data Generation with Large Language Models (ACL 2024 Findings). The external knowledge we use is based on LLM-generated topics and writing styles.
Generated Datasets
The original train/validation/test data, and the generated synthetic training data are listed as follows. For each dataset, we generate 5000⦠See the full description on the dataset page: https://huggingface.co/datasets/ritaranx/clinical-synthetic-text-llm.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Synthetic Data Generation Market Size 2025-2029
The synthetic data generation market size is forecast to increase by USD 4.39 billion, at a CAGR of 61.1% between 2024 and 2029.
The market is experiencing significant growth, driven by the escalating demand for data privacy protection. With increasing concerns over data security and the potential risks associated with using real data, synthetic data is gaining traction as a viable alternative. Furthermore, the deployment of large language models is fueling market expansion, as these models can generate vast amounts of realistic and diverse data, reducing the reliance on real-world data sources. However, high costs associated with high-end generative models pose a challenge for market participants. These models require substantial computational resources and expertise to develop and implement effectively. Companies seeking to capitalize on market opportunities must navigate these challenges by investing in research and development to create more cost-effective solutions or partnering with specialists in the field. Overall, the market presents significant potential for innovation and growth, particularly in industries where data privacy is a priority and large language models can be effectively utilized.
What will be the Size of the Synthetic Data Generation Market during the forecast period?
Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for data-driven insights across various sectors. Data processing is a crucial aspect of this market, with a focus on ensuring data integrity, privacy, and security. Data privacy-preserving techniques, such as data masking and anonymization, are essential in maintaining confidentiality while enabling data sharing. Real-time data processing and data simulation are key applications of synthetic data, enabling predictive modeling and data consistency. Data management and workflow automation are integral components of synthetic data platforms, with cloud computing and model deployment facilitating scalability and flexibility. Data governance frameworks and compliance regulations play a significant role in ensuring data quality and security.
Deep learning models, variational autoencoders (VAEs), and neural networks are essential tools for model training and optimization, while API integration and batch data processing streamline the data pipeline. Machine learning models and data visualization provide valuable insights, while edge computing enables data processing at the source. Data augmentation and data transformation are essential techniques for enhancing the quality and quantity of synthetic data. Data warehousing and data analytics provide a centralized platform for managing and deriving insights from large datasets. Synthetic data generation continues to unfold, with ongoing research and development in areas such as federated learning, homomorphic encryption, statistical modeling, and software development.
The market's dynamic nature reflects the evolving needs of businesses and the continuous advancements in data technology.
How is this Synthetic Data Generation Industry segmented?
The synthetic data generation industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userHealthcare and life sciencesRetail and e-commerceTransportation and logisticsIT and telecommunicationBFSI and othersTypeAgent-based modellingDirect modellingApplicationAI and ML Model TrainingData privacySimulation and testingOthersProductTabular dataText dataImage and video dataOthersGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKAPACChinaIndiaJapanRest of World (ROW)
By End-user Insights
The healthcare and life sciences segment is estimated to witness significant growth during the forecast period.In the rapidly evolving data landscape, the market is gaining significant traction, particularly in the healthcare and life sciences sector. With a growing emphasis on data-driven decision-making and stringent data privacy regulations, synthetic data has emerged as a viable alternative to real data for various applications. This includes data processing, data preprocessing, data cleaning, data labeling, data augmentation, and predictive modeling, among others. Medical imaging data, such as MRI scans and X-rays, are essential for diagnosis and treatment planning. However, sharing real patient data for research purposes or training machine learning algorithms can pose significant privacy risks. Synthetic data generation addresses this challenge by producing realistic medical imaging data, ensuring data privacy while enabling research and development. Moreover
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
crate
Facebook
Twitterhttps://www.licenses.ai/ai-licenseshttps://www.licenses.ai/ai-licenses
This dataset uses Gemma 7B-IT to generate synthetic dataset for the LLM Prompt Recovery competition.
Please go upvote these other datasets as my work is not possible without them
Update 1 - February 29, 2024
The only file presently found in this dataset is gemma1000_7b.csv which uses the dataset created by @thedrcat found here: https://www.kaggle.com/datasets/thedrcat/llm-prompt-recovery-data?select=gemma1000.csv
The file below is the file Darek created with two additional columns appended. The first is the output of Gemma 7B-IT (raw based on the instructions below)(vs. 2B-IT that Darek used) and the second is the output with the 'Sure... blah blah
' sentence removed.
I generated things using the following setup:
# I used a vLLM server to host Gemma 7B on paperspace (A100)
# Step 1 - Install vLLM
>>> pip install vllm
# Step 2 - Authenticate HuggingFace CLI (for model weights)
>>> huggingface-cli login --token
Facebook
TwitterThe dataset is a relational dataset of 8,000 households households, representing a sample of the population of an imaginary middle-income country. The dataset contains two data files: one with variables at the household level, the other one with variables at the individual level. It includes variables that are typically collected in population censuses (demography, education, occupation, dwelling characteristics, fertility, mortality, and migration) and in household surveys (household expenditure, anthropometric data for children, assets ownership). The data only includes ordinary households (no community households). The dataset was created using REaLTabFormer, a model that leverages deep learning methods. The dataset was created for the purpose of training and simulation and is not intended to be representative of any specific country.
The full-population dataset (with about 10 million individuals) is also distributed as open data.
The dataset is a synthetic dataset for an imaginary country. It was created to represent the population of this country by province (equivalent to admin1) and by urban/rural areas of residence.
Household, Individual
The dataset is a fully-synthetic dataset representative of the resident population of ordinary households for an imaginary middle-income country.
ssd
The sample size was set to 8,000 households. The fixed number of households to be selected from each enumeration area was set to 25. In a first stage, the number of enumeration areas to be selected in each stratum was calculated, proportional to the size of each stratum (stratification by geo_1 and urban/rural). Then 25 households were randomly selected within each enumeration area. The R script used to draw the sample is provided as an external resource.
other
The dataset is a synthetic dataset. Although the variables it contains are variables typically collected from sample surveys or population censuses, no questionnaire is available for this dataset. A "fake" questionnaire was however created for the sample dataset extracted from this dataset, to be used as training material.
The synthetic data generation process included a set of "validators" (consistency checks, based on which synthetic observation were assessed and rejected/replaced when needed). Also, some post-processing was applied to the data to result in the distributed data files.
This is a synthetic dataset; the "response rate" is 100%.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains 10,000 synthetic images and corresponding bounding box labels for training object detection models to detect Khmer words.
The dataset is generated using a custom tool designed to create diverse and realistic training data for computer vision tasks, especially where real annotated data is scarce.
/
āāā synthetic_images/ # Synthetic images (.png)
āāā synthetic_labels/ # YOLO format labels (.txt)
āāā synthetic_xml_labels/ # Pascal VOC format labels (.xml)
Each image has corresponding .txt and .xml files with the same filename.
YOLO Format (.txt):
Each line represents a word, with format:
class_id center_x center_y width height
All values are normalized between 0 and 1.
Example:
0 0.235 0.051 0.144 0.081
Pascal VOC Format (.xml):
Standard XML structure containing image metadata and bounding box coordinates (absolute pixel values).
Example:
```xml
Each image contains random Khmer words placed naturally over backgrounds, with different font styles, sizes, and visual effects.
The dataset was carefully generated to simulate real-world challenges like:
We plan to release:
Stay tuned!
This project is licensed under MIT license.
Please credit the original authors when using this data and provide a link to this dataset.
If you have any questions or want to collaborate, feel free to reach out:
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
As per our latest research, the global synthetic data platform market size reached USD 1.42 billion in 2024, demonstrating robust growth driven by the increasing demand for privacy-preserving data solutions and AI model training. The market is expected to expand at a remarkable CAGR of 34.8% from 2025 to 2033, reaching a forecasted market size of USD 19.12 billion by 2033. This rapid expansion is primarily attributed to the growing need for high-quality, scalable, and diverse datasets that comply with stringent data privacy regulations and support advanced analytics and machine learning initiatives across various industries.
One of the primary growth factors propelling the synthetic data platform market is the escalating adoption of artificial intelligence (AI) and machine learning (ML) technologies across sectors such as BFSI, healthcare, automotive, and retail. As organizations increasingly rely on AI-driven insights for decision-making, the demand for large, diverse, and high-quality datasets has surged. However, access to real-world data is often restricted due to privacy concerns, regulatory constraints, and the risk of data breaches. Synthetic data platforms address these challenges by generating artificial datasets that closely mimic real-world data while ensuring data privacy and compliance. This capability not only accelerates AI development but also reduces the risk of exposing sensitive information, thereby fueling the marketās growth.
Another significant driver is the rising importance of data privacy and protection, particularly in the wake of global regulations such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States. Organizations are under increasing pressure to protect consumer data and avoid regulatory penalties. Synthetic data platforms enable businesses to create anonymized datasets that retain the statistical properties and utility of original data, making them invaluable for testing, analytics, and model training without compromising privacy. This ability to balance innovation with compliance is a key factor boosting the adoption of synthetic data solutions.
Furthermore, the synthetic data platform market is benefiting from the growing complexity and volume of data generated by digital transformation initiatives, IoT devices, and connected systems. Traditional data collection methods are often time-consuming, expensive, and limited by accessibility issues. Synthetic data platforms offer a scalable and cost-effective alternative, allowing organizations to generate customized datasets for various use cases, including fraud detection, data augmentation, and software testing. This flexibility is particularly valuable in industries where real data is scarce, sensitive, or costly to obtain, thereby driving further market expansion.
Regionally, North America currently dominates the synthetic data platform market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The strong presence of leading technology companies, robust investments in AI research, and stringent regulatory frameworks in these regions are key contributors to market growth. Meanwhile, Asia Pacific is witnessing the fastest growth, driven by rapid digitalization, increasing adoption of AI technologies, and supportive government policies. Latin America and the Middle East & Africa are also emerging as promising markets, albeit at a relatively slower pace, as organizations in these regions begin to recognize the value of synthetic data in driving innovation and ensuring compliance.
The synthetic data platform market by component is broadly segmented into software and services. The software segment currently holds the largest market share, as organizations across industries are increasingly investing in advanced synthetic data generation tools to address their growing data needs. These software solutions leverage cutting-edge technologies such as generative adversarial networks (GANs), variational autoencoders, and other machine learning algorithms to create highly realistic synthetic datasets. The ability of these platforms to generate data that closely resembles real-world scenarios, while ensuring privacy and compliance, is a major factor contributing to their widespread adoption.
Within the software segment, vendors are focusing on enhancing the scalability, flexibil
Facebook
Twitter
According to our latest research, the global synthetic data for computer vision market size reached USD 420 million in 2024, with a robust year-over-year growth underpinned by the surging demand for advanced AI-driven visual systems. The market is expected to expand at a compelling CAGR of 34.2% from 2025 to 2033, culminating in a forecasted market size of approximately USD 4.9 billion by 2033. This accelerated growth is primarily driven by the increasing adoption of synthetic data to overcome data scarcity, privacy concerns, and the need for scalable, diverse datasets to train computer vision models efficiently and ethically.
The primary growth factor fueling the synthetic data for computer vision market is the exponential rise in AI and machine learning applications across various industries. As organizations strive to enhance their computer vision systems, the demand for large, annotated, and diverse datasets has become paramount. However, acquiring real-world data is often expensive, time-consuming, and fraught with privacy and regulatory challenges. Synthetic data, generated through advanced simulation and rendering techniques, addresses these issues by providing high-quality, customizable datasets that can be tailored to specific use cases. This not only accelerates the training of AI models but also significantly reduces costs and mitigates the risks associated with sensitive data, making it an indispensable tool for enterprises seeking to innovate rapidly.
Another significant driver is the rapid advancement of simulation technologies and generative AI models, such as GANs (Generative Adversarial Networks), which have dramatically improved the realism and utility of synthetic data. These technologies enable the creation of highly realistic images, videos, and 3D point clouds that closely mimic real-world scenarios. As a result, industries such as automotive (for autonomous vehicles), healthcare (for medical imaging), and security & surveillance are leveraging synthetic data to enhance the robustness and accuracy of their computer vision systems. The ability to generate rare or dangerous scenarios that are difficult or unethical to capture in real life further amplifies the value proposition of synthetic data, driving its adoption across safety-critical domains.
Furthermore, the growing emphasis on data privacy and regulatory compliance, especially in regions with stringent data protection laws like Europe and North America, is propelling the adoption of synthetic data solutions. By generating artificial datasets that do not contain personally identifiable information, organizations can sidestep many of the legal and ethical hurdles associated with using real-world data. This is particularly relevant in sectors such as healthcare and retail, where data sensitivity is paramount. As synthetic data continues to gain regulatory acceptance and technological maturity, its role in supporting compliant, scalable, and bias-mitigated AI development is expected to expand significantly, further boosting market growth.
Synthetic Training Data is becoming increasingly vital in the realm of AI development, particularly for computer vision applications. By leveraging synthetic training data, developers can create expansive and diverse datasets that are not only cost-effective but also free from the biases often present in real-world data. This approach allows for the simulation of numerous scenarios and conditions, providing a robust foundation for training AI models. As a result, synthetic training data is instrumental in enhancing the accuracy and reliability of computer vision systems, making it an indispensable tool for industries aiming to innovate and improve their AI-driven solutions.
Regionally, North America currently leads the synthetic data for computer vision market, driven by the presence of major technology companies, robust R&D investments, and early adoption across key industries. However, Asia Pacific is emerging as a high-growth region, fueled by rapid industrialization, expanding AI research ecosystems, and increasing government support for digital transformation initiatives. Europe also exhibits strong momentum, underpinned by a focus on privacy-preserving AI solutions and regulatory compliance. Collectively, these regional trends underscore a global sh
Facebook
Twitterhttps://www.gnu.org/licenses/gpl-3.0.htmlhttps://www.gnu.org/licenses/gpl-3.0.html
Synthetic data generated for the ECHILD training course (code available at https://github.com/UCL-CHIG/ECHILD_Synthetic), along with suggested solutions for practical exercises in R.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Overview This dataset contains synthetic images of road scenarios designed for training and testing autonomous vehicle AI systems. Each image simulates common driving conditions, featuring various elements such as vehicles, pedestrians, and potential obstacles like animals. Notably, specific elementsālike the synthetically generated dog in the imagesāare included to challenge machine learning models in detecting unexpected road hazards. This dataset is ideal for projects focusing on computer vision, object detection, and autonomous driving simulations.
To learn more about the challenges of autonomous driving and how synthetic data can aid in overcoming them, check out our article: Autonomous Driving Challenge: Can Your AI See the Unseen? https://www.neurobot.co/use-cases-posts/autonomous-driving-challenge
Want to see more synthetic data in action? Visit www.neurobot.co to schedule a demo or sign up to upload your own images and generate custom synthetic data tailored to your projects.
Note Important Disclaimer: This dataset has not been part of any official research study or peer-reviewed article reviewed by autonomous driving authorities or safety experts. It is recommended for educational purposes only. The synthetic elements included in the images are not based on real-world data and should not be used in production-level autonomous vehicle systems without proper review by experts in AI safety and autonomous vehicle regulations. Please use this dataset responsibly, considering ethical implications.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This is a GPT3.5-generated external dataset for the: - PII Detection Removal From Educational Data
The dataset contains 8281 generated tokens with their corresponding annotated labels in the required competition format.
The dataset was generated using the code in this notebook by rephrasing the competition dataset at temperature=0.7
Description:
- tokens (string): a list with the tokens (comes from SpaCy English Tokenizer)
- trailing_whitespace (list): a list with boolean values indicating whether each token is followed by whitespace.
- labels (list): list with token labels in BIO format
... More data is on the way, Love to hear your feedbacks! (Upvotes are welcome š)
Facebook
TwitterThis dataset is the result of the work done in the project GRESEL-UAM: About GRESEL: AI Generation Results Enriched with Simplified Explanations Based on Linguistic Features (Resultados de Generación de IA Enriquecidos con Explicaciones Simplificadas Basadas en CaracterĆsticas LingüĆsticas). This dataset is part of the publication titled "Assessing a Literary RAG System with a Human-Evaluated Synthetic QA Dataset Generated by an LLM: Experiments with Knowledge Graphs," which will be presented in September 2025 in Zaragoza, within the framework of the conference of the Sociedad EspaƱola para el Procesamiento del Lenguaje Natural (SEPLN). The work has already been accepted for publication in SEPLNās official journal, Procesamiento del Lenguaje Natural. This dataset consists of three synthetically generated datasets, a process known as Synthetic Data Generation (SDG). We used three different LLMs: deepseek-r1:14b, llama3.1:8b-instruct-q8_0, and mistral:7b-instruct. Each was given a prompt instructing them to generate a question answering (QA) dataset based on context fragments from the novel Trafalgar by Benito PĆ©rez Galdós. These datasets were later used to evaluate a Retrieval-Augmented Generation (RAG) system. Three CSV files are provided, each corresponding to the synthetic dataset generated by one of the models. In total, the dataset contains 359 items. The header includes the following fields: id, context, question, answer, and success. Fields are separated by tabs. The id column is simply an identifier number. The context column contains the text fragment from which the model generated the questions and answers. The question and answer fields contain the generated questions and answers, respectively. The success column indicates whether the model successfully generated the question and answer in the corresponding fields ("yes" or "no").
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global synthetic data in financial services market size reached USD 1.42 billion in 2024, and is expected to grow at a compound annual growth rate (CAGR) of 34.7% from 2025 to 2033. By the end of the forecast period, the market is projected to achieve a value of USD 18.9 billion by 2033. This remarkable growth is driven by the increasing demand for privacy-preserving data solutions, the rapid adoption of artificial intelligence and machine learning in financial institutions, and the growing regulatory pressure to safeguard sensitive customer information.
One of the primary growth factors propelling the synthetic data in financial services market is the exponential rise in digital transformation across the industry. Financial institutions are under mounting pressure to innovate and deliver seamless, data-driven customer experiences, while managing the risks associated with handling vast volumes of sensitive personal and transactional data. Synthetic data, which is artificially generated to mimic real-world datasets without exposing actual customer information, offers a compelling solution to these challenges. By enabling robust model development, testing, and analytics without breaching privacy, synthetic data is becoming a cornerstone of modern financial technology initiatives. The ability to generate diverse, high-quality datasets on demand is empowering banks, insurers, and fintech firms to accelerate their AI and machine learning projects, reduce time-to-market for new products, and maintain strict compliance with global data protection regulations.
Another significant factor fueling market expansion is the increasing sophistication of cyber threats and fraud attempts in the financial sector. Financial institutions face constant risks from malicious actors seeking to exploit vulnerabilities in digital systems. Synthetic data enables organizations to simulate a wide array of fraudulent scenarios and train advanced detection algorithms without risking exposure of real customer data. This has proven invaluable for enhancing fraud detection and risk management capabilities, particularly as financial transactions become more complex and digital channels proliferate. Furthermore, the growing regulatory landscape, such as GDPR in Europe and CCPA in California, is compelling financial organizations to adopt data minimization strategies, making synthetic data an essential tool for regulatory compliance, privacy audits, and secure data sharing with third-party vendors.
The rapid evolution of AI and machine learning models in financial services is also driving the adoption of synthetic data. As financial institutions strive to improve the accuracy of credit scoring, automate underwriting, and personalize customer experiences, the need for large, diverse, and bias-free datasets has become critical. Synthetic data generation platforms are addressing this need by producing highly realistic, customizable datasets that facilitate model training and validation without the ethical and legal concerns associated with using real customer data. This capability is particularly valuable for algorithm testing and model validation, where access to comprehensive and representative data is essential for ensuring robust, unbiased outcomes. As a result, synthetic data is emerging as a key enabler of responsible AI adoption in the financial services sector.
From a regional perspective, North America currently leads the synthetic data in financial services market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The dominance of North America can be attributed to the presence of major financial institutions, advanced technology infrastructure, and early adoption of AI-driven solutions. Europeās growth is fueled by stringent data protection regulations and a strong focus on privacy-preserving technologies. Meanwhile, Asia Pacific is experiencing rapid growth due to increasing fintech investments, digital banking initiatives, and a burgeoning middle-class population demanding innovative financial services. Latin America and the Middle East & Africa are also witnessing steady growth, driven by digital transformation efforts and the need to combat rising cyber threats in the financial ecosystem.
The synthetic data in financial services market is segmented by data type into tabular data, time series data, text data, image & video data, and others. <
Facebook
TwitterVerbalized-Sampling-Synthetic-Data-Generation
This dataset showcases how Verbalized Sampling (VS) can be used to generate high-quality, diverse synthetic training data for mathematical reasoning tasks. From the paper Verbalized Sampling: How to Mitigate Mode Collapse and Unlock LLM Diversity.
Dataset Description
The Synthetic Data Generation dataset contains mathematical problem-solution pairs generated by different methods using state-of-the-art LLMs. This dataset⦠See the full description on the dataset page: https://huggingface.co/datasets/CHATS-Lab/Verbalized-Sampling-Synthetic-Data-Generation.
Facebook
Twitter
According to our latest research, the AI-Generated Synthetic Tabular Dataset market size reached USD 1.42 billion in 2024 globally, reflecting the rapid adoption of artificial intelligence-driven data generation solutions across numerous industries. The market is expected to expand at a robust CAGR of 34.7% from 2025 to 2033, reaching a forecasted value of USD 19.17 billion by 2033. This exceptional growth is primarily driven by the increasing need for high-quality, privacy-preserving datasets for analytics, model training, and regulatory compliance, particularly in sectors with stringent data privacy requirements.
One of the principal growth factors propelling the AI-Generated Synthetic Tabular Dataset market is the escalating demand for data-driven innovation amidst tightening data privacy regulations. Organizations across healthcare, finance, and government sectors are facing mounting challenges in accessing and sharing real-world data due to GDPR, HIPAA, and other global privacy laws. Synthetic data, generated by advanced AI algorithms, offers a solution by mimicking the statistical properties of real datasets without exposing sensitive information. This enables organizations to accelerate AI and machine learning development, conduct robust analytics, and facilitate collaborative research without risking data breaches or non-compliance. The growing sophistication of generative models, such as GANs and VAEs, has further increased confidence in the utility and realism of synthetic tabular data, fueling adoption across both large enterprises and research institutions.
Another significant driver is the surge in digital transformation initiatives and the proliferation of AI and machine learning applications across industries. As businesses strive to leverage predictive analytics, automation, and intelligent decision-making, the need for large, diverse, and high-quality datasets has become paramount. However, real-world data is often siloed, incomplete, or inaccessible due to privacy concerns. AI-generated synthetic tabular datasets bridge this gap by providing scalable, customizable, and bias-mitigated data for model training and validation. This not only accelerates AI deployment but also enhances model robustness and generalizability. The flexibility of synthetic data generation platforms, which can simulate rare events and edge cases, is particularly valuable in sectors like finance and healthcare, where such scenarios are underrepresented in real datasets but critical for risk assessment and decision support.
The rapid evolution of the AI-Generated Synthetic Tabular Dataset market is also underpinned by technological advancements and growing investments in AI infrastructure. The availability of cloud-based synthetic data generation platforms, coupled with advancements in natural language processing and tabular data modeling, has democratized access to synthetic datasets for organizations of all sizes. Strategic partnerships between technology providers, research institutions, and regulatory bodies are fostering innovation and establishing best practices for synthetic data quality, utility, and governance. Furthermore, the integration of synthetic data solutions with existing data management and analytics ecosystems is streamlining workflows and reducing barriers to adoption, thereby accelerating market growth.
Regionally, North America dominates the AI-Generated Synthetic Tabular Dataset market, accounting for the largest share in 2024 due to the presence of leading AI technology firms, strong regulatory frameworks, and early adoption across industries. Europe follows closely, driven by stringent data protection laws and a vibrant research ecosystem. The Asia Pacific region is emerging as a high-growth market, fueled by rapid digitalization, government initiatives, and increasing investments in AI research and development. Latin America and the Middle East & Africa are also witnessing growing interest, particularly in sectors like finance and government, though market maturity varies across countries. The regional landscape is expected to evolve dynamically as regulatory harmonization, cross-border data collaboration, and technological advancements continue to shape market trajectories globally.