The Global Population Count Grid Time Series Estimates provide a back-cast time series of population grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population count grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.
The Global Population Count Grid Time Series Estimates provide a back-cast time series of population grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population count grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset provides an extensive view of global population statistics and health metrics across various countries from 2014 to 2024. It combines population data with vital health-related indicators, making it a valuable resource for understanding trends in population growth and health outcomes worldwide. Researchers, data scientists, and policymakers can utilize this dataset to analyze correlations between population dynamics and health performance at a global scale.
Key Features: - Country: Name of the country. - Year: Year of the data (2014–2024). - Population: Total population for the respective year and country. - Country Code: ISO 3-letter country codes for easy identification. - Health Expenditure (health_exp): Percentage of GDP spent on healthcare. - Life Expectancy (life_expect): Average life expectancy at birth in years. - Maternal Mortality (maternal_mortality): Maternal deaths per 100,000 live births. - Infant Mortality (infant_mortality): Deaths of infants under 1 year per 1,000 live births. - Neonatal Mortality (neonatal_mortality): Deaths of newborns (0–28 days) per 1,000 live births. - Under-5 Mortality (under_5_mortality): Deaths of children under 5 years per 1,000 live births. - HIV Prevalence (prev_hiv): Percentage of the population living with HIV. - Tuberculosis Incidence (inci_tuberc): Estimated new and relapse TB cases per 100,000 people. - Undernourishment Prevalence (prev_undernourishment): Percentage of the population that is undernourished.
Use Cases: - Health Policy Analysis: Understand trends in healthcare expenditure and its relationship to health outcomes. - Global Health Research: Investigate global or regional disparities in health and nutrition. - Population Studies: Analyze population growth trends alongside health indicators. - Data Visualization: Build visual dashboards for storytelling and impactful data representation.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in World was estimated at 8142.1 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset includes a chart with historical data for World Population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for the world, given as 5-year population bands at a 0.5 degree grid resolution.
This dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4) with the ISIMIP Histsoc gridded population data and the United Nations World Population Program (WPP) demographic modelling data.
Demographic fractions are given for the time period covered by the UN WPP model (1950-2050) while demographic totals are given for the time period covered by the combination of GPWv4 and Histsoc (1950-2020)
Method - demographic fractions
Demographic breakdown of country population by grid cell is calculated by combining the GPWv4 demographic data given for 2010 with the yearly country breakdowns from the UN WPP. This combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP. This makes it possible to calculate exposure trends from 1980 to the present day.
To combine the UN WPP demographics with the GPWv4 demographics, we calculate for each country the proportional change in fraction of demographic in each age band relative to 2010 as:
(\delta_{year,\ country,age}^{\text{wpp}} = f_{year,\ country,age}^{\text{wpp}}/f_{2010,country,age}^{\text{wpp}})
Where:
(\delta_{year,\ country,age}^{\text{wpp}}) is the ratio of change in demographic for a given age and and country from the UN WPP dataset.
(f_{year,\ country,age}^{\text{wpp}}) is the fraction of population in the UN WPP dataset for a given age band, country, and year.
(f_{2010,country,age}^{\text{wpp}}) is the fraction of population in the UN WPP dataset for a given age band, country for the year 2020.
The gridded demographic fraction is then calculated relative to the 2010 demographic data given by GPWv4.
For each subset of cells corresponding to a given country c, the fraction of population in a given age band is calculated as:
(f_{year,c,age}^{\text{gpw}} = \delta_{year,\ country,age}^{\text{wpp}}*f_{2010,c,\text{age}}^{\text{gpw}})
Where:
(f_{year,c,age}^{\text{gpw}}) is the fraction of the population in a given age band for given year, for the grid cell c.
(f_{2010,c,age}^{\text{gpw}}) is the fraction of the population in a given age band for 2010, for the grid cell c.
The matching between grid cells and country codes is performed using the GPWv4 gridded country code lookup data and country name lookup table. The final dataset is assembled by combining the cells from all countries into a single gridded time series. This time series covers the whole period from 1950-2050, corresponding to the data available in the UN WPP model.
Method - demographic totals
Total population data from 1950 to 1999 is drawn from ISIMIP Histsoc, while data from 2000-2020 is drawn from GPWv4. These two gridded time series are simply joined at the cut-over date to give a single dataset covering 1950-2020.
The total population per age band per cell is calculated by multiplying the population fractions by the population totals per grid cell.
Note that as the total population data only covers until 2020, the time span covered by the demographic population totals data is 1950-2020 (not 1950-2050).
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. No guarantees are made about the spatial or temporal consistency across dataset boundaries. The dataset may contain outlier points (e.g single cells with demographic fractions >1). This dataset is produced on a 'best effort' basis and has been found to be broadly consistent with other approaches, but may contain inconsistencies which not been identified.
Until the 1800s, population growth was incredibly slow on a global level. The global population was estimated to have been around 188 million people in the year 1CE, and did not reach one billion until around 1803. However, since the 1800s, a phenomenon known as the demographic transition has seen population growth skyrocket, reaching eight billion people in 2023, and this is expected to peak at over 10 billion in the 2080s.
https://datacatalog.worldbank.org/public-licenses?fragment=cchttps://datacatalog.worldbank.org/public-licenses?fragment=cc
Subnational Population Database presents estimated population at the first administrative level below the national level. Many of the data come from the country’s national statistical offices. Other data come from the NASA Socioeconomic Data and Applications Center (SEDAC) managed by the Center for International Earth Science Information Network (CIESIN), Earth Institute, Columbia University. It is the World Bank Group’s first subnational population database at a global level and there are data limitations. Series metadata includes methodology and the assumptions made.
The world population surpassed eight billion people in 2022, having doubled from its figure less than 50 years previously. Looking forward, it is projected that the world population will reach nine billion in 2038, and 10 billion in 2060, but it will peak around 10.3 billion in the 2080s before it then goes into decline. Regional variations The global population has seen rapid growth since the early 1800s, due to advances in areas such as food production, healthcare, water safety, education, and infrastructure, however, these changes did not occur at a uniform time or pace across the world. Broadly speaking, the first regions to undergo their demographic transitions were Europe, North America, and Oceania, followed by Latin America and Asia (although Asia's development saw the greatest variation due to its size), while Africa was the last continent to undergo this transformation. Because of these differences, many so-called "advanced" countries are now experiencing population decline, particularly in Europe and East Asia, while the fastest population growth rates are found in Sub-Saharan Africa. In fact, the roughly two billion difference in population between now and the 2080s' peak will be found in Sub-Saharan Africa, which will rise from 1.2 billion to 3.2 billion in this time (although populations in other continents will also fluctuate). Changing projections The United Nations releases their World Population Prospects report every 1-2 years, and this is widely considered the foremost demographic dataset in the world. However, recent years have seen a notable decline in projections when the global population will peak, and at what number. Previous reports in the 2010s had suggested a peak of over 11 billion people, and that population growth would continue into the 2100s, however a sooner and shorter peak is now projected. Reasons for this include a more rapid population decline in East Asia and Europe, particularly China, as well as a prolonged development arc in Sub-Saharan Africa.
If you know any further standard populations worth integrating in this dataset, please let me know in the discussion part. I would be happy to integrate further data to make this dataset more useful for everybody.
"Standard populations are "artificial populations" with fictitious age structures, that are used in age standardization as uniform basis for the calculation of comparable measures for the respective reference population(s).
Use: Age standardizations based on a standard population are often used at cancer registries to compare morbidity or mortality rates. If there are different age structures in populations of different regions or in a population in one region over time, the comparability of their mortality or morbidity rates is only limited. For interregional or inter-temporal comparisons, therefore, an age standardization is necessary. For this purpose the age structure of a reference population, the so-called standard population, is assumed for the study population. The age specific mortality or morbidity rates of the study population are weighted according to the age structure of the standard population. Selection of a standard population:
Which standard population is used for comparison basically, does not matter. It is important, however, that
The aim of this dataset is to provide a variety of the most commonly used 'standard populations'.
Currently, two files with 22 standard populations are provided: - standard_populations_20_age_groups.csv - 20 age groups: '0', '01-04', '05-09', '10-14', '15-19', '20-24', '25-29', '30-34', '35-39', '40-44', '45-49', '50-54', '55-59', '60-64', '65-69', '70-74', '75-79', '80-84', '85-89', '90+' - 7 standard populations: 'Standard population Germany 2011', 'Standard population Germany 1987', 'Standard population of Europe 2013', 'Standard population Old Laender 1987', 'Standard population New Laender 1987', 'New standard population of Europe', 'World standard population' - source: German Federal Health Monitoring System
No restrictions are known to the author. Standard populations are published by different organisations for public usage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The total population in the United States was estimated at 341.2 million people in 2024, according to the latest census figures and projections from Trading Economics. This dataset provides - United States Population - actual values, historical data, forecast, chart, statistics, economic calendar and news.
The Gridded Population of the World, Version 4 (GPWv4): Basic Demographic Characteristics, Revision 11 consists of estimates of human population by age and sex as counts (number of persons per pixel) and densities (number of persons per square kilometer), consistent with national censuses and population registers, for the year 2010. To estimate the male and female populations by age in 2010, the proportions of males and females in each 5-year age group from ages 0-4 to ages 85+ for the given census year were calculated. These proportions were then applied to the 2010 estimates of the total population to obtain 2010 estimates of male and female populations by age. In some cases, the spatial resolution of the age and sex proportions was coarser than the resolution of the total population estimates to which they were applied. The population density rasters were created by dividing the population count rasters by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Computed prospective ages for 1950-2100 for all countries and regions based on 2017 Revision of the UN World Population Prospects.Content:1. codebook.pdf contains a brief overview of the dataset, its background and a description of the cases and variables.2. methods.pdf is a (draft but complete) write up of the calculations used to create the dataset.3. 2017_prospective-ages.csv is the human readable form of the prospective age dataset containing the calculated prospective old-age thresholds for 241 countries and regions, for the period 1950-2100, for men, women and both together, as well as the proportions of the population (male, female and total) over these thresholds.This figshare fileset is published directly from the github repository ProspectiveAgeData. For an application of this data see the factsheet on ageing in the Middle East and Northern Africa which will be published in Population Horizons journal.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In demographics, the world population is the total number of humans currently living, and was estimated to have reached 7,800,000,000 people as of March 2020. It took over 2 million years of human history for the world's population to reach 1 billion, and only 200 years more to reach 7 billion. The world population has experienced continuous growth following the Great Famine of 1315–1317 and the end of the Black Death in 1350, when it was near 370 million. The highest global population growth rates, with increases of over 1.8% per year, occurred between 1955 and 1975 – peaking to 2.1% between 1965 and 1970.[7] The growth rate declined to 1.2% between 2010 and 2015 and is projected to decline further in the course of the 21st century. However, the global population is still increasing[8] and is projected to reach about 10 billion in 2050 and more than 11 billion in 2100.
Annual population growth rate for year t is the exponential rate of growth of midyear population from year t-1 to t, expressed as a percentage . Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship. Annual population growth rate. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship.
Total population growth rates are calculated on the assumption that rate of growth is constant between two points in time. The growth rate is computed using the exponential growth formula: r = ln(pn/p0)/n, where r is the exponential rate of growth, ln() is the natural logarithm, pn is the end period population, p0 is the beginning period population, and n is the number of years in between. Note that this is not the geometric growth rate used to compute compound growth over discrete periods. For information on total population from which the growth rates are calculated, see total population (SP.POP.TOTL).
Derived from total population. Population source: ( 1 ) United Nations Population Division. World Population Prospects: 2019 Revision, ( 2 ) Census reports and other statistical publications from national statistical offices, ( 3 ) Eurostat: Demographic Statistics, ( 4 ) United Nations Statistical Division. Population and Vital Statistics Reprot ( various years ), ( 5 ) U.S. Census Bureau: International Database, and ( 6 ) Secretariat of the Pacific Community: Statistics and Demography Programme.
This dataset categorizes pixels with estimated zero population based on information provided in the census documents. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) …
This dataset contains human population density for the state of California and a small portion of western Nevada for the year 2000. The population density is based on US Census Bureau data and has a cell size of 990 meters.
The purpose of the dataset is to provide a consistent statewide human density GIS layer for display, analysis and modeling purposes.
The state of California, and a very small portion of western Nevada, was divided into pixels with a cell size 0.98 km2, or 990 meters on each side. For each pixel, the US Census Bureau data was clipped, the total human population was calculated, and that population was divided by the area to get human density (people/km2) for each pixel.
Estimated population density per grid-cell. The dataset is available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc (approximately 1km at the equator). The projection is Geographic Coordinate System, WGS84. The units are number of people per square kilometre based on country totals adjusted to match the corresponding official United Nations population estimates that have been prepared by the Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat (2019 Revision of World Population Prospects). The mapping approach is Random Forest-based dasymetric redistribution.
This dataset contains estimates of the number of persons per square kilometer consistent with national censuses and population registers. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a hybrid gridded dataset of demographic data for China from 1979 to 2100, given as 21 five-year age groups of population divided by gender every year at a 0.5-degree grid resolution.
The historical period (1979-2020) part of this dataset combines the NASA SEDAC Gridded Population of the World version 4 (GPWv4, UN WPP-Adjusted Population Count) with gridded population from the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP, Histsoc gridded population data).
The projection (2010-2100) part of this dataset is resampled directly from Chen et al.’s data published in Scientific Data.
This dataset includes 31 provincial administrative districts of China, including 22 provinces, 5 autonomous regions, and 4 municipalities directly under the control of the central government (Taiwan, Hong Kong, and Macao were excluded due to missing data).
Method - demographic fractions by age and gender in 1979-2020
Age- and gender-specific demographic data by grid cell for each province in China are derived by combining historical demographic data in 1979-2020 with the national population census data provided by the National Statistics Bureau of China.
To combine the national population census data with the historical demographics, we constructed the provincial fractions of demographic in each age groups and each gender according to the fourth, fifth and sixth national population census, which cover the year of 1979-1990, 1991-2000 and 2001-2020, respectively. The provincial fractions can be computed as:
\(\begin{align*} \begin{split} f_{year,province,age,gender}= \left \{ \begin{array}{lr} POP_{1990,province,age,gender}^{4^{th}census}/POP_{1990,province}^{4^{th}census} & 1979\le\mathrm{year}\le1990\\ POP_{2000,province,age,gender}^{5^{th}census}/POP_{2000,province}^{5^{th}census} & 1991\le\mathrm{year}\le2000\\ POP_{2010,province,age,gender}^{6^{th}census}/POP_{2010,province}^{6^{th}census}, & 2001\le\mathrm{year}\le2020 \end{array} \right. \end{split} \end{align*}\)
Where:
- \( f_{\mathrm{year,province,age,gender}}\)is the fraction of population for a given age, a given gender in each province from the national census from 1979-2020.
- \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province,age,gender}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for a given age, a given gender in each province from the Xth national census.
- \(\mathrm{PO}\mathrm{P}_{\mathrm{year,province}}^{X^{\mathrm{th}}\mathrm{census} }\) is the total population for all ages and both genders in each province from the Xth national census.
Method - demographic totals by age and gender in 1979-2020
The yearly grid population for 1979-1999 are from ISIMIP Histsoc gridded population data, and for 2000-2020 are from the GPWv4 demographic data adjusted by the UN WPP (UN WPP-Adjusted Population Count, v4.11, https://beta.sedac.ciesin.columbia.edu/data/set/gpw-v4-population-count-adjusted-to-2015-unwpp-country-totals-rev11), which combines the spatial distribution of demographics from GPWv4 with the temporal trends from the UN WPP to improve accuracy. These two gridded time series are simply joined at the cut-over date to give a single dataset - historical demographic data covering 1979-2020.
Next, historical demographic data are mapped onto the grid scale to obtain provincial data by using gridded provincial code lookup data and name lookup table. The age- and gender-specific fraction were multiplied by the historical demographic data at the provincial level to obtain the total population by age and gender for per grid cell for china in 1979-2020.
Method - demographic totals and fractions by age and gender in 2010-2100
The grid population count data in 2010-2100 under different shared socioeconomic pathway (SSP) scenarios are drawn from Chen et al. published in Scientific Data with a resolution of 1km (~ 0.008333 degree). We resampled the data to 0.5 degree by aggregating the population count together to obtain the future population data per cell.
This previously published dataset also provided age- and gender-specific population of each provinces, so we calculated the fraction of each age and gender group at provincial level. Then, we multiply the fractions with grid population count to get the total population per age group per cell for each gender.
Note that the projected population data from Chen’s dataset covers 2010-2020, while the historical population in our dataset also covers 2010-2020. The two datasets of that same period may vary because the original population data come from different sources and are calculated based on different methods.
Disclaimer
This dataset is a hybrid of different datasets with independent methodologies. Spatial or temporal consistency across dataset boundaries cannot be guaranteed.
The Gridded Population of the World, Version 4 (GPWv4): Land and Water Area, Revision 11 consists of two rasters that measure surface areas of land and water in square kilometers per pixel. The Land Area raster provides estimates of the land area, excluding permanent ice and water, within each pixel, and was used to calculate the population density rasters. The Water Area raster provides estimates of the water area (permanent ice and water) within each pixel. The sum of land area and water area of a pixel equals the total surface area of that pixel. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions.
Global Population of the World (GPW) translates census population data to a latitude-longitude grid so that population data may be used in cross-disciplinary studies. There are three data files with this data set for the reference years 1990 and 1995. Over 127,000 administrative units and population counts were collected and integrated from various sources to create the gridded data. In brief, GPW was created using the following steps: * Population data were estimated for the product reference years, 1990 and 1995, either by the data source or by interpolating or extrapolating the given estimates for other years. * Additional population estimates were created by adjusting the source population data to match UN national population estimates for the reference years. * Borders and coastlines of the spatial data were matched to the Digital Chart of the World where appropriate and lakes from the Digital Chart of the World were added. * The resulting data were then transformed into grids of UN-adjusted and unadjusted population counts for the reference years. * Grids containing the area of administrative boundary data in each cell (net of lakes) were created and used with the count grids to produce population densities.As with any global data set based on multiple data sources, the spatial and attribute precision of GPW is variable. The level of detail and accuracy, both in time and space, vary among the countries for which data were obtained.
The Global Population Count Grid Time Series Estimates provide a back-cast time series of population grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population count grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.