VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
The U.S. Census defines Asian Americans as individuals having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent (U.S. Office of Management and Budget, 1997). As a broad racial category, Asian Americans are the fastest-growing minority group in the United States (U.S. Census Bureau, 2012). The growth rate of 42.9% in Asian Americans between 2000 and 2010 is phenomenal given that the corresponding figure for the U.S. total population is only 9.3% (see Figure 1). Currently, Asian Americans make up 5.6% of the total U.S. population and are projected to reach 10% by 2050. It is particularly notable that Asians have recently overtaken Hispanics as the largest group of new immigrants to the U.S. (Pew Research Center, 2015). The rapid growth rate and unique challenges as a new immigrant group call for a better understanding of the social and health needs of the Asian American population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries per year in Central America. It has 512 rows. It features 4 columns: country, life expectancy at birth, and male population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries in Central America. It has 8 rows. It features 3 columns: incidence of HIV, and life expectancy at birth.
For most American Airlines service requests, the processing time over the phone varies between 5 minutes and 72 hours, depending on complexity, volume, and staffing availability. ☎️+1 (855) 217-1878 For simpler matters like seat selection or same-day change requests, agents can usually resolve things within minutes. ☎️+1 (855) 217-1878
If you’re calling to cancel a flight, reschedule, request a refund, or apply travel credits, the process often takes 15–30 minutes depending on your itinerary and status. ☎️+1 (855) 217-1878 Elite status members typically experience shorter wait times due to priority lines. ☎️+1 (855) 217-1878 However, during peak travel seasons, even elite flyers may face longer processing delays.
Complex changes like multi-city itinerary updates or flight disruptions caused by weather may require manual review by a supervisor, which can extend processing times to several hours. ☎️+1 (855) 217-1878 American Airlines support agents may need to consult backend systems, fare codes, or airline partners in such cases. ☎️+1 (855) 217-1878 These requests are often queued internally for approval.
During periods of high call volume—such as holidays or major travel disruptions—wait times to speak with a live agent can exceed 90 minutes. ☎️+1 (855) 217-1878 If your call involves a time-sensitive issue, use the “Call Back” option when available to hold your place in line. ☎️+1 (855) 217-1878 This saves time and reduces stress.
In cases where your call includes rebooking due to cancellations initiated by American Airlines, agents may prioritize your request and finish processing in under 30 minutes. ☎️+1 (855) 217-1878 Since airline-initiated changes are not your fault, the support team works quickly to find alternate flights or refunds. ☎️+1 (855) 217-1878 Document your case number for easy follow-up.
It’s also important to note that some changes don’t go into effect immediately, even after a successful phone call. For example, flight credit applications may show a delay of 24–48 hours on your American account. ☎️+1 (855) 217-1878 That doesn’t mean your request failed—it simply reflects backend processing time. ☎️+1 (855) 217-1878 Check your email for confirmation and save it.
Refund requests placed by phone are usually processed within 10 minutes on the call, but they are marked as “pending” until finance confirms the refund action. ☎️+1 (855) 217-1878 This phase can take a bit longer, as we’ll discuss in the next section about refund timelines. ☎️+1 (855) 217-1878 Phone agents cannot expedite payment disbursement.
If your phone request involves AAdvantage mileage adjustments or missing miles claims, processing takes longer—sometimes 5–10 business days depending on the route and booking platform. ☎️+1 (855) 217-1878 This is because partner airline data must sync with American’s systems before adjustments are completed. ☎️+1 (855) 217-1878 Screenshot your ticket for proof when requesting mileage corrections.
To speed up any phone-based service, have your 6-digit record locator, frequent flyer number, and credit card (if needed) ready before calling. ☎️+1 (855) 217-1878 Clear communication, patience, and politeness help agents complete your request quickly. ☎️+1 (855) 217-1878 Take notes during the call in case you need to follow up.
If something goes wrong during the call or you're disconnected, don’t worry. American logs most requests in their system, and any changes already made ☎️+1 (855) 217-1878 will remain in place even if the call doesn’t complete fully. Just call back with your reference number. ☎️+1 (855) 217-1878 The next agent can pick up where things left off.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Live Oak population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Live Oak. The dataset can be utilized to understand the population distribution of Live Oak by age. For example, using this dataset, we can identify the largest age group in Live Oak.
Key observations
The largest age group in Live Oak, FL was for the group of age 15-19 years with a population of 769 (11.36%), according to the 2021 American Community Survey. At the same time, the smallest age group in Live Oak, FL was the 80-84 years with a population of 84 (1.24%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Live Oak Population by Age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries per year in South America. It has 768 rows. It features 4 columns: country, country full name, and life expectancy at birth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Do file and dataset for dominance analysis on US age at death distributions (data sourced from CDC life tables).
Abstract: Diverging mortality trends at different ages motivate the monitoring of lifespan inequality alongside life expectancy. Conclusions are ambiguous when life expectancy and lifespan inequality move in the same direction or when inequality measures display inconsistent trends. We propose using non-parametric dominance analysis to obtain a robust ranking of age-at-death distributions. Application to United States period life tables for 2006-2021 reveals that, until 2014, more recent years generally dominate earlier years implying improvement if longer lifespans that are less unequally distributed are considered better. Improvements were more pronounced for non-Hispanic Blacks and Hispanics than for non-Hispanic Whites. Since 2014, for all subpopulations—particularly, Hispanics—earlier years often dominate more recent years indicating worsening age-at-death distributions if shorter and more unequal lifespans are considered worse. Dramatic deterioration of the distributions in 2020-21 during the COVID-19 pandemic is most evident for Hispanics.
The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.
This dataset was created on 2020-01-10 18:53:00.508
by merging multiple datasets together. The source datasets for this version were:
Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile
Commuting Zone Characteristics: CZ-level characteristics
Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.
This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.
Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths
This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.
This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.
Two variables constructed by the Cen
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Air pollution globalization, as a combined effect of atmospheric transport and international trade, can lead to notable transboundary health impacts. Life expectancy reduction attribution analysis of transboundary pollution can reveal the effect of pollution globalization on the lives of individuals. This study coupled five state-of-the-art models to link the regional per capita life expectancy reduction to cross-boundary pollution transport attributed to consumption in other regions. Our results revealed that pollution due to consumption in other regions contributed to a global population-weighted PM2.5 concentration of 9 μg/m3 in 2017, thereby causing 1.03 million premature deaths and reducing the global average life expectancy by 0.23 year (≈84 days). Trade-induced transboundary pollution relocation led to a significant reduction in life expectancy worldwide (from 5 to 155 days per person), and even in the least polluted regions, such as North America, Western Europe, and Russia, a 12–61-day life expectancy reduction could be attributed to consumption in other regions. Our results reveal the individual risks originating from air pollution globalization. To protect human life, all regions and residents worldwide should jointly act together to reduce atmospheric pollution and its globalization as soon as possible.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 State Data’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/nightranger77/covid19-state-data on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This dataset is a per-state amalgamation of demographic, public health and other relevant predictors for COVID-19.
Used positive
, death
and totalTestResults
from the API for, respectively, Infected
, Deaths
and Tested
in this dataset.
Please read the documentation of the API for more context on those columns
Density is people per meter squared https://worldpopulationreview.com/states/
https://worldpopulationreview.com/states/gdp-by-state/
https://worldpopulationreview.com/states/per-capita-income-by-state/
https://en.wikipedia.org/wiki/List_of_U.S._states_by_Gini_coefficient
Rates from Feb 2020 and are percentage of labor force
https://www.bls.gov/web/laus/laumstrk.htm
Ratio is Male / Female
https://www.kff.org/other/state-indicator/distribution-by-gender/
https://worldpopulationreview.com/states/smoking-rates-by-state/
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/flu_pneumonia_mortality/flu_pneumonia.htm
Death rate per 100,000 people
https://www.cdc.gov/nchs/pressroom/sosmap/lung_disease_mortality/lung_disease.htm
https://www.kff.org/other/state-indicator/total-active-physicians/
https://www.kff.org/other/state-indicator/total-hospitals
Includes spending for all health care services and products by state of residence. Hospital spending is included and reflects the total net revenue. Costs such as insurance, administration, research, and construction expenses are not included.
https://www.kff.org/other/state-indicator/avg-annual-growth-per-capita/
Pollution: Average exposure of the general public to particulate matter of 2.5 microns or less (PM2.5) measured in micrograms per cubic meter (3-year estimate)
https://www.americashealthrankings.org/explore/annual/measure/air/state/ALL
For each state, number of medium and large airports https://en.wikipedia.org/wiki/List_of_the_busiest_airports_in_the_United_States
Note that FL was incorrect in the table, but is corrected in the Hottest States paragraph
https://worldpopulationreview.com/states/average-temperatures-by-state/
District of Columbia temperature computed as the average of Maryland and Virginia
Urbanization as a percentage of the population https://www.icip.iastate.edu/tables/population/urban-pct-states
https://www.kff.org/other/state-indicator/distribution-by-age/
Schools that haven't closed are marked NaN https://www.edweek.org/ew/section/multimedia/map-coronavirus-and-school-closures.html
Note that some datasets above did not contain data for District of Columbia, this missing data was found via Google searches manually entered.
--- Original source retains full ownership of the source dataset ---
This is a source dataset for a Let's Get Healthy California indicator at https://letsgethealthy.ca.gov/. Infant Mortality is defined as the number of deaths in infants under one year of age per 1,000 live births. Infant mortality is often used as an indicator to measure the health and well-being of a community, because factors affecting the health of entire populations can also impact the mortality rate of infants. Although California’s infant mortality rate is better than the national average, there are significant disparities, with African American babies dying at more than twice the rate of other groups. Data are from the Birth Cohort Files. The infant mortality indicator computed from the birth cohort file comprises birth certificate information on all births that occur in a calendar year (denominator) plus death certificate information linked to the birth certificate for those infants who were born in that year but subsequently died within 12 months of birth (numerator). Studies of infant mortality that are based on information from death certificates alone have been found to underestimate infant death rates for infants of all race/ethnic groups and especially for certain race/ethnic groups, due to problems such as confusion about event registration requirements, incomplete data, and transfers of newborns from one facility to another for medical care. Note there is a separate data table "Infant Mortality by Race/Ethnicity" which is based on death records only, which is more timely but less accurate than the Birth Cohort File. Single year shown to provide state-level data and county totals for the most recent year. Numerator: Infants deaths (under age 1 year). Denominator: Live births occurring to California state residents. Multiple years aggregated to allow for stratification at the county level. For this indicator, race/ethnicity is based on the birth certificate information, which records the race/ethnicity of the mother. The mother can “decline to state”; this is considered to be a valid response. These responses are not displayed on the indicator visualization.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about countries in Central America. It has 8 rows. It features 3 columns: rural land area, and life expectancy at birth.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.
Key observations
The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for United States Population by Age. You can refer the same here
You can speak to a live person at American Airlines by dialing ☎️+1(855)-927-1543 and carefully following the phone prompts to bypass automated messages. American Airlines has customer service representatives available to provide personalized assistance for all travel-related questions and issues. Calling ☎️+1(855)-927-1543 connects you to these agents quickly. For direct☎️+1(855)-927-1543, real-time support☎️+1(855)-927-1543, contact American Airlines customer service at ☎️+1(855)-927-1543 and speak with a live person who can address your concerns effectively.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is a high-resolution dataset of building design characteristics, life cycle inventories, and environmental impact assessment results for 292 building projects in the United States and Canada. The dataset contains harmonized and non-aggregated LCA model results across life cycle stages, building elements, and building materials to enable detailed analysis, comparisons, and data reuse. It includes over 90 building design and LCA features to assess distributions and trends of material use and environmental impacts. Uniquely, the data were crowd-sourced from designers conducting LCAs of real-world building projects.The dataset is composed of two files:buildings_metadata.xlsx includes all project metadata and LCA parameters for every project associated with a unique index number to cross-reference across other files. This also includes various calculated summaries of LCI and LCIA totals and intensities per project.full_lca_results.xlsx includes LCI and LCIA results per material and life cycle stage of each building project.data_glossary.xlsx identifies and defines each feature of the dataset including its name, data structure, syntax, units, descriptions, and more.material_definitions.xlsx a full list of material groups, types, and descriptions of what they include.This dataset is documented and described in a Data Descriptor, currently under review with a preprint available:Benke et al. A Harmonized Dataset of High-resolution Whole Building Life Cycle Assessment Results in North America, 07 March 2025, PREPRINT (Version 1) available at Research Square https://doi.org/10.21203/rs.3.rs-6108016/v1When referencing this work, please cite both the Data Descriptor and the most recent dataset version on this Fighshare DOI.The dataset also appears on the Github repository: https://github.com/Life-Cycle-Lab/wblca-benchmark-v2-data. Access to the code used to prepare this dataset is available on an additional Github repository: https://github.com/Life-Cycle-Lab/wblca-benchmark-v2-data-preparation.Release Notes:2025-02-24 - First public release2025-05-05 - Title revised and two supplementary dataset files added: data_glossary.xlsx and material_definitions.xlsx.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in the United States decreased to 4.10 percent in June from 4.20 percent in May of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Find out about retirement trends in PBGC's data tables. The tables include statistics on the people and pensions that PBGC protects, including how many Americans are in PBGC-insured pension plans, how many get PBGC benefits, and where they live. This data set will be updated periodically. (Updated annually)
Data include individual-level health data, including results from cardiovascular tests and medical history. This is linked to air quality data at participants' residence. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Data may be requested through the Jackson Heart Study. Format: Data include individual-level health data, including results from cardiovascular tests and medical history. This is linked to air quality data at participants' residence. Since these data contain PII, they cannot be released to ScienceHub. This dataset is associated with the following publications: Weaver, A., A. Bidulescu, G. Wellenius, D. Hickson, M. Sims, A. Vaidyanathan, W. Wu, A. Correa, and Y. Wang. Associations between Air Pollution Indicators and Prevalent and Incident Diabetes among African American Participants in the Jackson Heart Study. Environmental Epidemiology. Wolters Kluwer, Alphen aan den Rijn, NETHERLANDS, 5(3): e140, (2021). Weaver, A., Y. Wang, G. Wellenius, A. Bidulescu, M. Sims, A. Vaidyanathan, D. Hickson, D. Shimbo, M. Abdalla, K. Diaz, and S. Seals. Long-Term Air Pollution and Blood Pressure in an African American Cohort: The Jackson Heart Study. American Journal of Preventive Medicine. Elsevier B.V., Amsterdam, NETHERLANDS, 60(3): 397-405, (2021).
The 1995 American Travel Survey (ATS) was conducted by the Bureau of Transportation Statistics (BTS) to obtain information about the long-distance travel of persons living in the United States. The survey collected quarterly information related to the characteristics of persons, households, and trips of 100 miles or more for approximately 80,000 American households. The ATS data provide detailed information on state-to-state travel as well as travel to and from metropolitan areas by mode of transportation. Data are also available for subgroups defined in terms of characteristics related to travel, such as trip purpose, age, family type, income, and a variety of related characteristics. The data can be analyzed at the regional, state, metropolitan area, and county level. NOTE: In 2001, the National Household Travel Survey was carried out. This new survey is a combined Nationwide Personal Transportation Survey (NPTS) and ATS. Visit the National Household Travel Survey web site <> for more details.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.