6 datasets found
  1. TikTok Datasets

    • brightdata.com
    .json, .csv, .xlsx
    Updated Sep 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2022). TikTok Datasets [Dataset]. https://brightdata.com/products/datasets/tiktok
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Sep 9, 2022
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Use our TikTok profiles dataset to extract business and non-business information from complete public profiles and filter by account name, followers, create date, or engagement score. You may purchase the entire dataset or a customized subset depending on your needs. Popular use cases include sentiment analysis, brand monitoring, influencer marketing, and more. The TikTok dataset includes all major data points: timestamp, account name, nickname, bio,average engagement score, creation date, is_verified,l ikes, followers, external link in bio, and more. Get your TikTok dataset today!

  2. TikTok Celebrity

    • kaggle.com
    Updated Sep 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah Khan (2024). TikTok Celebrity [Dataset]. https://www.kaggle.com/datasets/abdullahkhan900/tiktok-celebrity
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 22, 2024
    Dataset provided by
    Kaggle
    Authors
    Abdullah Khan
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    https://s3-prod.adage.com/s3fs-public/20230807_celeb_run_agencies_3x2.jpg" alt="Celebs"> The dataset you provided appears to focus on TikTok celebrities and contains the following columns:

    Celebrity: The name or handle of the TikTok celebrity. Followers: The number of followers the celebrity has, often represented in millions or billions. Following: The number of accounts the celebrity follows, which may be represented as thousands (K) or just a number. Likes: The total number of likes the celebrity’s videos have received, often represented in millions or billions. T.Videos: The total number of videos posted by the celebrity. Video Duration: The typical duration of their videos, which ranges from a few seconds (e.g., 10 - 15 seconds) to over a minute. Average Views: The average number of views their videos receive, often in millions. Net Worth: The estimated net worth of the celebrity, often represented in millions or billions of dollars. Most Viewed Video: The number of views for their most popular video, usually in millions or billions. Most Liked Video: The number of likes for their most popular video, represented in millions or billions. Video Category: The types or categories of videos the celebrity posts, such as comedy, dance, acting, challenges, etc.

  3. The Invasion of Ukraine Viewed through TikTok: A Dataset

    • zenodo.org
    bin, csv +1
    Updated May 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Steel; Sara Parker; Derek Ruths; Benjamin Steel; Sara Parker; Derek Ruths (2023). The Invasion of Ukraine Viewed through TikTok: A Dataset [Dataset]. http://doi.org/10.5281/zenodo.7926959
    Explore at:
    text/x-python, bin, csvAvailable download formats
    Dataset updated
    May 13, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Benjamin Steel; Sara Parker; Derek Ruths; Benjamin Steel; Sara Parker; Derek Ruths
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Ukraine
    Description

    This is a dataset of videos and comments related to the invasion of Ukraine, published on TikTok by a number of users over the year of 2022. It was compiled by Benjamin Steel, Sara Parker and Derek Ruths at the Network Dynamics Lab, McGill University. We created this dataset to facilitate the study of TikTok, and the nature of social interaction on the platform relevant to a major political event.

    The dataset has been released here on Zenodo: https://doi.org/10.5281/zenodo.7926959 as well as on Github: https://github.com/networkdynamics/data-and-code/tree/master/ukraine_tiktok

    To create the dataset, we identified hashtags and keywords explicitly related to the conflict to collect a core set of videos (or ”TikToks”). We then compiled comments associated with these videos. All of the data captured is publically available information, and contains personally identifiable information. In total we collected approximately 16 thousand videos and 12 million comments, from approximately 6 million users. There are approximately 1.9 comments on average per user captured, and 1.5 videos per user who posted a video. The author personally collected this data using the web scraping PyTok library, developed by the author: https://github.com/networkdynamics/pytok.

    Due to scraping duration, this is just a sample of the publically available discourse concerning the invasion of Ukraine on TikTok. Due to the fuzzy search functionality of the TikTok, the dataset contains videos with a range of relatedness to the invasion.

    We release here the unique video IDs of the dataset in a CSV format. The data was collected without the specific consent of the content creators, so we have released only the data required to re-create it, to allow users to delete content from TikTok and be removed from the dataset if they wish. Contained in this repository are scripts that will automatically pull the full dataset, which will take the form of JSON files organised into a folder for each video. The JSON files are the entirety of the data returned by the TikTok API. We include a script to parse the JSON files into CSV files with the most commonly used data. We plan to further expand this dataset as collection processes progress and the war continues. We will version the dataset to ensure reproducibility.

    To build this dataset from the IDs here:

    1. Go to https://github.com/networkdynamics/pytok and clone the repo locally
    2. Run pip install -e . in the pytok directory
    3. Run pip install pandas tqdm to install these libraries if not already installed
    4. Run get_videos.py to get the video data
    5. Run video_comments.py to get the comment data
    6. Run user_tiktoks.py to get the video history of the users
    7. Run hashtag_tiktoks.py or search_tiktoks.py to get more videos from other hashtags and search terms
    8. Run load_json_to_csv.py to compile the JSON files into two CSV files, comments.csv and videos.csv

    If you get an error about the wrong chrome version, use the command line argument get_videos.py --chrome-version YOUR_CHROME_VERSION Please note pulling data from TikTok takes a while! We recommend leaving the scripts running on a server for a while for them to finish downloading everything. Feel free to play around with the delay constants to either speed up the process or avoid TikTok rate limiting.

    Please do not hesitate to make an issue in this repo to get our help with this!

    The videos.csv will contain the following columns:

    video_id: Unique video ID

    createtime: UTC datetime of video creation time in YYYY-MM-DD HH:MM:SS format

    author_name: Unique author name

    author_id: Unique author ID

    desc: The full video description from the author

    hashtags: A list of hashtags used in the video description

    share_video_id: If the video is sharing another video, this is the video ID of that original video, else empty

    share_video_user_id: If the video is sharing another video, this the user ID of the author of that video, else empty

    share_video_user_name: If the video is sharing another video, this is the user name of the author of that video, else empty

    share_type: If the video is sharing another video, this is the type of the share, stitch, duet etc.

    mentions: A list of users mentioned in the video description, if any

    The comments.csv will contain the following columns:

    comment_id: Unique comment ID

    createtime: UTC datetime of comment creation time in YYYY-MM-DD HH:MM:SS format

    author_name: Unique author name

    author_id: Unique author ID

    text: Text of the comment

    mentions: A list of users that are tagged in the comment

    video_id: The ID of the video the comment is on

    comment_language: The language of the comment, as predicted by the TikTok API

    reply_comment_id: If the comment is replying to another comment, this is the ID of that comment

    The date can be compiled into a user interaction network to facilitate study of interaction dynamics. There is code to help with that here: https://github.com/networkdynamics/polar-seeds. Additional scripts for further preprocessing of this data can be found there too.

  4. TikTokData.xlsx

    • figshare.com
    xlsx
    Updated Jun 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Zawacki (2022). TikTokData.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.20069333.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 14, 2022
    Dataset provided by
    figshare
    Authors
    Emily Zawacki
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We used TikTok’s built-in account analytics to download and record video and account metrics for the period between 10/8/2021 and 2/6/2022. We collected the following summary data for each individual video: video views, likes, comments, shares, total cumulative play time, average duration the video was watched, percentage of viewers who watched the full video, unique reached audience, and the percentage of video views by section (For You, personal profile, Following, hashtags).
    We evaluated the “success” of videos based on reach and engagement metrics, as well as viewer retention (how long a video is watched). We used metrics of reach (number of unique users the video was seen by) and engagement (likes, comments, and shares) to calculate the engagement rate of each video. The engagement rate is calculated as the engagement parameter as a percentage of total reach (e.g., Likes / Audience Reached *100).

  5. f

    Original data set used for the current study.

    • plos.figshare.com
    • figshare.com
    xlsx
    Updated Feb 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Genyan Jiang; Lei Chen; Lan Geng; Yuhan Zhang; Zhiqi Chen; Yaqi Zhu; Shuangshuang Ma; Mei Zhao (2025). Original data set used for the current study. [Dataset]. http://doi.org/10.1371/journal.pone.0316242.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 6, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Genyan Jiang; Lei Chen; Lan Geng; Yuhan Zhang; Zhiqi Chen; Yaqi Zhu; Shuangshuang Ma; Mei Zhao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundTikTok is an important channel for consumers to obtain and adopt health information. However, misinformation on TikTok could potentially impact public health. Currently, the quality of content related to GDM on TikTok has not been thoroughly reviewed.ObjectiveThis study aims to explore the information quality of GDM videos on TikTok.MethodsA comprehensive cross-sectional study was conducted on TikTok videos related to GDM. The quality of the videos was assessed using three standardized evaluation tools: DISCERN, the Journal of the American Medical Association (JAMA) benchmarks, and the Global Quality Scale (GQS). The comprehensiveness of the content was evaluated through six questions covering definitions, signs/symptoms, risk factors, evaluation, management, and outcomes. Additionally, a correlational analysis was conducted between video quality and the characteristics of the uploaders and the videos themselves.ResultsA total of 216 videos were included in the final analysis, with 162 uploaded by health professionals, 40 by general users, and the remaining videos contributed by individual science communicators, for-profit organizations, and news agencies. The average DISCERN, JAMA, and GQS scores for all videos were 48.87, 1.86, and 2.06, respectively. The videos uploaded by health professionals scored the highest in DISCERN, while the videos uploaded by individual science communicators scored significantly higher in JAMA and GQS than those from other sources. Correlation analysis between video quality and video features showed DISCERN scores, JAMA scores and GQS scores were positively correlated with video duration (P

  6. Instagram: distribution of global audiences 2024, by age group

    • statista.com
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stacy Jo Dixon (2024). Instagram: distribution of global audiences 2024, by age group [Dataset]. https://www.statista.com/topics/1164/social-networks/
    Explore at:
    Dataset updated
    Jul 16, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Stacy Jo Dixon
    Description

    As of April 2024, almost 32 percent of global Instagram audiences were aged between 18 and 24 years, and 30.6 percent of users were aged between 25 and 34 years. Overall, 16 percent of users belonged to the 35 to 44 year age group. Instagram users With roughly one billion monthly active users, Instagram belongs to the most popular social networks worldwide. The social photo sharing app is especially popular in India and in the United States, which have respectively 362.9 million and 169.7 million Instagram users each. Instagram features One of the most popular features of Instagram is Stories. Users can post photos and videos to their Stories stream and the content is live for others to view for 24 hours before it disappears. In January 2019, the company reported that there were 500 million daily active Instagram Stories users. Instagram Stories directly competes with Snapchat, another photo sharing app that initially became famous due to it’s “vanishing photos” feature. As of the second quarter of 2021, Snapchat had 293 million daily active users.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2022). TikTok Datasets [Dataset]. https://brightdata.com/products/datasets/tiktok
Organization logo

TikTok Datasets

Explore at:
.json, .csv, .xlsxAvailable download formats
Dataset updated
Sep 9, 2022
Dataset authored and provided by
Bright Datahttps://brightdata.com/
License

https://brightdata.com/licensehttps://brightdata.com/license

Area covered
Worldwide
Description

Use our TikTok profiles dataset to extract business and non-business information from complete public profiles and filter by account name, followers, create date, or engagement score. You may purchase the entire dataset or a customized subset depending on your needs. Popular use cases include sentiment analysis, brand monitoring, influencer marketing, and more. The TikTok dataset includes all major data points: timestamp, account name, nickname, bio,average engagement score, creation date, is_verified,l ikes, followers, external link in bio, and more. Get your TikTok dataset today!

Search
Clear search
Close search
Google apps
Main menu