Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.40 percent in the week ending November 21 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
30 Year Mortgage Rate in the United States decreased to 6.23 percent in November 26 from 6.26 percent in the previous week. This dataset includes a chart with historical data for the United States 30 Year Mortgage Rate.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The Federal Reserve sets interest rates to promote conditions that achieve the mandate set by the Congress — high employment, low and stable inflation, sustainable economic growth, and moderate long-term interest rates. Interest rates set by the Fed directly influence the cost of borrowing money. Lower interest rates encourage more people to obtain a mortgage for a new home or to borrow money for an automobile or for home improvement. Lower rates encourage businesses to borrow funds to invest in expansion such as purchasing new equipment, updating plants, or hiring more workers. Higher interest rates restrain such borrowing by consumers and businesses.
This dataset includes data on the economic conditions in the United States on a monthly basis since 1954. The federal funds rate is the interest rate at which depository institutions trade federal funds (balances held at Federal Reserve Banks) with each other overnight. The rate that the borrowing institution pays to the lending institution is determined between the two banks; the weighted average rate for all of these types of negotiations is called the effective federal funds rate. The effective federal funds rate is determined by the market but is influenced by the Federal Reserve through open market operations to reach the federal funds rate target. The Federal Open Market Committee (FOMC) meets eight times a year to determine the federal funds target rate; the target rate transitioned to a target range with an upper and lower limit in December 2008. The real gross domestic product is calculated as the seasonally adjusted quarterly rate of change in the gross domestic product based on chained 2009 dollars. The unemployment rate represents the number of unemployed as a seasonally adjusted percentage of the labor force. The inflation rate reflects the monthly change in the Consumer Price Index of products excluding food and energy.
The interest rate data was published by the Federal Reserve Bank of St. Louis' economic data portal. The gross domestic product data was provided by the US Bureau of Economic Analysis; the unemployment and consumer price index data was provided by the US Bureau of Labor Statistics.
How does economic growth, unemployment, and inflation impact the Federal Reserve's interest rates decisions? How has the interest rate policy changed over time? Can you predict the Federal Reserve's next decision? Will the target range set in March 2017 be increased, decreased, or remain the same?
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Sweden was last recorded at 1.75 percent. This dataset provides the latest reported value for - Sweden Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterMortgage rates surged at an unprecedented pace in 2022, with the average 10-year fixed rate doubling between March and December of that year. In response to mounting inflation, the Bank of England implemented a series of rate hikes, pushing borrowing costs steadily higher. By October 2025, the average 10-year fixed mortgage rate stood at **** percent. As financing becomes more expensive, housing demand has cooled, weighing on market sentiment and slowing house price growth. How have the mortgage hikes affected the market? After surging in 2021, the number of residential properties sold fell significantly in 2023, dipping to just above *** million transactions. This contraction in activity also dampened mortgage lending. Between the first quarter of 2023 and the first quarter of 2024, the value of new mortgage loans declined year-on-year for five consecutive quarters. Even as rates eased modestly in 2024 and housing activity picked up slightly, volumes remained well below the highs recorded in 2021. How are higher mortgages impacting homebuyers? For homeowners, the impact is being felt most acutely as fixed-rate deals expire. Mortgage terms in the UK typically range from two to ten years, and many borrowers who locked in historically low rates are now facing significantly higher repayments when refinancing. By the end of 2026, an estimated five million homeowners will see their mortgage deals expire. Roughly two million of these loans are projected to experience a monthly payment increase of up to *** British pounds by 2026, putting additional pressure on household budgets and constraining affordability across the market.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The interest rate set by the Federal Reserve is a crucial tool for promoting economic conditions that meet the mandate established by the United States Congress, which includes high employment, low and stable inflation, sustainable economic growth, and the moderation of long-term interest rates. The interest rates determined by the Fed directly influence the cost of credit, making financing either more accessible or more restrictive. When interest rates are low, there is a greater incentive for consumers to purchase homes through mortgages, finance automobiles, or undertake home renovations. Additionally, businesses are encouraged to invest in expanding their operations, whether by purchasing new equipment, modernizing facilities, or hiring more workers. Conversely, higher interest rates tend to curb such activity, discouraging borrowing and slowing economic expansion.
The dataset analyzed contains information on the economic conditions in the United States on a monthly basis since 1954, including the federal funds rate, which represents the percentage at which financial institutions trade reserves held at the Federal Reserve with each other in the interbank market overnight. This rate is determined by the market but is directly influenced by the Federal Reserve through open market operations to reach the established target. The Federal Open Market Committee (FOMC) meets eight times a year to determine the federal funds rate target, which has been defined within a range with upper and lower limits since December 2008.
Furthermore, real Gross Domestic Product (GDP) is calculated based on the seasonally adjusted quarterly rate of change in the economy, using chained 2009 dollars as a reference. The unemployment rate represents the seasonally adjusted percentage of the labor force that is unemployed. Meanwhile, the inflation rate is determined by the monthly change in the Consumer Price Index, excluding food and energy prices for a more stable analysis of core inflation.
The interest rate data was sourced from the Federal Reserve Bank of St. Louis' economic data portal, while GDP information was provided by the U.S. Bureau of Economic Analysis, and unemployment and inflation data were made available by the U.S. Bureau of Labor Statistics.
The analysis of this data helps to understand how economic growth, the unemployment rate, and inflation influence the Federal Reserve’s monetary policy decisions. Additionally, it allows for a study of the evolution of interest rate policies over time and raises the question of how predictable the Fed’s future decisions may be. Based on observed trends, it is possible to speculate whether the target range set in March 2017 will be maintained, lowered, or increased, considering the prevailing economic context and the challenges faced in conducting U.S. monetary policy.
Facebook
TwitterBy Jeff [source]
This dataset contains information on thousands of mortgage products available in the UK, including the interest rate, APR, revert rate, fees, and initial rate period. This data can be used to compare different mortgage products and find the best deal for your needs
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This dataset contains information on thousands of mortgage products available in the UK, including the interest rate, APR, revert rate, fees, and initial rate period.
To use this dataset, simply download it and then import it into your favorite spreadsheet program. You can then use the data to compare mortgage rates across different products and banks.
This dataset can be used to help you: - Compare mortgage rates from different banks - Find the best mortgage product for your needs - Understand how fees and other charges affect the overall cost of a mortgage
- Analysing the different mortgage products available on the market
- Benchmarking against other products in order to get a competitive rate
- Finding products that have low fees and revert rates
If you use this dataset in your research, please credit the original authors. Data Source
License
See the dataset description for more information.
File: UK_Mortgage_Rate.csv | Column name | Description | |:----------------------------|:----------------------------------------------------------------| | SKU | The product's SKU. (String) | | BANK_NAME | The name of the bank that offers the mortgage product. (String) | | MTG_PRODUCT_SUBTITLE | The subtitle of the mortgage product. (String) | | MTG_PRODUCT_TYPE_RAW | The raw product type of the mortgage product. (String) | | MTG_PRODUCT_YEARS | The number of years of the mortgage product. (Integer) | | MTG_INITIAL_RATE_PCT | The initial rate percentage of the mortgage product. (Float) | | MTG_APR_PCT | The APR percentage of the mortgage product. (Float) | | MTG_REVERT_RATE | The revert rate of the mortgage product. (Float) | | MTG_FEES_TOTAL | The total fees of the mortgage product. (Float) | | MTG_INITIAL_RATE_MONTHS | The initial rate months of the mortgage product. (Integer) | | SCAN_DATE | The date that the mortgage product was scanned. (Date) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Jeff.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This data set represents thousands of loans made through the Lending Club platform, which is a platform that allows individuals to lend to other individuals. Of course, not all loans are created equal. Someone who is a essentially a sure bet to pay back a loan will have an easier time getting a loan with a low interest rate than someone who appears to be riskier. And for people who are very risky? They may not even get a loan offer, or they may not have accepted the loan offer due to a high interest rate. It is important to keep that last part in mind, since this data set only represents loans actually made, i.e. do not mistake this data for loan applications!
A data frame with 10,000 observations on the following 55 variables.
Job title.
Number of years in the job, rounded down. If longer than 10 years, then this is represented by the value 10.
Two-letter state code.
The ownership status of the applicant's residence.
Annual income.
Type of verification of the applicant's income.
Debt-to-income ratio.
If this is a joint application, then the annual income of the two parties applying.
Type of verification of the joint income.
Debt-to-income ratio for the two parties.
Delinquencies on lines of credit in the last 2 years.
Months since the last delinquency.
Year of the applicant's earliest line of credit
Inquiries into the applicant's credit during the last 12 months.
Total number of credit lines in this applicant's credit history.
Number of currently open lines of credit.
Total available credit, e.g. if only credit cards, then the total of all the credit limits. This excludes a mortgage.
Total credit balance, excluding a mortgage.
Number of collections in the last 12 months. This excludes medical collections.
The number of derogatory public records, which roughly means the number of times the applicant failed to pay.
Months since the last time the applicant was 90 days late on a payment.
Number of accounts where the applicant is currently delinquent.
The total amount that the applicant has had against them in collections.
Number of installment accounts, which are (roughly) accounts with a fixed payment amount and period. A typical example might be a 36-month car loan.
Number of new lines of credit opened in the last 24 months.
Number of months since the last credit inquiry on this applicant.
Number of satisfactory accounts.
Number of current accounts that are 120 days past due.
Number of current accounts that are 30 days past due.
Number of currently active bank cards.
Total of all bank card limits.
Total number of credit card accounts in the applicant's history.
Total number of currently open credit card accounts.
Number of credit cards that are carrying a balance.
Number of mortgage accounts.
Percent of all lines of credit where the applicant was never delinquent.
a numeric vector
Number of bankruptcies listed in the public record for this applicant.
The category for the purpose of the loan.
The type of application: either individual or joint.
The amount of the loan the applicant received.
The number of months of the loan the applicant received.
Interest rate of the loan the applicant received.
Monthly payment for the loan the applicant received.
Grade associated with the loan.
Detailed grade associated with the loan.
Month the loan was issued.
Status of the loan.
Initial listing status of the loan. (I think this has to do with whether the lender provided the entire loan or if the loan is across multiple lenders.)
Dispersement method of the loan.
Current...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Lower Limit of First Home Mortgage Rate: above LPR: Beijing data was reported at -0.450 % Point in 02 Dec 2025. This stayed constant from the previous number of -0.450 % Point for 01 Dec 2025. Lower Limit of First Home Mortgage Rate: above LPR: Beijing data is updated daily, averaging 0.550 % Point from Oct 2019 (Median) to 02 Dec 2025, with 2248 observations. The data reached an all-time high of 0.550 % Point in 25 Jun 2024 and a record low of -0.450 % Point in 02 Dec 2025. Lower Limit of First Home Mortgage Rate: above LPR: Beijing data remains active status in CEIC and is reported by The People's Bank of China. The data is categorized under China Premium Database’s Money Market, Interest Rate, Yield and Exchange Rate – Table CN.MA: Lower Limit of First Home Mortgage Rate: Prefecture Level City. After adjustment on December 15, 2023: the lower limits of the first and second sets of interest rate policies in the six districts of the city are respectively no less than the market quoted interest rate for loans of the corresponding period plus 10 basis points, and no less than the market quoted interest rate for loans of the corresponding period plus 60 basis points; The lower limits of the first and second sets of interest rate policies in the six non-urban districts are not lower than the market quoted interest rate for loans of the corresponding period, and not lower than the market quoted interest rate for loans of the corresponding period plus 55 basis points.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Norway was last recorded at 4 percent. This dataset provides the latest reported value for - Norway Interest Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
Twitterhttps://seniorsfirst.com.au/website-terms/https://seniorsfirst.com.au/website-terms/
Dataset underlying the Seniors First reverse mortgage comparison widget. Displays indicative rate types, features, and eligibility details for multiple Australian reverse-mortgage providers. Data is aggregated and refreshed periodically for consumer education.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Dominican Republic DO: Lending Interest Rate data was reported at 15.084 % pa in 2016. This records an increase from the previous number of 14.877 % pa for 2015. Dominican Republic DO: Lending Interest Rate data is updated yearly, averaging 19.945 % pa from Dec 1996 (Median) to 2016, with 21 observations. The data reached an all-time high of 32.634 % pa in 2004 and a record low of 12.137 % pa in 2010. Dominican Republic DO: Lending Interest Rate data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Dominican Republic – Table DO.World Bank.WDI: Interest Rates. Lending rate is the bank rate that usually meets the short- and medium-term financing needs of the private sector. This rate is normally differentiated according to creditworthiness of borrowers and objectives of financing. The terms and conditions attached to these rates differ by country, however, limiting their comparability.; ; International Monetary Fund, International Financial Statistics and data files.; ;
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
🏦 Synthetic Loan Approval Dataset
A Realistic, High-Quality Dataset for Credit Risk Modelling
🎯 Why This Dataset?
Most loan datasets on Kaggle have unrealistic patterns where:
Unlike most loan datasets available online, this one is built on real banking criteria from US and Canadian financial institutions. Drawing from 3 years of hands-on finance industry experience, the dataset incorporates realistic correlations and business logic that reflect how actual lending decisions are made. This makes it perfect for data scientists looking to build portfolio projects that showcase not just coding ability, but genuine understanding of credit risk modelling.
📊 Dataset Overview
| Metric | Value |
|---|---|
| Total Records | 50,000 |
| Features | 20 (customer_id + 18 predictors + 1 target) |
| Target Distribution | 55% Approved, 45% Rejected |
| Missing Values | 0 (Complete dataset) |
| Product Types | Credit Card, Personal Loan, Line of Credit |
| Market | United States & Canada |
| Use Case | Binary Classification (Approved/Rejected) |
🔑 Key Features
Identifier:
-Customer ID (unique identifier for each application)
Demographics:
-Age, Occupation Status, Years Employed
Financial Profile:
-Annual Income, Credit Score, Credit History Length -Savings/Assets, Current Debt
Credit Behaviour:
-Defaults on File, Delinquencies, Derogatory Marks
Loan Request:
-Product Type, Loan Intent, Loan Amount, Interest Rate
Calculated Ratios:
-Debt-to-Income, Loan-to-Income, Payment-to-Income
💡 What Makes This Dataset Special?
1️⃣ Real-World Approval Logic The dataset implements actual banking criteria: - DTI ratio > 50% = automatic rejection - Defaults on file = instant reject - Credit score bands match real lending thresholds - Employment verification for loans ≥$20K
2️⃣ Realistic Correlations - Higher income → Better credit scores - Older applicants → Longer credit history - Students → Lower income, special treatment for small loans - Loan intent affects approval (Education best, Debt Consolidation worst)
3️⃣ Product-Specific Rules - Credit Cards: More lenient, higher limits - Personal Loans: Standard criteria, up to $100K - Line of Credit: Capped at $50K, manual review for high amounts
4️⃣ Edge Cases Included - Young applicants (age 18) building first credit - Students with thin credit files - Self-employed with variable income - High debt-to-income ratios - Multiple delinquencies
🎓 Perfect For - Machine Learning Practice: Binary classification with real patterns - Credit Risk Modelling: Learn actual lending criteria - Portfolio Projects: Build impressive, explainable models - Feature Engineering: Rich dataset with meaningful relationships - Business Analytics: Understand financial decision-making
📈 Quick Stats
Approval Rates by Product - Credit Card: 60.4% more lenient) - Personal Loan: 46.9 (standard) - Line of Credit: 52.6% (moderate)
Loan Intent (Best → Worst Approval Odds) 1. Education (63% approved) 2. Personal (58% approved) 3. Medical/Home (52% approved) 4. Business (48% approved) 5. Debt Consolidation (40% approved)
Credit Score Distribution - Mean: 644 - Range: 300-850 - Realistic bell curve around 600-700
Income Distribution - Mean: $50,063 - Median: $41,608 - Range: $15K - $250K
🎯 Expected Model Performance
With proper feature engineering and tuning: - Accuracy: 75-85% - ROC-AUC: 0.80-0.90 - F1-Score: 0.75-0.85
Important: Feature importance should show: 1. Credit Score (most important) 2. Debt-to-Income Ratio 3. Delinquencies 4. Loan Amount 5. Income
If your model shows different patterns, something's wrong!
🏆 Use Cases & Projects
Beginner - Binary classification with XGBoost/Random Forest - EDA and visualization practice - Feature importance analysis
Intermediate - Custom threshold optimization (profit maximization) - Cost-sensitive learning (false positive vs false negative) - Ensemble methods and stacking
Advanced - Explainable AI (SHAP, LIME) - Fairness analysis across demographics - Production-ready API with FastAPI/Flask - Streamlit deployment with business rules
⚠️ Important Notes
This is SYNTHETIC Data - Generated based on real banking criteria - No real customer data was used - Safe for public sharing and portfolio use
Limitations - Simplified approval logic (real banks use 100+ factors) - No temporal component (no time series) - Single country/currency assumed (USD) - No external factors (economy, market conditions)
Educational Purpose This dataset is designed for: - Learning credit risk modeling - Portfolio projects - ML practice - Understanding lending criteria
NOT for: - Actual lending decisions - Financial advice - Production use without validation
🤝 Contributing
Found an issue? Have suggestions? - Open an issue on GitHub - Suggest i...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Switzerland Mortgage Rate: Fixed: by Maturity: 5 Years data was reported at 1.252 % pa in Sep 2018. This records an increase from the previous number of 1.201 % pa for Aug 2018. Switzerland Mortgage Rate: Fixed: by Maturity: 5 Years data is updated monthly, averaging 1.580 % pa from Jan 2008 (Median) to Sep 2018, with 129 observations. The data reached an all-time high of 4.500 % pa in Jun 2008 and a record low of 1.170 % pa in May 2017. Switzerland Mortgage Rate: Fixed: by Maturity: 5 Years data remains active status in CEIC and is reported by Swiss National Bank. The data is categorized under Global Database’s Switzerland – Table CH.M005: Mortgage Rates.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Comprehensive proprietary research analyzing 312,367 assumable mortgage homes from 2023-2025 across all 50 states, including interest rates, savings analysis, state distribution, price ranges, and down payment requirements.
Facebook
Twitterhttps://cdla.io/sharing-1-0/https://cdla.io/sharing-1-0/
The property listings dataset contains information about real estate properties available for sale or rent in Brazil. It includes details such as property type (apartment, house, commercial property), location (city, neighborhood), size (square footage, number of rooms), price, amenities, and contact information for the property owner or real estate agent. This dataset can be used for market analysis, property valuation, and identifying trends in the real estate market.
Sales and Rental Prices Dataset: The sales and rental prices dataset provides information about the prices of real estate properties in Brazil. It includes data on property transactions, including sale prices and rental prices per square meter or per month. This dataset can be used to analyze price trends, compare property prices across different regions, and identify areas with high or low real estate market demand.
Property Characteristics Dataset: The property characteristics dataset contains detailed information about the features and attributes of real estate properties. It includes data such as the number of bedrooms, bathrooms, parking spaces, floor plan, construction year, building amenities, and property condition. This dataset can be used for property classification, identifying popular property features, and evaluating property quality.
Geographical Data: Geographical data includes information about the location and spatial features of real estate properties in Brazil. It can include data such as latitude and longitude coordinates, zoning information, proximity to amenities (schools, hospitals, parks), and neighborhood demographics. This dataset can be used for spatial analysis, identifying hotspots or desirable locations, and understanding the neighborhood characteristics.
Property Market Trends Dataset: The property market trends dataset provides information about market conditions and trends in the real estate sector in Brazil. It includes data such as the number of property listings, average time on the market, price fluctuations, mortgage interest rates, and economic indicators that impact the real estate market. This dataset can be used for market forecasting, understanding market dynamics, and making informed investment decisions.
Real Estate Regulatory Data: Real estate regulatory data includes information about legal and regulatory aspects of the real estate sector in Brazil. It can include data on property ownership, property taxes, zoning regulations, building permits, and legal restrictions on property transactions. This dataset can be used for legal compliance, understanding property ownership rights, and assessing the legal framework for real estate transactions.
Historical Data: Historical real estate data includes past records and trends of property prices, market conditions, and sales volumes in Brazil. This dataset can span several years and can be used to analyze long-term market trends, compare current market conditions with historical data, and assess the performance of the real estate market over time.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The benchmark interest rate in Japan was last recorded at 0.50 percent. This dataset provides - Japan Interest Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterHave you ever wondered how lenders use various factors such as credit score, annual income, the loan amount approved, tenure, debt-to-income ratio etc. and select your interest rates?
The process, defined as ‘risk-based pricing’, uses a sophisticated algorithm that leverages different determining factors of a loan applicant. Selection of significant factors will help develop a prediction algorithm which can estimate loan interest rates based on clients’ information. On one hand, knowing the factors will help consumers and borrowers to increase their credit worthiness and place themselves in a better position to negotiate for getting a lower interest rate. On the other hand, this will help lending companies to get an immediate fixed interest rate estimation based on clients information. Here, your goal is to use a training dataset to predict the loan rate category (1 / 2 / 3) that will be assigned to each loan in our test set.
You can use any combination of the features in the dataset to make your loan rate category predictions. Some features will be easier to use than others.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains the customer's data from a loan company known as Prosper. This dataset comprises of 113,937 loans with 81 variables on each loan, including loan amount, borrower rate (or interest rate), current loan status, borrower income, and many others.
Definition of Variables:
ListingKey: Unique key for each listing, same value as the 'key' used in the listing object in the API. ListingNumber: The number that uniquely identifies the listing to the public as displayed on the website. ListingCreationDate: The date the listing was created. CreditGrade: The Credit rating that was assigned at the time the listing went live. Applicable for listings pre-2009 period and will only be populated for those listings. Term: The length of the loan expressed in months. LoanStatus: The current status of the loan: Cancelled, Chargedoff, Completed, Current, Defaulted, FinalPaymentInProgress, PastDue. The PastDue status will be accompanied by a delinquency bucket. ClosedDate: Closed date is applicable for Cancelled, Completed, Chargedoff and Defaulted loan statuses. BorrowerAPR: The Borrower's Annual Percentage Rate (APR) for the loan. BorrowerRate: The Borrower's interest rate for this loan. LenderYield: The Lender yield on the loan. Lender yield is equal to the interest rate on the loan less the servicing fee. EstimatedEffectiveYield: Effective yield is equal to the borrower interest rate (i) minus the servicing fee rate, (ii) minus estimated uncollected interest on charge-offs, (iii) plus estimated collected late fees. Applicable for loans originated after July 2009. EstimatedLoss: Estimated loss is the estimated principal loss on charge-offs. Applicable for loans originated after July 2009. EstimatedReturn: The estimated return assigned to the listing at the time it was created. Estimated return is the difference between the Estimated Effective Yield and the Estimated Loss Rate. Applicable for loans originated after July 2009. ProsperRating (numeric): The Prosper Rating assigned at the time the listing was created: 0 - N/A, 1 - HR, 2 - E, 3 - D, 4 - C, 5 - B, 6 - A, 7 - AA. Applicable for loans originated after July 2009. ProsperRating (Alpha): The Prosper Rating assigned at the time the listing was created between AA - HR. Applicable for loans originated after July 2009. ProsperScore: A custom risk score built using historical Prosper data. The score ranges from 1-10, with 10 being the best, or lowest risk score. Applicable for loans originated after July 2009. ListingCategory: The category of the listing that the borrower selected when posting their listing: 0 - Not Available, 1 - Debt Consolidation, 2 - Home Improvement, 3 - Business, 4 - Personal Loan, 5 - Student Use, 6 - Auto, 7- Other, 8 - Baby&Adoption, 9 - Boat, 10 - Cosmetic Procedure, 11 - Engagement Ring, 12 - Green Loans, 13 - Household Expenses, 14 - Large Purchases, 15 - Medical/Dental, 16 - Motorcycle, 17 - RV, 18 - Taxes, 19 - Vacation, 20 - Wedding Loans BorrowerState: The two letter abbreviation of the state of the address of the borrower at the time the Listing was created. Occupation: The Occupation selected by the Borrower at the time they created the listing. EmploymentStatus: The employment status of the borrower at the time they posted the listing. EmploymentStatusDuration: The length in months of the employment status at the time the listing was created. IsBorrowerHomeowner: A Borrower will be classified as a homowner if they have a mortgage on their credit profile or provide documentation confirming they are a homeowner. CurrentlyInGroup: Specifies whether or not the Borrower was in a group at the time the listing was created. GroupKey: The Key of the group in which the Borrower is a member of. Value will be null if the borrower does not have a group affiliation. DateCreditPulled: The date the credit profile was pulled. CreditScoreRangeLower: The lower value representing the range of the borrower's credit score as provided by a consumer credit rating agency. CreditScoreRangeUpper: The upper value representing the range of the borrower's credit score as provided by a consumer credit rating agency. FirstRecordedCreditLine: The date the first credit line was opened. CurrentCreditLines: Number of current credit lines at the time the credit profile was pulled. OpenCreditLines: Number of open credit lines at the time the credit profile was pulled. TotalCreditLinespast7years: Number of credit lines in the past seven years at the time the credit profile was pulled. OpenRevolvingAccounts: Number of open revolving accounts at the time the credit profile was pulled. OpenRevolvingMonthlyPayment: Monthly payment on revolving accounts at the time the credit profile was pulled. InquiriesLast6Months: Number of inquiries in the past six months at the time the cre...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fixed 30-year mortgage rates in the United States averaged 6.40 percent in the week ending November 21 of 2025. This dataset provides the latest reported value for - United States MBA 30-Yr Mortgage Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.