39 datasets found
  1. Single year of age and average age of death of people whose death was due to...

    • ons.gov.uk
    xlsx
    Updated Aug 23, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/singleyearofageandaverageageofdeathofpeoplewhosedeathwasduetoorinvolvedcovid19
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 23, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.

  2. n

    Coronavirus (Covid-19) Data in the United States

    • nytimes.com
    • openicpsr.org
    • +4more
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html
    Explore at:
    Dataset provided by
    New York Times
    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  3. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +2more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  4. D

    Provisional COVID-19 Deaths: Focus on Ages 0-18 Years

    • data.cdc.gov
    • data.virginia.gov
    • +5more
    csv, xlsx, xml
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NCHS/DVS (2023). Provisional COVID-19 Deaths: Focus on Ages 0-18 Years [Dataset]. https://data.cdc.gov/widgets/nr4s-juj3?mobile_redirect=true
    Explore at:
    csv, xml, xlsxAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset authored and provided by
    NCHS/DVS
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    Effective June 28, 2023, this dataset will no longer be updated. Similar data are accessible from CDC WONDER (https://wonder.cdc.gov/mcd-icd10-provisional.html).

    Deaths involving coronavirus disease 2019 (COVID-19) with a focus on ages 0-18 years in the United States.

  5. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • healthdata.gov
    • +1more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/w/3rge-nu2a/tdwk-ruhb?cur=9Dqe1nvydOt
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  6. Covid19 Global Excess Deaths (daily updates)

    • kaggle.com
    zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2025). Covid19 Global Excess Deaths (daily updates) [Dataset]. https://www.kaggle.com/datasets/joebeachcapital/covid19-global-excess-deaths-daily-updates
    Explore at:
    zip(2989004967 bytes)Available download formats
    Dataset updated
    Dec 2, 2025
    Authors
    Joakim Arvidsson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Daily updates of Covid-19 Global Excess Deaths from the Economist's GitHub repository: https://github.com/TheEconomist/covid-19-the-economist-global-excess-deaths-model

    Interpreting estimates

    Estimating excess deaths for every country every day since the pandemic began is a complex and difficult task. Rather than being overly confident in a single number, limited data means that we can often only give a very very wide range of plausible values. Focusing on central estimates in such cases would be misleading: unless ranges are very narrow, the 95% range should be reported when possible. The ranges assume that the conditions for bootstrap confidence intervals are met. Please see our tracker page and methodology for more information.

    New variants

    The Omicron variant, first detected in southern Africa in November 2021, appears to have characteristics that are different to earlier versions of sars-cov-2. Where this variant is now dominant, this change makes estimates uncertain beyond the ranges indicated. Other new variants may do the same. As more data is incorporated from places where new variants are dominant, predictions improve.

    Non-reporting countries

    Turkmenistan and the Democratic People's Republic of Korea have not reported any covid-19 figures since the start of the pandemic. They also have not published all-cause mortality data. Exports of estimates for the Democratic People's Republic of Korea have been temporarily disabled as it now issues contradictory data: reporting a significant outbreak through its state media, but zero confirmed covid-19 cases/deaths to the WHO.

    Acknowledgements

    A special thanks to all our sources and to those who have made the data to create these estimates available. We list all our sources in our methodology. Within script 1, the source for each variable is also given as the data is loaded, with the exception of our sources for excess deaths data, which we detail in on our free-to-read excess deaths tracker as well as on GitHub. The gradient booster implementation used to fit the models is aGTBoost, detailed here.

    Calculating excess deaths for the entire world over multiple years is both complex and imprecise. We welcome any suggestions on how to improve the model, be it data, algorithm, or logic. If you have one, please open an issue.

    The Economist would also like to acknowledge the many people who have helped us refine the model so far, be it through discussions, facilitating data access, or offering coding assistance. A special thanks to Ariel Karlinsky, Philip Schellekens, Oliver Watson, Lukas Appelhans, Berent Å. S. Lunde, Gideon Wakefield, Johannes Hunger, Carol D'Souza, Yun Wei, Mehran Hosseini, Samantha Dolan, Mollie Van Gordon, Rahul Arora, Austin Teda Atmaja, Dirk Eddelbuettel and Tom Wenseleers.

    All coding and data collection to construct these models (and make them update dynamically) was done by Sondre Ulvund Solstad. Should you have any questions about them after reading the methodology, please open an issue or contact him at sondresolstad@economist.com.

    Suggested citation The Economist and Solstad, S. (corresponding author), 2021. The pandemic’s true death toll. [online] The Economist. Available at: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates [Accessed ---]. First published in the article "Counting the dead", The Economist, issue 20, 2021.

  7. COVID-19 Cases and Deaths by Race/Ethnicity

    • kaggle.com
    zip
    Updated Jul 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mukharbek Organokov (2020). COVID-19 Cases and Deaths by Race/Ethnicity [Dataset]. https://www.kaggle.com/muhakabartay/covid19-cases-and-deaths-by-raceethnicity
    Explore at:
    zip(54595 bytes)Available download formats
    Dataset updated
    Jul 10, 2020
    Authors
    Mukharbek Organokov
    License

    https://www.usa.gov/government-works/https://www.usa.gov/government-works/

    Description

    Context

    COVID-19 Cases and Deaths by Race/Ethnicity

    Content

    COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update.

    The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates.

    The age-adjusted rates are directly standardized using the 2018 ASRH Connecticut population estimate denominators (available here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Annual-State--County-Population-with-Demographics).

    Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age-adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic.

    This dataset will be updated on a daily basis. Data are subject to future revision as reporting changes.

    Starting in July 2020, this dataset will be updated every weekday.

    Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020.

    A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differs from the timestamp in DPH's daily PDF reports.

    Acknowledgements

    Thanks to catalog.data.gov.

  8. Deaths by vaccination status, England

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Aug 25, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Deaths by vaccination status, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/deathsbyvaccinationstatusengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Aug 25, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.

  9. Z

    Life table data for "Bounce backs amid continued losses: Life expectancy...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Schöley, Jonas; Aburto, José Manuel; Kashnitsky, Ilya; Kniffka, Maxi S.; Zhang, Luyin; Jaadla, Hannaliis; Dowd, Jennifer B.; Kashyap, Ridhi (2022). Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6241024
    Explore at:
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Cambridge Group for the History of Population and Social Structure, Department of Geography, University of Cambridge
    Leverhulme Centre for Demographic Science and Department of Sociology, University of Oxford
    Interdisciplinary Centre on Population Dynamics, University of Southern Denmark
    Max Planck Institute for Demographic Research, Rostock
    Authors
    Schöley, Jonas; Aburto, José Manuel; Kashnitsky, Ilya; Kniffka, Maxi S.; Zhang, Luyin; Jaadla, Hannaliis; Dowd, Jennifer B.; Kashyap, Ridhi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    40-lifetables.csv

    Life table statistics 2015 through 2021 by sex, region and quarter with uncertainty quantiles based on Poisson replication of death counts. Actual life tables and expected life tables (under the assumption of pre-COVID mortality trend continuation) are provided.

    30-lt_input.csv

    Life table input data.

    id: unique row identifier

    region_iso: iso3166-2 region codes

    sex: Male, Female, Total

    year: iso year

    age_start: start of age group

    age_width: width of age group, Inf for age_start 100, otherwise 1

    nweeks_year: number of weeks in that year, 52 or 53

    death_total: number of deaths by any cause

    population_py: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)

    death_total_nweeksmiss: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)

    death_total_minnageraw: the minimum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_maxnageraw: the maximum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_minopenageraw: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_maxopenageraw: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_source: source of the all-cause death data

    death_total_prop_q1: observed proportion of deaths in first quarter of year

    death_total_prop_q2: observed proportion of deaths in second quarter of year

    death_total_prop_q3: observed proportion of deaths in third quarter of year

    death_total_prop_q4: observed proportion of deaths in fourth quarter of year

    death_expected_prop_q1: expected proportion of deaths in first quarter of year

    death_expected_prop_q2: expected proportion of deaths in second quarter of year

    death_expected_prop_q3: expected proportion of deaths in third quarter of year

    death_expected_prop_q4: expected proportion of deaths in fourth quarter of year

    population_midyear: midyear population (July 1st)

    population_source: source of the population count/exposure data

    death_covid: number of deaths due to covid

    death_covid_date: number of deaths due to covid as of

    death_covid_nageraw: the number of age groups in the covid input data

    ex_wpp_estimate: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year

    ex_hmd_estimate: life expectancy estimates from the Human Mortality Database

    nmx_hmd_estimate: death rate estimates from the Human Mortality Database

    nmx_cntfc: Lee-Carter death rate projections based on trend in the years 2015 through 2019

    Deaths

    source:

    STMF input data series (https://www.mortality.org/Public/STMF/Outputs/stmf.csv)

    ONS for GB-EAW pre 2020

    CDC for US pre 2020

    STMF:

    harmonized to single ages via pclm

    pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110

    smoothing parameters estimated via BIC grid search seperately for every pclm iteration

    last age group set to [110,111)

    ages 100:110+ are then summed into 100+ to be consistent with mid-year population information

    deaths in unknown weeks are considered; deaths in unknown ages are not considered

    ONS:

    data already in single ages

    ages 100:105+ are summed into 100+ to be consistent with mid-year population information

    PCLM smoothing applied to for consistency reasons

    CDC:

    The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data

    Population

    source:

    for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019

    for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100

    mid-year population

    mid-year population translated into exposures:

    if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates

    if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.

    COVID deaths

    source: COVerAGE-DB (https://osf.io/mpwjq/)

    the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total

    External life expectancy estimates

    source:

    World Population Prospects (https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/CSV_FILES/WPP2019_Life_Table_Medium.csv), estimates for the five year period 2015-2019

    Human Mortality Database (https://mortality.org/), single year and age tables

  10. m

    DataCOVID

    • data.mendeley.com
    Updated Mar 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leopoldo Muniz da Silva (2022). DataCOVID [Dataset]. http://doi.org/10.17632/sxvvyzzd6t.1
    Explore at:
    Dataset updated
    Mar 31, 2022
    Authors
    Leopoldo Muniz da Silva
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    DATABASE - This was a longitudinal retrospective cohort study of patients ≥20 years-old who were hospitalised due to COVID-19 in 52 hospitals comprising a private Brazilian healthcare network (Rede D’Or São Luiz). Participating institutions were tertiary hospitals distributed across four (Northeast, Central-West, Southeast, and South) of Brazil’s five macro-regions. Data were extracted from the institutional central database comprised of COVID-19 diagnoses and related deaths (both of which are of compulsory notification to the BMH). Participating hospitals utilized a standardized data collection model including weekly reporting to the BMH. The study period included the first 13 months of the pandemic, i.e., from March 1st, 2020 to March 31st, 2021. All patients hospitalised due to COVID-19 (as the primary diagnosis upon admission) who were either discharged or died were included

  11. Data from: Risk factors for critical illness and death among adult...

    • scielo.figshare.com
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Isabela Silva; Natália Cristina de Faria; Álida Rosária Silva Ferreira; Lucilene Rezende Anastácio; Lívia Garcia Ferreira (2023). Risk factors for critical illness and death among adult Brazilians with COVID-19 [Dataset]. http://doi.org/10.6084/m9.figshare.19940494.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    SciELOhttp://www.scielo.org/
    Authors
    Isabela Silva; Natália Cristina de Faria; Álida Rosária Silva Ferreira; Lucilene Rezende Anastácio; Lívia Garcia Ferreira
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 has infected more than 9,834,513 Brazilians up to February 2021. Knowledge of risk factors of coronavirus disease among Brazilians remains scarce, especially in the adult population. This study verified the risk factors for intensive care unit admission and mortality for coronavirus disease among 20-59-year-old Brazilians. METHODS: A Brazilian database on respiratory illness was analyzed on October 9, 2020, to gather data on age, sex, ethnicity, education, housing area, and comorbidities (cardiovascular disease, diabetes, and obesity). Multivariate logistic regression analysis was performed to identify the risk factors for coronavirus disease. RESULTS: Overall, 1,048,575 persons were tested for coronavirus disease; among them, 43,662 were admitted to the intensive care unit, and 34,704 patients died. Male sex (odds ratio=1.235 and 1.193), obesity (odds ratio=1.941 and 1.889), living in rural areas (odds ratio=0.855 and 1.337), and peri-urban areas (odds ratio=1.253 and 1.577) were predictors of intensive care unit admission and mortality, respectively. Cardiovascular disease (odds ratio=1.552) was a risk factor for intensive care unit admission. Indigenous people had reduced chances (odds ratio=0.724) for intensive care unit admission, and black, mixed, East Asian, and indigenous ethnicity (odds ratio=1.756, 1.564, 1.679, and 1.613, respectively) were risk factors for mortality. CONCLUSIONS: Risk factors for intensive care unit admission and mortality among adult Brazilians were higher in men, obese individuals, and non-urban areas. Obesity was the strongest risk factor for intensive care unit admission and mortality.

  12. Excess mortality by month

    • ec.europa.eu
    Updated Sep 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Excess mortality by month [Dataset]. http://doi.org/10.2908/DEMO_MEXRT
    Explore at:
    tsv, application/vnd.sdmx.data+csv;version=2.0.0, application/vnd.sdmx.data+csv;version=1.0.0, application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+xml;version=3.0.0, jsonAvailable download formats
    Dataset updated
    Sep 16, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2020 - Jun 2025
    Area covered
    Romania, Finland, Hungary, Latvia, Norway, Malta, Germany, France, Lithuania, Poland
    Description

    The monthly excess mortality indicator is based on the exceptional data collection on weekly deaths that Eurostat and the National Statistical Institutes set up, in April 2020, in order to support the policy and research efforts related to the COVID-19 pandemic. With that data collection, Eurostat's target was to provide quickly statistics assessing the changing situation of the total number of deaths on a weekly basis, from early 2020 onwards.

    The National Statistical Institutes transmit available data on total weekly deaths, classified by sex, 5-year age groups and NUTS3 regions (NUTS2021) over the last 20 years, on a voluntary basis. The resulting online tables, and complementary metadata, are available in the folder Weekly deaths - special data collection (demomwk).

    Starting in 2025, the weekly deaths data collected on a quarterly basis. The database updated on the 16th of June 2025 (1st quarter), on the 16 th of September 2025 (2nd quarter), and next update will be in mid-December 2025 (3rd quarter), and mid-February 2026 (4th quarter).

    In December 2020, Eurostat released the European Recovery Statistical Dashboard containing also indicators tracking economic and social developments, including health. In this context, “excess mortality” offers elements for monitoring and further analysing direct and indirect effects of the COVID-19 pandemic.

    The monthly excess mortality indicator draws attention to the magnitude of the crisis by providing a comprehensive comparison of additional deaths amongst the European countries and allowing for further analysis of its causes. The number of deaths from all causes is compared with the expected number of deaths during a certain period in the past (baseline period, 2016-2019).

    The reasons that excess mortality may vary according to different phenomena are that the indicator is comparing the total number of deaths from all causes with the expected number of deaths during a certain period in the past (baseline). While a substantial increase largely coincides with a COVID-19 outbreak in each country, the indicator does not make a distinction between causes of death. Similarly, it does not take into account changes over time and differences between countries in terms of the size and age/sex structure of the population Statistics on excess deaths provide information about the burden of mortality potentially related to the COVID-19 pandemic, thereby covering not only deaths that are directly attributed to the virus but also those indirectly related to or even due to another reason. For example, In July 2022, several countries recorded unusually high numbers of excess deaths compared to the same month of 2020 and 2021, a situation probably connected not only to COVID-19 but also to the heatwaves that affected parts of Europe during the reference period.


    In addition to confirmed deaths, excess mortality captures COVID-19 deaths that were not correctly diagnosed and reported, as well as deaths from other causes that may be attributed to the overall crisis. It also accounts for the partial absence of deaths from other causes like accidents that did not occur due, for example, to the limitations in commuting or travel during the lockdown periods.

  13. o

    WPS 9673 - Death and Destitution : The Global Distribution of Welfare Losses...

    • data.opendata.am
    Updated Jul 7, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). WPS 9673 - Death and Destitution : The Global Distribution of Welfare Losses from the COVID-19 Pandemic - Dataset - Data Catalog Armenia [Dataset]. https://data.opendata.am/dataset/dcwb0037527
    Explore at:
    Dataset updated
    Jul 7, 2023
    Description

    The COVID-19 pandemic has brought about massive declines in well-being around the world. This paper seeks to quantify and compare two important components of those losses—increased mortality and higher poverty—using years of human life as a common metric. The paper estimates that almost 20 million life-years were lost to COVID-19 by December 2020. Over the same period and by the most conservative definition, more than 120 million additional years were spent in poverty because of the pandemic. The mortality burden, whether estimated in lives or years of life lost, increases sharply with gross domestic product per capita. By contrast, the poverty burden declines with per capita national income when a constant absolute poverty line is used, or is uncorrelated with national income when a more relative approach is taken to poverty lines. In both cases, the poverty burden of the pandemic, relative to the mortality burden, is much higher for poor countries. The distribution of aggregate welfare losses—combining mortality and poverty and expressed in terms of life-years —depends on the choice of poverty line(s) and the relative weights placed on mortality and poverty. With a constant absolute poverty line and a relatively low welfare weight on mortality, poorer countries are found to bear a greater welfare loss from the pandemic. When poverty lines are set differently for poor, middle-income, and high-income countries and/or a greater welfare weight is placed on mortality, upper-middle-income and rich countries suffer the most.

  14. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  15. Deaths by week, sex, 5-year age group and NUTS 3 region

    • ec.europa.eu
    Updated Oct 10, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eurostat (2025). Deaths by week, sex, 5-year age group and NUTS 3 region [Dataset]. http://doi.org/10.2908/DEMO_R_MWEEK3
    Explore at:
    application/vnd.sdmx.data+csv;version=1.0.0, json, tsv, application/vnd.sdmx.data+csv;version=2.0.0, application/vnd.sdmx.genericdata+xml;version=2.1, application/vnd.sdmx.data+xml;version=3.0.0Available download formats
    Dataset updated
    Oct 10, 2025
    Dataset authored and provided by
    Eurostathttps://ec.europa.eu/eurostat
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Friuli-Venezia Giulia, Dobrich, Glarus, Västra Götalands län, Tyneside (NUTS 2021), Breckland & South Norfolk (NUTS 2021), Zuidwest-Gelderland, Bouches-du-Rhône, Basel-Stadt, Languedoc-Roussillon
    Description

    In April 2020 Eurostat set up an exceptional data collection on total weekly deaths, in order to support the policy and research efforts related to Covid-19. With this data collection, Eurostat's target was to provide quickly statistics that show the changing situation of the total number of weekly deaths from early 2020 onwards.

    The available data on the total weekly deaths are transmitted by the National Statistical Institutes to Eurostat on voluntary basis. Data are collected cross classified by sex, 5-year age-groups and NUTS3 region (NUTS2021). The age breakdown by 5-year age group is the most significant and should be considered by the reporting countries as the main option; when that is not possible, data may be provided with less granularity. Similar with the regional structure, data granularity varies with the country.

    Eurostat requested from the National Statistical Institutes the transmission of a back time series of weekly deaths for as many year as possible, recommending as starting point the year 2000. Shorter time series, imposed by data availability, are transmitted by some countries. A long enough time series is necessary for temporal comparisons and statistical modelling.

    A note on Ireland: Data from Ireland were not included in the first phase of the weekly deaths data collection: official timely data were not available because deaths can be registered up to three months after the date of death. Because of the COVID-19 pandemic, the Central Statistics Office of Ireland began to explore experimental ways of obtaining up-to-date mortality data, finding a strong correlation between death notices published on RIP.ie and official mortality statistics. Recently, CSO Ireland started publishing a time series covering the period from October 2019 until the most recent weeks, using death notices (see CSO website). For the purpose of this release, Eurostat compared the new 2020-2021 web-scraped series with a 2016-2019 baseline established using official data. CSO is periodically assessing the quality of these data.

    The purpose of Eurostat’s online tables in the folder Weekly deaths - special data collection (demomwk) is to make available to users information on the weekly number of deaths disaggregated by sex, 5 years age group and NUTS3 regions over the last 20 years, depending on the availability in each country covered in Eurostat demographic statistics data collections. In order to ensure the highest timeliness possible, data are made available as reported by the countries, and work is ongoing in order to improve data quality and user friendliness.

    Starting in 2025, the weekly deaths data is collected on a quarterly basis. The database updates are expected by mid-June (release of monthly data for 1st quarter of the year), mid-September (2nd quarter), mid-December (3rd quarter), and mid-February (4th quarter).

  16. f

    COVID speed reach and spread dataset (.csv file)

    • figshare.com
    xlsx
    Updated Jan 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandre Augusto de Paula da Silva; Rodrigo Reis; Franciele Iachecen; Fabio Duarte; Cristina Pellegrino Baena; Adriano Akira Hino (2024). COVID speed reach and spread dataset (.csv file) [Dataset]. http://doi.org/10.6084/m9.figshare.24999911.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jan 15, 2024
    Dataset provided by
    figshare
    Authors
    Alexandre Augusto de Paula da Silva; Rodrigo Reis; Franciele Iachecen; Fabio Duarte; Cristina Pellegrino Baena; Adriano Akira Hino
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    City level open access data from 26 States and the Federal District and from the Brazilian Institute of Geography and Statistics (IBGE) [20], the Department of Informatics of Brazilian Public Health System – DATASUS, Ministry of Health, the Brazilian Agricultural Research Corporation (Embrapa) and from Brazil.io. Data from all 5,570 cities in Brazil were included in the analysis. COVID-19 data included cases and deaths reported between February 26th, 2020 and February 4th, 2021. The following outcomes were computed: a) days between the first case in Brazil until the first case in the city; b) days between the first case in the city until the day when 1,000 cases were reported; and c) days between the first death in city until the day when 50 deaths inhabitants were reported. Descriptive analyses were performed on the following: proportion of cities reaching 1,000 cases; number of cases at three, six, nine and 12 months after first case; cities reporting at least one COVID-19 related death; number of COVID-19 related deaths at three, six, nine and 12 months after first death in the country. All incidence data is adjusted for 100,000 inhabitants.The following covariates were included: a) geographic region where the city is located (Midwest, North, Northeast, Southeast and South), metropolitan city (no/yes) and urban or rural; b) social and environmental city characteristics [total area (Km2), urban area (Km2), population size (inhabitants), population living within urban area (inhabitants), population older than 60 years (%), indigenous population (%), black population (%), illiterate older than 25 years (%) and city in extreme poverty (no/yes)]; c) housing conditions [household with density >2 per dormitory (%), household with garbage collection (%), household connected to the water supply system (%) and household connected to the sewer system (%)]; d) job characteristics [commerce (%) and informal workers (%)]; e) socioeconomic and inequalities characteristics [GINI index; income per capita; poor or extremely poor (%) and households in informal urban settlements (%)]; f) health services access and coverage [number of National Public Health System (SUS) physicians per inhabitants (100,000 inhabitants), number of SUS nurses per inhabitants (100,000 inhabitants), number of intensive care units or ICU per inhabitants (100,000 inhabitants). All health services access and coverage variables were standardized using z-scores, combined into one single variable categorized into tertiles.

  17. f

    Data_Sheet_1_Socioeconomic disparities associated with mortality in patients...

    • datasetcatalog.nlm.nih.gov
    • frontiersin.figshare.com
    Updated Apr 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Galvis, Lina Marcela Ruiz; Rey, Boris Anghelo Rodríguez; Barengo, Noël Christopher; Valencia, Paula Andrea Díaz; Jiménez, Johnatan Cardona; Bedoya, Juan Pablo Pérez; Aguirre, Carlos Andrés Pérez; Cardozo, Oscar Ignacio Mendoza (2023). Data_Sheet_1_Socioeconomic disparities associated with mortality in patients hospitalized for COVID-19 in Colombia.pdf [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000947420
    Explore at:
    Dataset updated
    Apr 20, 2023
    Authors
    Galvis, Lina Marcela Ruiz; Rey, Boris Anghelo Rodríguez; Barengo, Noël Christopher; Valencia, Paula Andrea Díaz; Jiménez, Johnatan Cardona; Bedoya, Juan Pablo Pérez; Aguirre, Carlos Andrés Pérez; Cardozo, Oscar Ignacio Mendoza
    Area covered
    Colombia
    Description

    Socioeconomic disparities play an important role in the development of severe clinical outcomes including deaths from COVID-19. However, the current scientific evidence in regard the association between measures of poverty and COVID-19 mortality in hospitalized patients is scant. The objective of this study was to investigate whether there is an association between the Colombian Multidimensional Poverty Index (CMPI) and mortality from COVID-19 in hospitalized patients in Colombia from May 1, 2020 to August 15, 2021. This was an ecological study using individual data on hospitalized patients from the National Institute of Health of Colombia (INS), and municipal level data from the High-Cost Account and the National Administrative Department of Statistics. The main outcome variable was mortality due to COVID-19. The main exposure variable was the CMPI that ranges from 0 to 100% and was categorized into five levels: (i) level I (0%−20%), (ii) level II (20%−40%), (iii) level III (40%−60%), (iv) level IV (60%−80%); and (v) level V (80%−100%). The higher the level, the higher the level of multidimensional poverty. A Bayesian multilevel logistic regression model was applied to estimate Odds Ratio (OR) and their corresponding 95% credible intervals (CI). In addition, a subgroup analysis was performed according to the epidemiological COVID-19 waves using the same model. The odds for dying from COVID-19 was 1.46 (95% CI 1.4–1.53) for level II, 1.41 (95% CI 1.33–1.49) for level III and 1.70 (95% CI 1.54–1.89) for level IV hospitalized COVID-19 patients compared with the least poor patients (CMPI level I). In addition, age and male sex also increased mortality in COVID-19 hospitalized patients. Patients between 26 and 50 years-of-age had 4.17-fold increased odds (95% CI 4.07–4.3) of death compared with younger than 26-years-old patients. The corresponding for 51–75 years-old patients and those above the age of 75 years were 9.17 (95% CI 8.93–9.41) and 17.1 (95% CI 16.63–17.56), respectively. Finally, the odds of death from COVID-19 in hospitalized patients gradually decreased as the pandemic evolved. In conclusion, socioeconomic disparities were a major risk factor for mortality in patients hospitalized for COVID-19 in Colombia.

  18. Covid-19 Weekly Trends In Europe - Latest Data

    • kaggle.com
    zip
    Updated Sep 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anandhu H (2023). Covid-19 Weekly Trends In Europe - Latest Data [Dataset]. https://www.kaggle.com/datasets/anandhuh/covid19-weekly-trends-in-europe-latest-data
    Explore at:
    zip(869 bytes)Available download formats
    Dataset updated
    Sep 20, 2023
    Authors
    Anandhu H
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    Europe
    Description

    Content

    This dataset contains data of weekly trend of Covid-19 in Europe (September 13- September 20,2023)

    Attribute Information

    1. Country/Other
    2. Cases in the last 7 days
    3. Cases in the preceding 7 days
    4. Weekly Case % Change
    5. Cases in the last 7 days/1M pop
    6. Deaths in the last 7 days
    7. Deaths in the preceding 7 days
    8. Weekly Death % Change
    9. Deaths in the last 7 days/1M pop
    10. Population

    Source

    Link : https://www.worldometers.info/coronavirus/weekly-trends/#weekly_table

    Other Updated Covid Datasets

    Link : https://www.kaggle.com/anandhuh/datasets

    Thank You

  19. Deaths and age-specific mortality rates, by selected grouped causes

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Deaths and age-specific mortality rates, by selected grouped causes [Dataset]. http://doi.org/10.25318/1310039201-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Number of deaths and age-specific mortality rates for selected grouped causes, by age group and sex, 2000 to most recent year.

  20. Coronavirus and vaccination rates in people aged 18 years and over by...

    • ons.gov.uk
    • cy.ons.gov.uk
    xlsx
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics (2023). Coronavirus and vaccination rates in people aged 18 years and over by socio-demographic characteristic, region and local authority, England [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/healthinequalities/datasets/coronavirusandvaccinationratesinpeopleaged18yearsandoverbysociodemographiccharacteristicandregionengland
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Coronavirus (COVID-19) vaccination rates for people aged 18 years and over in England. Estimates by socio-demographic characteristic, region and local authority.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Office for National Statistics (2023). Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19) [Dataset]. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/singleyearofageandaverageageofdeathofpeoplewhosedeathwasduetoorinvolvedcovid19
Organization logo

Single year of age and average age of death of people whose death was due to or involved coronavirus (COVID-19)

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
xlsxAvailable download formats
Dataset updated
Aug 23, 2023
Dataset provided by
Office for National Statisticshttp://www.ons.gov.uk/
License

Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically

Description

Provisional deaths registration data for single year of age and average age of death (median and mean) of persons whose death involved coronavirus (COVID-19), England and Wales. Includes deaths due to COVID-19 and breakdowns by sex.

Search
Clear search
Close search
Google apps
Main menu