100+ datasets found
  1. N

    Forest Acres, SC Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Forest Acres, SC Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Forest Acres from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/forest-acres-sc-population-by-year/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Forest Acres, South Carolina
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Forest Acres population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Forest Acres across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Forest Acres was 10,376, a 0.66% decrease year-by-year from 2022. Previously, in 2022, Forest Acres population was 10,445, a decline of 0.86% compared to a population of 10,536 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Forest Acres decreased by 499. In this period, the peak population was 10,875 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Forest Acres is shown in this column.
    • Year on Year Change: This column displays the change in Forest Acres population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Forest Acres Population by Year. You can refer the same here

  2. N

    Country Life Acres, MO Population Dataset: Yearly Figures, Population...

    • neilsberg.com
    csv, json
    Updated Sep 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). Country Life Acres, MO Population Dataset: Yearly Figures, Population Change, and Percent Change Analysis [Dataset]. https://www.neilsberg.com/research/datasets/6e418278-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Country Life Acres, Missouri
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2022, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2022. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2022. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Country Life Acres population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Country Life Acres across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2022, the population of Country Life Acres was 72, a 0.00% decrease year-by-year from 2021. Previously, in 2021, Country Life Acres population was 72, a decline of 1.37% compared to a population of 73 in 2020. Over the last 20 plus years, between 2000 and 2022, population of Country Life Acres decreased by 9. In this period, the peak population was 84 in the year 2001. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2022

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2022)
    • Population: The population for the specific year for the Country Life Acres is shown in this column.
    • Year on Year Change: This column displays the change in Country Life Acres population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Country Life Acres Population by Year. You can refer the same here

  3. Corporate big data initiative success rates U.S. and worldwide 2019

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Corporate big data initiative success rates U.S. and worldwide 2019 [Dataset]. https://www.statista.com/statistics/742935/worldwide-survey-corporate-big-data-initiatives-and-success-rate/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2019
    Area covered
    United States, Worldwide
    Description

    The statistic shows the success rate of various big data initiatives as of 2019, according to a survey of industry-leading firms, primarily in the United States. As of that time, **** percent of respondents reported having seen measurable results from big data initiatives to decrease expenses.

  4. o

    County-level crop area in the USA 1840-2017

    • openicpsr.org
    Updated Nov 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michael Crossley (2019). County-level crop area in the USA 1840-2017 [Dataset]. http://doi.org/10.3886/E115795V3
    Explore at:
    Dataset updated
    Nov 26, 2019
    Dataset provided by
    University of Georgia
    Authors
    Michael Crossley
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    1840 - 2017
    Area covered
    United States
    Description

    This dataset contains estimates of proportional area of 18 major crops for each county in the United States at roughly decadal time steps between 1840 and 2017, and was used for analyses of historical changes in crop area, diversity, and distribution published in:Crossley, MS, KD Burke, SD Schoville, VC Radeloff. (2020). Recent collapse of crop belts and declining diversity of US agriculture since 1840. Global Change Biology (in press).The original data used to curate this dataset was derived by Haines et al. (ICPSR 35206) from USDA Agricultural Census archives (https://www.nass.usda.gov/AgCensus/). This dataset builds upon previous work in that crop values are georeferenced and rectified to match 2012 county boundaries, and several inconsistencies in the tabular-formatted data have been smoothed-over. In particular, smoothing included conversion of values of production (e.g. bushels, lbs, typical of 1840-1880 censuses) into values of area (using USDA NASS yield data), imputation of missing values for certain crop x county x year combinations, and correcting values for counties whose crop totals exceeded the possible land area.Please contact the PI, Mike Crossley, with any questions or requests: mcrossley3@gmail.com

  5. d

    National Land Cover Database (NLCD) 2006 Land Cover Conterminous United...

    • catalog.data.gov
    Updated Jul 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). National Land Cover Database (NLCD) 2006 Land Cover Conterminous United States (ver. 2.0, July 2024) [Dataset]. https://catalog.data.gov/dataset/national-land-cover-database-nlcd-2006-land-cover-conterminous-united-states-ver-2-0-july-
    Explore at:
    Dataset updated
    Jul 21, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Contiguous United States, United States
    Description

    The National Land Cover Database products are created through a cooperative project conducted by the Multi-Resolution Land Characteristics (MRLC) Consortium. The MRLC Consortium is a partnership of federal agencies (www.mrlc.gov), consisting of the U.S. Geological Survey (USGS), the National Oceanic and Atmospheric Administration (NOAA), the U.S. Environmental Protection Agency (EPA), the U.S. Department of Agriculture (USDA), the U.S. Forest Service (USFS), the National Park Service (NPS), the U.S. Fish and Wildlife Service (FWS), the Bureau of Land Management (BLM) and the USDA Natural Resources Conservation Service (NRCS). Previously, NLCD consisted of three major data releases based on a 10-year cycle. These include a circa 1992 conterminous U.S. land cover dataset with one thematic layer (NLCD 1992), a circa 2001 50-state/Puerto Rico updated U.S. land cover database (NLCD 2001) with three layers including thematic land cover, percent imperviousness, and percent tree canopy, and a 1992/2001 Land Cover Change Retrofit Product. With these national data layers, there is often a 5-year time lag between the image capture date and product release. In some areas, the land cover can undergo significant change during production time, resulting in products that may be perpetually out of date. To address these issues, this circa 2006 NLCD land cover product (NLCD 2006) was conceived to meet user community needs for more frequent land cover monitoring (moving to a 5-year cycle) and to reduce the production time between image capture and product release. NLCD 2006 is designed to provide the user both updated land cover data and additional information that can be used to identify the pattern, nature, and magnitude of changes occurring between 2001 and 2006 for the conterminous United States at medium spatial resolution. For NLCD 2006, there are 3 primary data products: 1) NLCD 2006 Land Cover map; 2) NLCD 2001/2006 Change Pixels labeled with the 2006 land cover class; and 3) NLCD 2006 Percent Developed Imperviousness. Four additional data products were developed to provide supporting documentation and to provide information for land cover change analysis tasks: 4) NLCD 2001/2006 Percent Developed Imperviousness Change; 5) NLCD 2001/2006 Maximum Potential Change derived from the raw spectral change analysis; 6) NLCD 2001/2006 From-To Change pixels; and 7) NLCD 2006 Path/Row Index vector file showing the footprint of Landsat scene pairs used to derive 2001/2006 spectral change with change pair acquisition dates and scene identification numbers included in the attribute table. In addition to the 2006 data products listed in the paragraph above, two of the original release NLCD 2001 data products have been revised and reissued. Generation of NLCD 2006 data products helped to identify some update issues in the NLCD 2001 land cover and percent developed imperviousness data products. These issues were evaluated and corrected, necessitating a reissue of NLCD 2001 data products (NLCD 2001 Version 2.0) as part of the NLCD 2006 release. A majority of NLCD 2001 updates occur in coastal mapping zones where NLCD 2001 was published prior to the National Oceanic and Atmospheric Administration (NOAA) Coastal Change Analysis Program (C-CAP) 2001 land cover products. NOAA C-CAP 2001 land cover has now been seamlessly integrated with NLCD 2001 land cover for all coastal zones. NLCD 2001 percent developed imperviousness was also updated as part of this process. Land cover maps, derivatives and all associated documents are considered "provisional" until a formal accuracy assessment can be conducted. The NLCD 2006 is created on a path/row basis and mosaicked to create a seamless national product. Questions about the NLCD 2006 land cover product can be directed to the NLCD 2006 land cover mapping team at the USGS/EROS, Sioux Falls, SD (605) 594-6151 or mrlc@usgs.gov.

  6. d

    Data from: Database for Forensic Anthropology in the United States,...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institute of Justice (2025). Database for Forensic Anthropology in the United States, 1962-1991 [Dataset]. https://catalog.data.gov/dataset/database-for-forensic-anthropology-in-the-united-states-1962-1991-486d3
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    National Institute of Justice
    Area covered
    United States
    Description

    This project was undertaken to establish a computerized skeletal database composed of recent forensic cases to represent the present ethnic diversity and demographic structure of the United States population. The intent was to accumulate a forensic skeletal sample large and diverse enough to reflect different socioeconomic groups of the general population from different geographical regions of the country in order to enable researchers to revise the standards being used for forensic skeletal identification. The database is composed of eight data files, comprising four categories. The primary "biographical" or "identification" files (Part 1, Demographic Data, and Part 2, Geographic and Death Data) comprise the first category of information and pertain to the positive identification of each of the 1,514 data records in the database. Information in Part 1 includes sex, ethnic group affiliation, birth date, age at death, height (living and cadaver), and weight (living and cadaver). Variables in Part 2 pertain to the nature of the remains, means and sources of identification, city and state/country born, occupation, date missing/last seen, date of discovery, date of death, time since death, cause of death, manner of death, deposit/exposure of body, area found, city, county, and state/country found, handedness, and blood type. The Medical History File (Part 3) represents the second category of information and contains data on the documented medical history of the individual. Variables in Part 3 include general comments on medical history as well as comments on congenital malformations, dental notes, bone lesions, perimortem trauma, and other comments. The third category consists of an inventory file (Part 4, Skeletal Inventory Data) in which data pertaining to the specific contents of the database are maintained. This includes the inventory of skeletal material by element and side (left and right), indicating the condition of the bone as either partial or complete. The variables in Part 4 provide a skeletal inventory of the cranium, mandible, dentition, and postcranium elements and identify the element as complete, fragmentary, or absent. If absent, four categories record why it is missing. The last part of the database is composed of three skeletal data files, covering quantitative observations of age-related changes in the skeleton (Part 5), cranial measurements (Part 6), and postcranial measurements (Part 7). Variables in Part 5 provide assessments of epiphyseal closure and cranial suture closure (left and right), rib end changes (left and right), Todd Pubic Symphysis, Suchey-Brooks Pubic Symphysis, McKern & Steward--Phases I, II, and III, Gilbert & McKern--Phases I, II, and III, auricular surface, and dorsal pubic pitting (all for left and right). Variables in Part 6 include cranial measurements (length, breadth, height) and mandibular measurements (height, thickness, diameter, breadth, length, and angle) of various skeletal elements. Part 7 provides postcranial measurements (length, diameter, breadth, circumference, and left and right, where appropriate) of the clavicle, scapula, humerus, radius, ulna, scarum, innominate, femur, tibia, fibula, and calcaneus. A small file of noted problems for a few cases is also included (Part 8).

  7. U

    United States US: Rural Land Area Where Elevation is Below 5 Meters: % of...

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area [Dataset]. https://www.ceicdata.com/en/united-states/land-use-protected-areas-and-national-wealth/us-rural-land-area-where-elevation-is-below-5-meters--of-total-land-area
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1990 - Dec 1, 2010
    Area covered
    United States
    Description

    United States US: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 0.980 % in 2010. This stayed constant from the previous number of 0.980 % for 2000. United States US: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 0.980 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 0.980 % in 2010 and a record low of 0.980 % in 2010. United States US: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Land Use, Protected Areas and National Wealth. Rural land area below 5m is the percentage of total land where the rural land elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted average;

  8. N

    Big Lake, TX Annual Population and Growth Analysis Dataset: A Comprehensive...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Big Lake, TX Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Big Lake from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/big-lake-tx-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas, Big Lake
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Big Lake population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Big Lake across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Big Lake was 2,753, a 0.58% increase year-by-year from 2022. Previously, in 2022, Big Lake population was 2,737, a decline of 3.12% compared to a population of 2,825 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Big Lake decreased by 76. In this period, the peak population was 3,355 in the year 2019. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Big Lake is shown in this column.
    • Year on Year Change: This column displays the change in Big Lake population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Big Lake Population by Year. You can refer the same here

  9. Wildfire Risk to Communities: Spatial datasets of wildfire risk for...

    • agdatacommons.nal.usda.gov
    bin
    Updated Jan 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Melissa R. Jaffe; Joe H. Scott; Michael N. Callahan; Gregory K. Dillon; Eva C. Karau; Mitchell T. Lazarz (2025). Wildfire Risk to Communities: Spatial datasets of wildfire risk for populated areas in the United States: 2nd edition [Dataset]. http://doi.org/10.2737/RDS-2020-0060-2
    Explore at:
    binAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    Melissa R. Jaffe; Joe H. Scott; Michael N. Callahan; Gregory K. Dillon; Eva C. Karau; Mitchell T. Lazarz
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.

    National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2020 estimates of housing units and 2021 estimates of population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.

    The specific raster datasets included in this publication include:

    Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.

    Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).

    Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.

    Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.

    Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).

    Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.

    Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).

    Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.

    Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.

    Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.The geospatial data products described and distributed here are part of the Wildfire Risk to Communities project. This project was directed by Congress in the 2018 Consolidated Appropriations Act (i.e., 2018 Omnibus Act, H.R. 1625, Section 210: Wildfire Hazard Severity Mapping) to help U.S. communities understand components of their relative wildfire risk profile, the nature and effects of wildfire risk, and actions communities can take to mitigate risk. The first edition of these data represented the first time wildfire risk to communities had been mapped nationally with consistent methodology. They provided foundational information for comparing the relative wildfire risk among populated communities in the United States. In this version, the 2nd edition, we use improved modeling and mapping methodology and updated input data to generate the current suite of products.See the Wildfire Risk to Communities website at https://www.wildfirerisk.org for complete project information and an interactive web application for exploring some of the datasets published here. We deliver the data here as zip files by U.S. state (including AK and HI), and for the full extent of the continental U.S.

    This data publication is a second edition and represents an update to any previous versions of Wildfire Risk to Communities risk datasets published by the USDA Forest Service. This second edition was originally published on 06/03/2024. On 09/10/2024, a minor correction was made to the abstract in this overall metadata document as well as the individual metadata documents associated with each raster dataset. The supplemental file containing data product descriptions was also updated. In addition, we separated the large CONUS download into a series of smaller zip files (one for each layer).

    There are two companion data publications that are part of the WRC 2.0 data update: one that characterizes landscape-wide wildfire hazard and risk for the nation (Scott et al. 2024, https://doi.org/10.2737/RDS-2020-0016-2), and one that delineates wildfire risk reduction zones and provides tabular summaries of wildfire hazard and risk raster datasets (Dillon et al. 2024, https://doi.org/10.2737/RDS-2024-0030).

  10. h

    meta-shepherd-human-data

    • huggingface.co
    Updated Aug 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Philipp Schmid (2023). meta-shepherd-human-data [Dataset]. https://huggingface.co/datasets/philschmid/meta-shepherd-human-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 23, 2023
    Authors
    Philipp Schmid
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Dataset Card for "meta-shepherd-human-data"

    Original Dataset: https://github.com/facebookresearch/Shepherd

      Example
    

    Question: Where on the planet would you expect a bald eagle to live?

    Here are the options: Option 1: colorado Option 2: outside Option 3: protection Option 4: zoo exhibit Option 5: world

    Please choose the correct option and justify your choice:

    Answer: Bald eagles are found throughout most of North America, from Alaska and Canada south to… See the full description on the dataset page: https://huggingface.co/datasets/philschmid/meta-shepherd-human-data.

  11. R03 AdministrativeRegion

    • usfs.hub.arcgis.com
    Updated Apr 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2020). R03 AdministrativeRegion [Dataset]. https://usfs.hub.arcgis.com/datasets/00c91ca1fdba4bb3a85a68f028e17af1
    Explore at:
    Dataset updated
    Apr 17, 2020
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Authors
    U.S. Forest Service
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    A feature class describing the spatial location of the regional boundary of the Southwest Region of the United States Forest Service. The Southwest Region encompasses the states of Arizona and New Mexico. The Southwest Region also manages three Grasslands that reside outside the region. These Grasslands are part of the Cibola National Forest and are located in the extreme western part of the Southern Region (Pan Handles of Texas and Oklahoma.) This dataset is derived from the USFS Southwestern Region ALP (Automated Lands Program) data Project. This is one of fourteen layers derived from ALP for the purpose of supplying data layers for recourse GIS analysis and data needs within the Forest Service. The fourteen layers are Administrative Forest, Administrative Region, National Grassland, Ranger District, Military Reserve, Other National Designated Area, Proclaimed Forest, Section, Special Interest Management Area, Surface Ownership, Surface Ownership Dissolve, Township, Wilderness Status, and Wild Scenic River . There were some gapes in the ALP data so a small portion of this dataset comes from CCF (Cartographic Feature Files) datasets and the USFS Southwestern Region Core Data Project. ALP data is developed from data sources of differing accuracy, scales, and reliability. Where available it is developed from GCDB (Geographic Coordinate Data Base) data. GCDB data is maintained by the Bureau of Land Management in their State Offices. GCDB data is mostly corner data. Not all corners and not all boundaries are available in GCDB so ALP also utilizes many other data sources like CFF data to derive its boundaries. GCDB data is in a constant state of change because land corners are always getting resurveyed. The GCDB data used in this dataset represents a snapshot in time at the time the GCDB dataset was published by the BLM and may not reflect the most current GCDB dataset available. The Forest Service makes no expressed or implied warranty with respect to the character, function, or capabilities of these data. These data are intended to be used for planning and analyses purposes only and are not legally binding with regards to title or location of National Forest System lands.Metadata and Data

  12. w

    Dataset of books about Merchant marine-United States-History-20th century

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books about Merchant marine-United States-History-20th century [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=j0-book_subject&fop0=%3D&fval0=Merchant+marine-United+States-History-20th+century&j=1&j0=book_subjects
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This dataset is about books. It has 11 rows and is filtered where the book subjects is Merchant marine-United States-History-20th century. It features 9 columns including author, publication date, language, and book publisher.

  13. n

    InFORM Fire Occurrence Data Records - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). InFORM Fire Occurrence Data Records - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/inform-fire-occurrence-data-records
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    This data set is part of an ongoing project to consolidate interagency fire perimeter data. The record is complete from the present back to 2020. The incorporation of all available historic data is in progress.The InFORM (Interagency Fire Occurrence Reporting Modules) FODR (Fire Occurrence Data Records) are the official record of fire events. Built on top of IRWIN (Integrated Reporting of Wildland Fire Information), the FODR starts with an IRWIN record and then captures the final incident information upon certification of the record by the appropriate local authority. This service contains all wildland fire incidents from the InFORM FODR incident service that meet the following criteria:Categorized as a Wildfire (WF) or Prescribed Fire (RX) recordIs Valid and not "quarantined" due to potential conflicts with other recordsNo "fall-off" rules are applied to this service.Service is a real time display of data.Warning: Please refrain from repeatedly querying the service using a relative date range. This includes using the “(not) in the last” operators in a Web Map filter and any reference to CURRENT_TIMESTAMP. This type of query puts undue load on the service and may render it temporarily unavailable.Attributes:ABCDMiscA FireCode used by USDA FS to track and compile cost information for emergency initial attack fire suppression expenditures. for A, B, C & D size class fires on FS lands.ADSPermissionStateIndicates the permission hierarchy that is currently being applied when a system utilizes the UpdateIncident operation.CalculatedAcresA measure of acres calculated (i.e., infrared) from a geospatial perimeter of a fire. More specifically, the number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands. The minimum size must be 0.1.ContainmentDateTimeThe date and time a wildfire was declared contained. ControlDateTimeThe date and time a wildfire was declared under control.CreatedBySystemArcGIS Server Username of system that created the IRWIN Incident record.CreatedOnDateTimeDate/time that the Incident record was created.IncidentSizeReported for a fire. The minimum size is 0.1.DiscoveryAcresAn estimate of acres burning upon the discovery of the fire. More specifically when the fire is first reported by the first person that calls in the fire. The estimate should include number of acres within the current perimeter of a specific, individual incident, including unburned and unburnable islands.DispatchCenterIDA unique identifier for a dispatch center responsible for supporting the incident.EstimatedCostToDateThe total estimated cost of the incident to date.FinalAcresReported final acreage of incident.FinalFireReportApprovedByTitleThe title of the person that approved the final fire report for the incident.FinalFireReportApprovedByUnitNWCG Unit ID associated with the individual who approved the final report for the incident.FinalFireReportApprovedDateThe date that the final fire report was approved for the incident.FireBehaviorGeneralA general category describing the manner in which the fire is currently reacting to the influences of fuel, weather, and topography. FireCodeA code used within the interagency wildland fire community to track and compile cost information for emergency fire suppression expenditures for the incident. FireDepartmentIDThe U.S. Fire Administration (USFA) has created a national database of Fire Departments. Most Fire Departments do not have an NWCG Unit ID and so it is the intent of the IRWIN team to create a new field that includes this data element to assist the National Association of State Foresters (NASF) with data collection.FireDiscoveryDateTimeThe date and time a fire was reported as discovered or confirmed to exist. May also be the start date for reporting purposes.FireMgmtComplexityThe highest management level utilized to manage a wildland fire event. FireOutDateTimeThe date and time when a fire is declared out. FSJobCodeA code use to indicate the Forest Service job accounting code for the incident. This is specific to the Forest Service. Usually displayed as 2 char prefix on FireCode.FSOverrideCodeA code used to indicate the Forest Service override code for the incident. This is specific to the Forest Service. Usually displayed as a 4 char suffix on FireCode. For example, if the FS is assisting DOI, an override of 1502 will be used.GACCA code that identifies one of the wildland fire geographic area coordination center at the point of origin for the incident.A geographic area coordination center is a facility that is used for the coordination of agency or jurisdictional resources in support of one or more incidents within a geographic coordination area.IncidentNameThe name assigned to an incident.IncidentShortDescriptionGeneral descriptive location of the incident such as the number of miles from an identifiable town. IncidentTypeCategoryThe Event Category is a sub-group of the Event Kind code and description. The Event Category further breaks down the Event Kind into more specific event categories.IncidentTypeKindA general, high-level code and description of the types of incidents and planned events to which the interagency wildland fire community responds.InitialLatitudeThe latitude location of the initial reported point of origin specified in decimal degrees.InitialLongitudeThe longitude location of the initial reported point of origin specified in decimal degrees.InitialResponseDateTimeThe date/time of the initial response to the incident. More specifically when the IC arrives and performs initial size up. IsFireCauseInvestigatedIndicates if an investigation is underway or was completed to determine the cause of a fire.IsFSAssistedIndicates if the Forest Service provided assistance on an incident outside their jurisdiction.IsReimbursableIndicates the cost of an incident may be another agency’s responsibility.IsTrespassIndicates if the incident is a trespass claim or if a bill will be pursued.LocalIncidentIdentifierA number or code that uniquely identifies an incident for a particular local fire management organization within a particular calendar year.ModifiedBySystemArcGIS Server username of system that last modified the IRWIN Incident record.ModifiedOnDateTimeDate/time that the Incident record was last modified.PercentContainedIndicates the percent of incident area that is no longer active. Reference definition in fire line handbook when developing standard.POOCityThe closest city to the incident point of origin.POOCountyThe County Name identifying the county or equivalent entity at point of origin designated at the time of collection.POODispatchCenterIDA unique identifier for the dispatch center that intersects with the incident point of origin. POOFipsThe code which uniquely identifies counties and county equivalents. The first two digits are the FIPS State code and the last three are the county code within the state.POOJurisdictionalAgencyThe agency having land and resource management responsibility for a incident as provided by federal, state or local law. POOJurisdictionalUnitNWCG Unit Identifier to identify the unit with jurisdiction for the land where the point of origin of a fire falls. POOJurisdictionalUnitParentUnitThe unit ID for the parent entity, such as a BLM State Office or USFS Regional Office, that resides over the Jurisdictional Unit.POOLandownerCategoryMore specific classification of land ownership within land owner kinds identifying the deeded owner at the point of origin at the time of the incident.POOLandownerKindBroad classification of land ownership identifying the deeded owner at the point of origin at the time of the incident.POOProtectingAgencyIndicates the agency that has protection responsibility at the point of origin.POOProtectingUnitNWCG Unit responsible for providing direct incident management and services to a an incident pursuant to its jurisdictional responsibility or as specified by law, contract or agreement. Definition Extension: - Protection can be re-assigned by agreement. - The nature and extent of the incident determines protection (for example Wildfire vs. All Hazard.)POOStateThe State alpha code identifying the state or equivalent entity at point of origin.PredominantFuelGroupThe fuel majority fuel model type that best represents fire behavior in the incident area, grouped into one of seven categories.PredominantFuelModelDescribes the type of fuels found within the majority of the incident area. UniqueFireIdentifierUnique identifier assigned to each wildland fire. yyyy = calendar year, SSUUUU = POO protecting unit identifier (5 or 6 characters), xxxxxx = local incident identifier (6 to 10 characters) FORIDUnique identifier assigned to each incident record in the FODR database.

  14. Data points leaked in the U.S. 2004-2025, by type

    • statista.com
    Updated Jul 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Data points leaked in the U.S. 2004-2025, by type [Dataset]. https://www.statista.com/statistics/1480706/breached-data-points-us-by-type/
    Explore at:
    Dataset updated
    Jul 7, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Between 2004 and April 2025, internet users in the United States experienced many significant data breach incidents. In these incidents, passwords were the most frequently leaked type of data, with more than two billion passwords being leaked in the research period. Names of the cities where the users were located ranked second, followed by first names.

  15. d

    MBNMS/PISCO: Physical Oceanography: moored temperature data: Big Creek,...

    • search.dataone.org
    • data.cnra.ca.gov
    • +2more
    Updated Feb 25, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monterey Bay National Marine Sanctuary; Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO); Margaret McManus (2020). MBNMS/PISCO: Physical Oceanography: moored temperature data: Big Creek, California, USA (BIG001) [Dataset]. http://doi.org/10.6085/AA/BIG001_026MTBD015R00_20060831.50.8
    Explore at:
    Dataset updated
    Feb 25, 2020
    Dataset provided by
    PISCO MN
    Authors
    Monterey Bay National Marine Sanctuary; Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO); Margaret McManus
    Time period covered
    Aug 31, 2006 - Oct 5, 2006
    Area covered
    Variables measured
    date, flag, time, temp_c, yearday
    Description

    This metadata record describes moored seawater temperature data collected at Big Creek, California, USA, by PISCO. Measurements were collected using a StowAway Tidbit Temperature Logger (Onset Computer Corp. TBIC32+4+27) beginning 2006-08-31. The instrument depth was 015 meters, in an overall water depth of 26 meters (both relative to Mean Sea Level, MSL). The sampling interval was 2.0 minutes.

  16. o

    Counties - United States of America

    • public.opendatasoft.com
    • bfortune.opendatasoft.com
    csv, excel, geojson +1
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Counties - United States of America [Dataset]. https://public.opendatasoft.com/explore/dataset/georef-united-states-of-america-county/
    Explore at:
    excel, json, geojson, csvAvailable download formats
    Dataset updated
    Jun 6, 2024
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for counties and equivalent entities in United States of America. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.

  17. n

    United States Census

    • datacatalog.med.nyu.edu
    Updated Jul 17, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). United States Census [Dataset]. https://datacatalog.med.nyu.edu/dataset/10026
    Explore at:
    Dataset updated
    Jul 17, 2018
    Area covered
    United States
    Description

    The Decennial Census provides population estimates and demographic information on residents of the United States.

    The Census Summary Files contain detailed tables on responses to the decennial census. Data tables in Summary File 1 provide information on population and housing characteristics, including cross-tabulations of age, sex, households, families, relationship to householder, housing units, detailed race and Hispanic or Latino origin groups, and group quarters for the total population. Summary File 2 contains data tables on population and housing characteristics as reported by housing unit.

    Researchers at NYU Langone Health can find guidance for the use and analysis of Census Bureau data on the Population Health Data Hub (listed under "Other Resources"), which is accessible only through the intranet portal with a valid Kerberos ID (KID).

  18. U

    United States Avg Sale to List: All Residential: Big Rapids, MI

    • ceicdata.com
    Updated Sep 11, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2020). United States Avg Sale to List: All Residential: Big Rapids, MI [Dataset]. https://www.ceicdata.com/en/united-states/average-sales-to-list-by-metropolitan-areas
    Explore at:
    Dataset updated
    Sep 11, 2020
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Aug 1, 2019 - Jul 1, 2020
    Area covered
    United States
    Description

    Avg Sale to List: All Residential: Big Rapids, MI data was reported at 98.607 % in Jul 2020. This records an increase from the previous number of 97.012 % for Jun 2020. Avg Sale to List: All Residential: Big Rapids, MI data is updated monthly, averaging 93.576 % from Feb 2012 (Median) to Jul 2020, with 102 observations. The data reached an all-time high of 98.607 % in Jul 2020 and a record low of 87.357 % in Nov 2014. Avg Sale to List: All Residential: Big Rapids, MI data remains active status in CEIC and is reported by Redfin. The data is categorized under Global Database’s United States – Table US.EB050: Average Sales to List: by Metropolitan Areas.

  19. Big Data and Business Analytics Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Big Data and Business Analytics Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/big-data-and-business-analytics-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Big Data and Business Analytics Market Outlook



    In 2023, the global Big Data and Business Analytics market size is estimated to be valued at approximately $274 billion, and with a projected compound annual growth rate (CAGR) of 12.4%, it is anticipated to reach around $693 billion by 2032. This significant growth is driven by the escalating demand for data-driven decision-making processes across various industries, which leverage insights derived from vast data sets to enhance business efficiency, optimize operations, and drive innovation. The increasing adoption of Internet of Things (IoT) devices, coupled with the exponential growth of data generated daily, further propels the need for advanced analytics solutions to harness and interpret this information effectively.



    A critical growth factor in the Big Data and Business Analytics market is the increasing reliance on data to gain a competitive edge. Organizations are now more than ever looking to uncover hidden patterns, correlations, and insights from the data they collect to make informed decisions. This trend is especially prominent in industries such as retail, where understanding consumer behavior can lead to personalized marketing strategies, and in healthcare, where data analytics can improve patient outcomes through precision medicine. Moreover, the integration of big data analytics with artificial intelligence and machine learning technologies is enabling more accurate predictions and real-time decision-making, further enhancing the value proposition of these analytics solutions.



    Another key driver of market growth is the continuous technological advancements and innovations in data analytics tools and platforms. Companies are increasingly investing in advanced analytics capabilities, such as predictive analytics, prescriptive analytics, and real-time analytics, to gain deeper insights into their operations and market environments. The development of user-friendly and self-service analytics tools is also democratizing data access within organizations, empowering employees at all levels to leverage data in their daily decision-making processes. This democratization of data analytics is reducing the reliance on specialized data scientists, thereby accelerating the adoption of big data analytics across various business functions.



    The increasing emphasis on regulatory compliance and data privacy is also driving growth in the Big Data and Business Analytics market. Strict regulations, such as the General Data Protection Regulation (GDPR) in Europe and the California Consumer Privacy Act (CCPA) in the United States, require organizations to manage and analyze data responsibly. This is prompting businesses to invest in robust analytics solutions that not only help them comply with these regulations but also ensure data integrity and security. Additionally, as data breaches and cybersecurity threats continue to rise, organizations are turning to analytics solutions to identify potential vulnerabilities and mitigate risks effectively.



    Regionally, North America remains a dominant player in the Big Data and Business Analytics market, benefiting from the presence of major technology companies and a high rate of digital adoption. The Asia Pacific region, however, is emerging as a significant growth area, driven by rapid industrialization, urbanization, and increasing investments in digital transformation initiatives. Europe also showcases a robust market, fueled by stringent data protection regulations and a strong focus on innovation. Meanwhile, the markets in Latin America and the Middle East & Africa are gradually gaining momentum as organizations in these regions are increasingly recognizing the value of data analytics in enhancing business outcomes and driving economic growth.



    Component Analysis



    The Big Data and Business Analytics market is segmented by components into software, services, and hardware, each playing a crucial role in the ecosystem. Software components, which include data management and analytics tools, are at the forefront, offering solutions that facilitate the collection, analysis, and visualization of large data sets. The software segment is driven by a demand for scalable solutions that can handle the increasing volume, velocity, and variety of data. As organizations strive to become more data-centric, there is a growing need for advanced analytics software that can provide actionable insights from complex data sets, leading to enhanced decision-making capabilities.



    In the services segment, businesses are increasingly seeking consultation, implementation, and support services to effective

  20. d

    Mesa Verde National Park Tract and Boundary Data

    • datasets.ai
    • catalog.data.gov
    57
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Mesa Verde National Park Tract and Boundary Data [Dataset]. https://datasets.ai/datasets/mesa-verde-national-park-tract-and-boundary-data
    Explore at:
    57Available download formats
    Dataset updated
    Sep 24, 2024
    Dataset authored and provided by
    Department of the Interior
    Description

    These ESRI shape files are of National Park Service tract and boundary data that was created by the Land Resources Division. Tracts are numbered and created by the regional cartographic staff at the Land Resources Program Centers and are associated to the Land Status Maps. This data should be used to display properties that NPS owns and properties that NPS may have some type of interest such as scenic easements or right of ways.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2024). Forest Acres, SC Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Forest Acres from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/forest-acres-sc-population-by-year/

Forest Acres, SC Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Forest Acres from 2000 to 2023 // 2024 Edition

Explore at:
json, csvAvailable download formats
Dataset updated
Jul 30, 2024
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Forest Acres, South Carolina
Variables measured
Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
Measurement technique
The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the Forest Acres population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Forest Acres across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

Key observations

In 2023, the population of Forest Acres was 10,376, a 0.66% decrease year-by-year from 2022. Previously, in 2022, Forest Acres population was 10,445, a decline of 0.86% compared to a population of 10,536 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Forest Acres decreased by 499. In this period, the peak population was 10,875 in the year 2000. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

Content

When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

Data Coverage:

  • From 2000 to 2023

Variables / Data Columns

  • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
  • Population: The population for the specific year for the Forest Acres is shown in this column.
  • Year on Year Change: This column displays the change in Forest Acres population for each year compared to the previous year.
  • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for Forest Acres Population by Year. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu