The number of Facebook users in the United States was forecast to continuously increase between 2024 and 2028 by in total 12.6 million users (+5.04 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 262.8 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
This statistical dataset contains estimates on the number of active online Facebook users living outside of their country of origin within the European Union. The dataset includes information on Facebook users' age, gender, country of residence, and country of previous residence. The data is divided in the number of Monthly Active Users and Daily Active Users. The data was collected through standard CSV format via an advertising API platform by using an R Studio code, and the data collection was conducted twice a month from January to November 2021. The dataset was originally published in DiVA and moved to SND in 2024. Detta statistiska dataset innehåller uppskattningar av antalet aktiva Facebook-användare online som bor utanför sitt ursprungsland inom Europeiska unionen. Se engelsk beskrivning för mer information. Datasetet har ursprungligen publicerats i DiVA och flyttades över till SND 2024.
The global number of Facebook users was forecast to continuously increase between 2023 and 2027 by in total 391 million users (+14.36 percent). After the fourth consecutive increasing year, the Facebook user base is estimated to reach 3.1 billion users and therefore a new peak in 2027. Notably, the number of Facebook users was continuously increasing over the past years.User figures, shown here regarding the platform Facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).
This statistical dataset contains estimates on the number of active online Facebook users living outside of their country of origin within the European Union. The dataset includes information on Facebook users' age, gender, country of residence, and country of previous residence. The data is divided in the number of Monthly Active Users and Daily Active Users. The data was collected through standard CSV format via an advertising API platform by using an R Studio code, and the data collection was conducted twice a month from January to November 2021.
The dataset was originally published in DiVA and moved to SND in 2024.
The number of Facebook users in Indonesia was forecast to continuously decrease between 2024 and 2028 by in total 20 million users (-11.04 percent). According to this forecast, in 2028, the Facebook user base will have decreased for the fifth consecutive year to 161.16 million users. User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find further information concerning Thailand and Singapore.
http://www.gnu.org/licenses/old-licenses/gpl-2.0.en.htmlhttp://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
Facebook is becoming an essential tool for more than just family and friends. Discover how Cheltenham Township (USA), a diverse community just outside of Philadelphia, deals with major issues such as the Bill Cosby trial, everyday traffic issues, sewer I/I problems and lost cats and dogs. And yes, theft.
Communities work when they're connected and exchanging information. What and who are the essential forces making a positive impact, and when and how do conversational threads get directed or misdirected?
Use Any Facebook Public Group
You can leverage the examples here for any public Facebook group. For an example of the source code used to collect this data, and a quick start docker image, take a look at the following project: facebook-group-scrape.
Data Sources
There are 4 csv files in the dataset, with data from the following 5 public Facebook groups:
post.csv
These are the main posts you will see on the page. It might help to take a quick look at the page. Commas in the msg field have been replaced with {COMMA}, and apostrophes have been replaced with {APOST}.
comment.csv
These are comments to the main post. Note, Facebook postings have comments, and comments on comments.
like.csv
These are likes and responses. The two keys in this file (pid,cid) will join to post and comment respectively.
member.csv
These are all the members in the group. Some members never, or rarely, post or comment. You may find multiple entries in this table for the same person. The name of the individual never changes, but they change their profile picture. Each profile picture change is captured in this table. Facebook gives users a new id in this table when they change their profile picture.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database contains regional estimates of Facebook users based on data from the Facebook Marketing API. It includes information on the number of individuals aged 18 and older who have accessed Facebook in the past month, with data separated by region. These estimates are intended for trend identification and triangulation purposes and are not designed to match official census data or other government sources.
This data can be used as a proxy of internet access.
It should be noted that there could be duplicates across different regions, and the data is anonymized by Meta.
The number of Facebook users in Malaysia was forecast to continuously decrease between 2024 and 2028 by in total 2.2 million users (-9.36 percent). According to this forecast, in 2028, the Facebook user base will have decreased for the sixth consecutive year to 21.33 million users. User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find further information concerning Indonesia and Singapore.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We use an anonymized snapshot of all active Facebook users and their friendship networks to measure the intensity of connectedness between locations. The Social Connectedness Index (SCI) is a measure of the social connectedness between different geographies. Specifically, it measures the relative probability that two individuals across two locations are friends with each other on Facebook.
Details on the underlying data and the construction of the index are provided in the “Facebook Social Connectedness Index - Data Notes.pdf” file. Please also see https://dataforgood.facebook.com/ as well as the associated research paper “Social Connectedness: Measurement, Determinants and Effects,” published in the Journal of Economic Perspectives (https://www.aeaweb.org/articles?id=10.1257/jep.32.3.259).
Region identifiers are taken from GADM v2.8 https://gadm.org/download_country_v2.html. Future versions will update IDs to be compatible with the newest GADM version.
The metrics in this dataset measure users who engaged with posts with links to civic news URLs and the volume of their engagement. The dataset contains URL-level metrics from Facebook activity data for adult U.S. monthly active users, aggregated over the study period. Includes content views, audience size, content attributes, user attributes.
The number of Facebook users in India was forecast to continuously increase between 2024 and 2028 by in total 59.2 million users (+8.7 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 739.66 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Facebook users in countries like Nepal and Pakistan.
The metrics in this dataset measure users who viewed posts with links to civic news URLs. The dataset contains URL-level metrics from Facebook activity data for adult U.S. monthly active users, aggregated over the study period. Includes content views, audience size, content attributes, user attributes.
The number of Facebook users in the United Arab Emirates was forecast to continuously decrease between 2024 and 2028 by in total 0.8 million users (-12.07 percent). After the seventh consecutive decreasing year, the Facebook user base is estimated to reach 5.87 million users and therefore a new minimum in 2028. User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of Facebook users in countries like Oman and Qatar.
The metrics in this dataset measure users who potentially viewed posts with links to civic news URLs that were shared by one of their connections. The dataset contains URL-level metrics from Facebook activity data for adult U.S. monthly active users, aggregated over the study period. Includes potential audience size, content attributes, user attributes, political interest.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Purpose For the purpose of informing tobacco intervention programs, this dataset was created and used to explore how online social networks of smokers differed from those of nonsmokers. The study was a secondary analysis of data collected as part of a randomized control trial conducted within Facebook. (See "Other References" in "Metadata" for parent study information.) Basic description of 4 anonymized data files of study participants. fbr_friends: Anonymized Facebook friends networks, basic ego demographics, basic ego social media activity fbr_family: Anonymized Facebook family networks, basic ego demographics, basic ego social media activity fbr_photos: Anonymized Facebook photo networks, basic ego demographics, basic ego social media activity fbr_groups: Anonymized Facebook group networks, basic ego demographics, basic ego social media activity Each network comprises the ego, the ego's first degree connections, and the (second degree) connections between the ego's friends. Missing data and users who did not have friend, family, photo, or group networks were cleaned from the data beforehand. Each data file contains the following columns of data, taken with participant knowledge and consent participant_id: Nonidentifying ids assigned to different study participants. is_smoker: Binary value (0,1) that takes on the value 1 if participant was a smoker and 0 otherwise. gender: One of three categories: male, female, or blank, which signified Other (different from missing data). country: One of four categories: Canada (ca), US (us), Mexico (mx), or Other (xx). likes_count: Numeric data indicating number of Facebook likes the participant had made up to the date the data was collected. wall_count: Numeric data indicating number of Facebook wall posts the participant had made up to the date the data was collected. t_count_page_views: Numeric data indicating number of pages participant had visited in the UbiQUITous app up to the date the data was collected. yearsOld: Numeric data indicating age in years of the participant; right censored at 90 years for data anonymity. vertices: Number of people in the participant's network. edges: Number of connections between people in the network. density: The portion of potential connections in a network that are actual connections; a network-level metric; calculated after removing ego and isolates. mean_betweenness_centrality: An average of the relative importance of all individuals within their own network; a network-level metric; calculated after removing ego and isolates. transitivity: The extent to which the relationship between two nodes in a network that are connected by an edge is transitive (calculated as the number of triads divided by all possible connections); a network-level metric; calculated after removing ego and isolates. mean_closeness: Average of how closely associated members are to one another; a network-level metric; calculated after removing ego and isolates. isolates2: Number of individuals with no connections other than to the ego; a network-level metric. diameter3: Maximum degree of separation between any two individuals in the network; a network-level metric; calculated after removing ego and isolates. clusters3: Number of subnetworks; a network-level metric; calculated after removing ego and isolates. communities3: Number of groups, sorted to increase dense connections within the group and decrease sparse connections outside it (i.e., to maximize modularity); a network-level metric; calculated after removing ego and isolates. modularity3: The strength of division of a network into communities (calculated as the fraction of ties between community members in excess of the expected number of ties within communities if ties were random); a network-level metric. Detailed information on network metrics in the associated manuscript: "An exploration of the Facebook social networks of smokers and non-smokers" by Fu, L, Jacobs MA, Brookover J, Valente TW, Cobb NK, and Graham AL.
Overview
This dataset of medical misinformation was collected and is published by Kempelen Institute of Intelligent Technologies (KInIT). It consists of approx. 317k news articles and blog posts on medical topics published between January 1, 1998 and February 1, 2022 from a total of 207 reliable and unreliable sources. The dataset contains full-texts of the articles, their original source URL and other extracted metadata. If a source has a credibility score available (e.g., from Media Bias/Fact Check), it is also included in the form of annotation. Besides the articles, the dataset contains around 3.5k fact-checks and extracted verified medical claims with their unified veracity ratings published by fact-checking organisations such as Snopes or FullFact. Lastly and most importantly, the dataset contains 573 manually and more than 51k automatically labelled mappings between previously verified claims and the articles; mappings consist of two values: claim presence (i.e., whether a claim is contained in the given article) and article stance (i.e., whether the given article supports or rejects the claim or provides both sides of the argument).
The dataset is primarily intended to be used as a training and evaluation set for machine learning methods for claim presence detection and article stance classification, but it enables a range of other misinformation related tasks, such as misinformation characterisation or analyses of misinformation spreading.
Its novelty and our main contributions lie in (1) focus on medical news article and blog posts as opposed to social media posts or political discussions; (2) providing multiple modalities (beside full-texts of the articles, there are also images and videos), thus enabling research of multimodal approaches; (3) mapping of the articles to the fact-checked claims (with manual as well as predicted labels); (4) providing source credibility labels for 95% of all articles and other potential sources of weak labels that can be mined from the articles' content and metadata.
The dataset is associated with the research paper "Monant Medical Misinformation Dataset: Mapping Articles to Fact-Checked Claims" accepted and presented at ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '22).
The accompanying Github repository provides a small static sample of the dataset and the dataset's descriptive analysis in a form of Jupyter notebooks.
Options to access the dataset
There are two ways how to get access to the dataset:
1. Static dump of the dataset available in the CSV format
2. Continuously updated dataset available via REST API
In order to obtain an access to the dataset (either to full static dump or REST API), please, request the access by following instructions provided below.
References
If you use this dataset in any publication, project, tool or in any other form, please, cite the following papers:
@inproceedings{SrbaMonantPlatform,
author = {Srba, Ivan and Moro, Robert and Simko, Jakub and Sevcech, Jakub and Chuda, Daniela and Navrat, Pavol and Bielikova, Maria},
booktitle = {Proceedings of Workshop on Reducing Online Misinformation Exposure (ROME 2019)},
pages = {1--7},
title = {Monant: Universal and Extensible Platform for Monitoring, Detection and Mitigation of Antisocial Behavior},
year = {2019}
}
@inproceedings{SrbaMonantMedicalDataset,
author = {Srba, Ivan and Pecher, Branislav and Tomlein Matus and Moro, Robert and Stefancova, Elena and Simko, Jakub and Bielikova, Maria},
booktitle = {Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '22)},
numpages = {11},
title = {Monant Medical Misinformation Dataset: Mapping Articles to Fact-Checked Claims},
year = {2022},
doi = {10.1145/3477495.3531726},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3477495.3531726},
}
Dataset creation process
In order to create this dataset (and to continuously obtain new data), we used our research platform Monant. The Monant platform provides so called data providers to extract news articles/blogs from news/blog sites as well as fact-checking articles from fact-checking sites. General parsers (from RSS feeds, Wordpress sites, Google Fact Check Tool, etc.) as well as custom crawler and parsers were implemented (e.g., for fact checking site Snopes.com). All data is stored in the unified format in a central data storage.
Ethical considerations
The dataset was collected and is published for research purposes only. We collected only publicly available content of news/blog articles. The dataset contains identities of authors of the articles if they were stated in the original source; we left this information, since the presence of an author's name can be a strong credibility indicator. However, we anonymised the identities of the authors of discussion posts included in the dataset.
The main identified ethical issue related to the presented dataset lies in the risk of mislabelling of an article as supporting a false fact-checked claim and, to a lesser extent, in mislabelling an article as not containing a false claim or not supporting it when it actually does. To minimise these risks, we developed a labelling methodology and require an agreement of at least two independent annotators to assign a claim presence or article stance label to an article. It is also worth noting that we do not label an article as a whole as false or true. Nevertheless, we provide partial article-claim pair veracities based on the combination of claim presence and article stance labels.
As to the veracity labels of the fact-checked claims and the credibility (reliability) labels of the articles' sources, we take these from the fact-checking sites and external listings such as Media Bias/Fact Check as they are and refer to their methodologies for more details on how they were established.
Lastly, the dataset also contains automatically predicted labels of claim presence and article stance using our baselines described in the next section. These methods have their limitations and work with certain accuracy as reported in this paper. This should be taken into account when interpreting them.
Reporting mistakes in the dataset
The mean to report considerable mistakes in raw collected data or in manual annotations is by creating a new issue in the accompanying Github repository. Alternately, general enquiries or requests can be sent at info [at] kinit.sk.
Dataset structure
Raw data
At first, the dataset contains so called raw data (i.e., data extracted by the Web monitoring module of Monant platform and stored in exactly the same form as they appear at the original websites). Raw data consist of articles from news sites and blogs (e.g. naturalnews.com), discussions attached to such articles, fact-checking articles from fact-checking portals (e.g. snopes.com). In addition, the dataset contains feedback (number of likes, shares, comments) provided by user on social network Facebook which is regularly extracted for all news/blogs articles.
Raw data are contained in these CSV files (and corresponding REST API endpoints):
Note: Personal information about discussion posts' authors (name, website, gravatar) are anonymised.
Annotations
Secondly, the dataset contains so called annotations. Entity annotations describe the individual raw data entities (e.g., article, source). Relation annotations describe relation between two of such entities.
Each annotation is described by the following attributes:
At the same time, annotations are associated with a particular object identified by:
entity_type
in case of entity annotations, or source_entity_type
and target_entity_type
in case of relation annotations). Possible values: sources, articles, fact-checking-articles.entity_id
in case of entity annotations, or source_entity_id
and target_entity_id
in case of relation
This dataset measures the ideological segregation index and favorability score of the potential, exposed and engaged audience of posts with links to domains and URLs classified as civic news. The dataset contains domain- and URL-level metrics from Facebook activity data for adult U.S. monthly active users, aggregated weekly over the study period. Includes ideological segregation index, favorability score, content attributes, user attributes.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset comprises user feedback data collected from 15 globally acclaimed mobile applications, spanning diverse categories. The included applications are among the most downloaded worldwide, providing a rich and varied source for analysis. The dataset is particularly suitable for Natural Language Processing (NLP) applications, such as text classification and topic modeling. List of Included Applications:
TikTok Instagram Facebook WhatsApp Telegram Zoom Snapchat Facebook Messenger Capcut Spotify YouTube HBO Max Cash App Subway Surfers Roblox Data Columns and Descriptions: Data Columns and Descriptions:
review_id: Unique identifiers for each user feedback/application review. content: User-generated feedback/review in text format. score: Rating or star given by the user. TU_count: Number of likes/thumbs up (TU) received for the review. app_id: Unique identifier for each application. app_name: Name of the application. RC_ver: Version of the app when the review was created (RC). Terms of Use: This dataset is open access for scientific research and non-commercial purposes. Users are required to acknowledge the authors' work and, in the case of scientific publication, cite the most appropriate reference: M. H. Asnawi, A. A. Pravitasari, T. Herawan, and T. Hendrawati, "The Combination of Contextualized Topic Model and MPNet for User Feedback Topic Modeling," in IEEE Access, vol. 11, pp. 130272-130286, 2023, doi: 10.1109/ACCESS.2023.3332644.
Researchers and analysts are encouraged to explore this dataset for insights into user sentiments, preferences, and trends across these top mobile applications. If you have any questions or need further information, feel free to contact the dataset authors.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book series and is filtered where the books is Facebook marketing all-in-one for dummies, featuring 10 columns including authors, average publication date, book publishers, book series, and books. The preview is ordered by number of books (descending).
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
High Frequency Indicator: The dataset contains year- and month-wise compiled data from the year 2021 to till date on the number of different types of grievances (complaints) received from the users of Facebook and Instagram by Meta and the action taken by it. The data compiled is based on the monthly transparency reports published by Meta in accordance with Rule 4(1)(d) of the Information Technology (Intermediary Guidelines and Digital Media Ethics Code) Rules, 2021 (IT Rules, 2021).
The types of grievances received by Meta, for Facebook and Instagram, include content showing sexual content, account hacked, lost of access, harassment, request access to personal data, etc. and the action taken include resolution by tools and special review
The number of Facebook users in the United States was forecast to continuously increase between 2024 and 2028 by in total 12.6 million users (+5.04 percent). After the ninth consecutive increasing year, the Facebook user base is estimated to reach 262.8 million users and therefore a new peak in 2028. Notably, the number of Facebook users of was continuously increasing over the past years.User figures, shown here regarding the platform facebook, have been estimated by taking into account company filings or press material, secondary research, app downloads and traffic data. They refer to the average monthly active users over the period and count multiple accounts by persons only once.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).