https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.
We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.
more info : https://snap.stanford.edu/data/com-Youtube.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://snap.stanford.edu/data/com-Youtube.html
Dataset information
Youtube (http://www.youtube.com/) is a video-sharing web site that includes
a social network. In the Youtube social network, users form friendship each
other and users can create groups which other users can join. We consider
such user-defined groups as ground-truth communities. This data is provided
by Alan Mislove et al.
(http://socialnetworks.mpi-sws.org/data-imc2007.html)
We regard each connected component in a group as a separate ground-truth
community. We remove the ground-truth communities which have less than 3
nodes. We also provide the top 5,000 communities with highest quality
which are described in our paper (http://arxiv.org/abs/1205.6233). As for
the network, we provide the largest connected component.
Network statistics
Nodes 1,134,890
Edges 2,987,624
Nodes in largest WCC 1134890 (1.000)
Edges in largest WCC 2987624 (1.000)
Nodes in largest SCC 1134890 (1.000)
Edges in largest SCC 2987624 (1.000)
Average clustering coefficient 0.0808
Number of triangles 3056386
Fraction of closed triangles 0.002081
Diameter (longest shortest path) 20
90-percentile effective diameter 6.5
Community statistics
Number of communities 8,385
Average community size 13.50
Average membership size 0.10
Source (citation)
J. Yang and J. Leskovec. Defining and Evaluating Network Communities based
on Ground-truth. ICDM, 2012. http://arxiv.org/abs/1205.6233
Files
File Description
com-youtube.ungraph.txt.gz Undirected Youtube network
com-youtube.all.cmty.txt.gz Youtube communities
com-youtube.top5000.cmty.txt.gz Youtube communities (Top 5,000)
The graph in the SNAP data set is 1-based, with nodes numbered 1 to
1,157,827.
In the SuiteSparse Matrix Collection, Problem.A is the undirected Youtube
network, a matrix of size n-by-n with n=1,134,890, which is the number of
unique user id's appearing in any edge.
Problem.aux.nodeid is a list of the node id's that appear in the SNAP data
set. A(i,j)=1 if person nodeid(i) is friends with person nodeid(j). The
node id's are the same as the SNAP data set (1-based).
C = Problem.aux.Communities_all is a sparse matrix of size n by 16,386
which represents the communities in the com-youtube.all.cmty.txt file.
The kth line in that file defines the kth community, and is the column
C(:,k), where C(i,k)=1 if person nodeid(i) is in the kth community. Row
C(i,:) and row/column i of the A matrix thus refer to the same person,
nodeid(i).
Ctop = Problem.aux.Communities_top5000 is n-by-5000, with the same
structure as the C array above, with the content of the
com-youtube.top5000.cmty.txt.gz file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Pollution of online social spaces caused by rampaging d/misinformation is a growing societal concern. However, recent decisions to reduce access to social media APIs are causing a shortage of publicly available, recent, social media data, thus hindering the advancement of computational social science as a whole. We present a large, high-coverage dataset of social interactions and user-generated content from Bluesky Social to address this pressing issue. The dataset contains the complete post history of over 4M users (81% of all registered accounts), totalling 235M posts. We also make available social data covering follow, comment, repost, and quote interactions. Since Bluesky allows users to create and like feed generators (i.e., content recommendation algorithms), we also release the full output of several popular algorithms available on the platform, along with their timestamped “like” interactions. This dataset allows novel analysis of online behavior and human-machine engagement patterns. Notably, it provides ground-truth data for studying the effects of content exposure and self-selection and performing content virality and diffusion analysis.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Youtube social network and ground-truth communities Dataset information Youtube is a video-sharing web site that includes a social network. In the Youtube social network, users form friendship each other and users can create groups which other users can join. We consider such user-defined groups as ground-truth communities. This data is provided by Alan Mislove et al.
We regard each connected component in a group as a separate ground-truth community. We remove the ground-truth communities which have less than 3 nodes. We also provide the top 5,000 communities with highest quality which are described in our paper. As for the network, we provide the largest connected component.
more info : https://snap.stanford.edu/data/com-Youtube.html