The National Aeronautics and Space Administration (NASA) Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners, including Daedalus thematic mapper simulator scanners and the thermal infrared multispectral scanner. Data are collected from selected areas over the conterminous United States, Alaska, and Hawaii by NASA ER-2 and NASA C-130B aircraft, operating from the NASA Ames Research Center in Moffett Field, California, and by NASA Learjet aircraft, operating from Stennis Space Center in Bay St. Louis, Mississippi. Limited international acquisitions also are available. In cooperation with the Jet Propulsion Laboratory and Daedalus Enterprises,Inc., NASA developed several multispectral sensors. The data acquired from these sensors supports NASA's Airborne Science and Applications Program and have been identified as precursors to the instruments scheduled to fly on Earth Observing System platforms. THEMATIC MAPPER SIMULATOR The Thematic Mapper Simulator (TMS) sensor is a line scanning device designed for a variety of Earth science applications. Flown aboard NASA ER-2 aircraft, the TMS sensor has a nominal Instantaneous Field of View of 1.25 milliradians with a ground resolution of 81 feet (25 meters) at 65,000 feet. The TMS sensor scans at a rate of 12.5 scans per second with 716 pixels per scan line. Swath width is 8.3 nautical miles (15.4 kilometers) at 65,000 feet while the scanner's Field of View is 42.5 degrees. NS-001 MULTISPECTRAL SCANNER The NS-001multispectral scanner is a line scanning device designed to simulate Landsat thematic mapper (TM) sensor performance, including a near infrared/short-wave infrared band used in applications similar to those of the TM sensor (e.g., Earth resources mapping, vegetation/land cover mapping, geologic studies). Flown aboard NASA C-130B aircraft, the NS-001 sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a variable scan rate (10 to 100 scans per second) with 699 pixels per scan line, but the available motor drive supply restricts the maximum stable scan speed to approximately 85 revolutions per second. A scan rate of 100 revolutions per second is possible, but not probable, for short scan lines; therefore, a combination of factors, including aircraft flight requirements and maximum scan speed, prevent scanner operation below 1,500 feet. Swath width is 3.9 nautical miles (7.26 kilometers) at 10,000 feet, and the total scan angle or field of regard for the sensor is 100 degrees, plus or minus 15 degrees for roll compensation. THERMAL INFRARED MULTISPECTRAL SCANNER The Thermal Infrared Multispectral Scanner (TIMS) sensor is a line scanning device originally designed for geologic applications. Flown aboard NASA C-130B, NASA ER-2, and NASA Learjet aircraft, the TIMS sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a selectable scan rate (7.3, 8.7, 12, or 25 scans per second) with 698 pixels per scan line. Swath width is 2.6 nautical miles (4.8 kilometers) at 10,000 feet while the scanner's Field of View is 76.56 degrees.
As a result of the continued annual growth in global air traffic passenger demand, the number of airplanes that were involved in accidents is on the increase. Although the United States is ranked among the 20 countries with the highest quality of air infrastructure, the U.S. reports the highest number of civil airliner accidents worldwide. 2020 was the year with more plane crashes victims, despite fewer flights The number of people killed in accidents involving large commercial aircraft has risen globally in 2020, even though the number of commercial flights performed last year dropped by 57 percent to 16.4 million. More than half of the total number of deaths were recorded in January 2020, when an Ukrainian plane was shot down in Iranian airspace, a tragedy that killed 176 people. The second fatal incident took place in May, when a Pakistani airliner crashed, killing 97 people. Changes in aviation safety In terms of fatal accidents, it seems that aviation safety experienced some decline on a couple of parameters. For example, there were 0.37 jet hull losses per one million flights in 2016. In 2017, passenger flights recorded the safest year in world history, with only 0.11 jet hull losses per one million flights. In 2020, the region with the highest hull loss rate was the Commonwealth of Independent States. These figures do not take into account accidents involving military, training, private, cargo and helicopter flights.
You can get all global flight information in 1 API call or track flights based on flight number, airline, departure/arrival airport, and more. The data updates frequently, around every 5 minutes. The details of the data include:
Geography: Location information such as latitude, longitude, altitude, and direction. Speed: Vertical and horizontal speed of aircraft. Departure and arrival: IATA codes and ICAO codes of the departure and arrival airport. Aircraft and flight: IATA and ICAO number of flight and registration number, ICAO code, and ICAO24 code of aircraft. Airline: IATA code, and ICAO code of airline. System information: Squawk, status, and last updated in Epoch.
Here's an example response from the API: [ { "geography": { "latitude": 43.5033, "longitude": -79.1297, "altitude": 7833.36, "direction": 70 }, "speed": { "horizontal": 833.4, "isGround": 0, "vertical": 0 }, "departure": { "iataCode": "YHM", "icaoCode": "CYHM" }, "arrival": { "iataCode": "YQM", "icaoCode": "CYQM" }, "aircraft": { "icaoCode": "B763", "regNumber": "CGYAJ", "icao24": "C08412" }, "airline": { "iataCode": "W8", "icaoCode": "CJT" }, "flight": { "iataNumber": "W8620", "icaoNumber": "CJT620", "number": "620" }, "system": { "updated": 1513148168, "squawk": "0000" }, "status": "en-route" } ]
Developer Information:
1) Available Endpoints &depIata= &depIcao= &arrIata= &arrIcao= &aircraftIcao= ®Num= &aircraftIcao24= &airlineIata= &airlineIcao= &flightIata= &flightIcao= &flightNum= &status= &limit= &lat=&lng=&distance=
2) Flights Tracker API Output
Specific flight based on: Flight IATA Number: GET http://aviation-edge.com/v2/public/flights?key=[API_KEY]&flightIata=W8519
All flights of a specific Airlines: GET http://aviation-edge.com/v2/public/flights?key=[API_KEY]&airlineIata=W8
Flights from departure location: GET http://aviation-edge.com/v2/public/flights?key=[API_KEY]&depIata=MAD
Flights from arrival location: GET http://aviation-edge.com/v2/public/flights?key=[API_KEY]&arrIata=GIG
Flights within a circle area based on lat and lng values and radius as the distance: GET https://aviation-edge.com/v2/public/flights?key=[API_KEY]&lat=51.5074&lng=0.1278&distance=100&arrIata=LHR
Combinations: two airports and a specific airline flying between them: GET http://aviation-edge.com/v2/public/flights?key=[API_KEY]&depIata=ATL&arrIata=ORD&airlineIata=UA
The number of flights performed globally by the airline industry has increased steadily since the early 2000s and reached 38.9 million in 2019. However, due to the coronavirus pandemic, the number of flights dropped to 18.3 million in 2020. The flight volume increased again in the following years and was forecasted to reach 38.7 million in 2024. The global airline industry The number of flights performed increased year-on-year continuously to transport both passengers and freight. The industry’s recent growth can be attributed to a combination of increasing living standards and decreasing costs of air travel. While North American and European airlines currently dominate in terms of both revenue and passengers flown, it is predicted that future growth will be highest in markets of Asia.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The environmental impact of aviation is enormous given the fact that in the US alone there are nearly 6 million flights per year of commercial aircraft. This situation has driven numerous policy and procedural measures to help develop environmentally friendly technologies which are safe and affordable and reduce the environmental impact of aviation. However, many of these technologies require significant initial investment in newer aircraft fleets and modifications to existing regulations which are both long and costly enterprises. We propose to use an anomaly detection method based on Virtual Sensors to help detect overconsumption of fuel in aircraft which relies only on the data recorded during flight of most existing commercial aircraft, thus significantly reducing the cost and complexity of implementing this method. The Virtual Sensors developed here are ensemble-learning regression models for detecting the overconsumption of fuel based on instantaneous measurements of the aircraft state. This approach requires no additional information about standard operating procedures or other encoded domain knowledge. We present experimental results on three data sets and compare five different Virtual Sensors algorithms. The first two data sets are publicly available and consist of a simulated data set from a flight simulator and a real-world turbine disk.We show the ability to detect anomalies with high accuracy on these data sets. These sets contain seeded faults, meaning that they have been deliberately injected into the system. The second data set is from realworld fleet of 84 jet aircraft where we show the ability to detect fuel overconsumption which can have a significant environmental and economic impact. To the best of our knowledge, this is the first study of its kind in the aviation domain.
Boeing delivered 528 commercial aircraft worldwide in 2023. This was a 10 percent increase compared to the previous year when the deliveries stood at 480 aircrafts.
The Boeing Company
Founded in 1916, the Boeing Company is a global aircraft, rotorcraft and aerospace manufacturer. As one of the largest commercial aircraft manufacturer, Boeing employed roughly 142,000 people during 2021. Boeing’s research and development (R&D) expenditure rose somewhat continuously since the 2000s and in 2019 its R&D expenditure amounted to 2.5 billion U.S. dollars. Between 2007 and 2018, the worldwide revenue of Boeing increased steadily, reaching over 100 billion U.S. dollars. Yet in 2021, the aircraft manufacturer experienced a slight increase in its revenue streams, up to 62 billion U.S. dollars.
Engine suppliers for Boeing
Aircraft engine manufacturing is a capital-intensive industry with few highly-specialized firms. Although Boeing is one of the largest firms in the world, it is not manufacturing engines for its aircraft. Boeing’s aircraft fleet utilize engines manufactured by CFM International, General Electric, Pratt & Whitney, Rolls-Royce and International Aero Engines. As of December 2019, CFM International manufactured engines for over 7,800 Boeing aircraft. Based on market share, CFM International and Pratt & Whitney were the two major commercial aircraft engine manufacturers in North America as of 2020.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data set used to build the prediction model and its components.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Original provider: Hubbs-Sea World Research Institute
Dataset credits: Hubbs-SeaWorld Research Institute, San Diego, California.
Abstract: Systematic surveys, conducted between 28 October 1978 and 13 November 1979 in the waters adjacent to Puerto la Cruz and Isla Margarita, Venezuela, documented the presence, distribution and habits of a population of Bryde's whales. Methods included aerial and boat surveys, interviews with local fishermen, and radio-tagging. Bryde's whales, apparently attracted by the abundance of food, were observed in the area between March and December; numbers were greatest in fall. Distribution within the study area varied with season: between march and August the whales were seen in the eastern part; from August to December in the western. Herd size increased from march through October. Although several cow and calf pairs were seen, breeding activities were not, and there is no evidence that this is a breeding area.
Purpose: Surveys were supported by the local company Turismo Margarita S.A., to better understand the causes of collisions between passenger jet hydrofoils and large marine animals, and advise on procedures to minimize such risk.
Supplemental information: An accompanying vessel survey dataset Bryde's whales off eastern Venezuela - Vessel 1978-1979 is available.
The provider digitized the locations from the literature.
The accuracy of the dates is year. Months and days are approximate.
No time is provided. Substituted with 00:00:00.
No group size is provided. Substituted with 1.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The African Easterly Jet (AEJ) is part of a climatic system which is of critical importance to African and global weather and climate, but is poorly observed and not well represented in model analyses. For the JET2000 project the Met Office Met Research flight (MRF) aircraft performed four flights, involving transects along and across the jet and the baroclinic zone, to make observations of unprecedented resolution for this part of the world. 110 dropsondes were dropped along the fight path.
The Meteorological Research Flight (MRF) was a Met Office facility, which flew a well-instrumented C-130 Hercules aircraft for atmospheric research purposes.
This dataset contains airborne atmospheric and chemistry measurements taken on board the Met Office C-130 Hercules aircraft flight A782 for the JET2000 project. The flight was located over Cape Verde and Niamey, Niger.
In 2021, due to the coronavirus pandemic, only 13.8 billion gallons of fuel were consumed by U.S. airlines, compared to a high of 18.43 billion gallons in 2007. While the consumption of airline fuel in the United States has increased in recent years, it is yet to surpass the levels seen prior to the 2008 recession. Commercial airlines The above figures include all commercial air carriers based in the U.S. who carry cargo and/or passengers on domestic or international flights, and with annual revenue of over 20 million U.S. dollars. Excluded is airline fuel used for military or private flights. Given that the U.S. has the largest business and military aircraft fleets in the world, if included the figures would be appreciably higher. Overall growth in commercial aviation Given the commercial aviation market in the U.S. has experienced strong growth since 2009, with revenue figures and passenger traffic well above pre-recession levels, the fact that fuel consumption is currently lower than in 2007 may appear curious. The likely explanation is that the cost of airline fuel reached record levels around 2012, forcing airlines to find ways to decrease fuel consumption wherever possible.
In 2006, there were 2311 airline licences issued to 1580 foreign and domestic airlines operating in Canada. Domestically, Air Canada and its partner Jazz were the largest airline in 2006 followed by WestJet. There were 45 airlines that provided service to remote communities and smaller niche markets. Each air route represents an origin destination pair between two airports that may be shared by one or more air carriers. The non-stop air routes shown on the map represent the straight line distance between two airports and not the actual flight navigation route.
CPEXCV_Cloud_AircraftInSitu_DC8_Data is the in-situ cloud data collected during the Convective Processes Experiment - Cabo Verde (CPEX-CV) onboard the DC-8 aircraft. Data from the Cloud and Aerosol Spectrometer (CAS) instrument is featured in this collection. Data collection for this product is complete.
Seeking to better understand atmospheric processes in regions with little data, the Convective Processes Experiment – Cabo Verde (CPEX-CV) campaign conducted by NASA is a continuation of the CPEX – Aerosols & Winds (CPEX-AW) campaign that took place between August to September 2021. The campaign will take place between 1-30 September 2022 and will operate out of Sal Island, Cabo Verde with the primary goal of investigating atmospheric dynamics, marine boundary layer properties, convection, the dust-laden Saharan Air Layer, and their interactions across various spatial scales to improve understanding and predictability of process-level lifecycles in the data-sparse tropical East Atlantic region. CPEX-CV will work towards its goal by addressing four main science objectives. The first goal is to improve understanding of the interaction between large-scale environmental forcings such as the Intertropical Convergence Zone (ITCZ), Saharan Air Layer, African easterly waves, and mid-level African easterly jet, and the lifecycle and properties of convective cloud systems, including tropical cyclone precursors, in the tropical East Atlantic region. Next, observations will be made about how local kinematic and thermodynamic conditions, including the vertical structure and variability of the marine boundary layer, relate to the initiation and lifecycle of convective cloud systems and their processes. Third, CPEX-CV will investigate how dynamical and convective processes affect size dependent Saharan dust vertical structure, long-range Saharan dust transport, and boundary layer exchange pathways. The last objective will be to assess the impact of CPEX-CV observations of atmospheric winds, thermodynamics, clouds, and aerosols on the prediction of tropical Atlantic weather systems and validate and interpret spaceborne remote sensors that provide similar measurements. To achieve these objectives, the NASA DC-8 aircraft will be deployed with remote sensing instruments and dropsondes that will allow for the measurement of tropospheric aerosols, winds, temperature, water vapor, and precipitation. Instruments onboard the aircraft include the Airborne Third Generation Precipitation Radar (APR-3), lidars such as the Doppler Aerosol WiNd Lidar (DAWN), High Altitude Lidar Observatory (HALO), High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR), Advanced Vertical Atmospheric Profiling System (AVAPS) dropsonde system, Cloud Aerosol and Precipitation Spectrometer (CAPS), and the Airborne In-situ and Radio Occultation (AIRO) instrument. Measurements taken by CPEX-CV will assist in moving science forward from previous CPEX and CPEX-AW missions, the calibration and validation of satellite measurements, and the development of airborne sensors, especially those with potential for satellite deployment.
DISCOVERAQ_Colorado_MetNav_AircraftInSitu_P3B_Data contains in situ meteorological and navigational data collected onboard NASA's P-3B aircraft during the Colorado (Denver) deployment of NASA's DISCOVER-AQ field study. This product features navigational data for the P-3B aircraft, along with data from the DLH. This data product contains data for only the Maryland deployment and data collection is complete.
Understanding the factors that contribute to near surface pollution is difficult using only satellite-based observations. The incorporation of surface-level measurements from aircraft and ground-based platforms provides the crucial information necessary to validate and expand upon the use of satellites in understanding near surface pollution. Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) was a four-year campaign conducted in collaboration between NASA Langley Research Center, NASA Goddard Space Flight Center, NASA Ames Research Center, and multiple universities to improve the use of satellites to monitor air quality for public health and environmental benefit. Through targeted airborne and ground-based observations, DISCOVER-AQ enabled more effective use of current and future satellites to diagnose ground level conditions influencing air quality.
DISCOVER-AQ employed two NASA aircraft, the P-3B and King Air, with the P-3B completing in-situ spiral profiling of the atmosphere (aerosol properties, meteorological variables, and trace gas species). The King Air conducted both passive and active remote sensing of the atmospheric column extending below the aircraft to the surface. Data from an existing network of surface air quality monitors, AERONET sun photometers, Pandora UV/vis spectrometers and model simulations were also collected. Further, DISCOVER-AQ employed many surface monitoring sites, with measurements being made on the ground, in conjunction with the aircraft. The B200 and P-3B conducted flights in Baltimore-Washington, D.C. in 2011, Houston, TX in 2013, San Joaquin Valley, CA in 2013, and Denver, CO in 2014. These regions were targeted due to being in violation of the National Ambient Air Quality Standards (NAAQS).
The first objective of DISCOVER-AQ was to determine and investigate correlations between surface measurements and satellite column observations for the trace gases ozone (O3), nitrogen dioxide (NO2), and formaldehyde (CH2O) to understand how satellite column observations can diagnose surface conditions. DISCOVER-AQ also had the objective of using surface-level measurements to understand how satellites measure diurnal variability and to understand what factors control diurnal variability. Lastly, DISCOVER-AQ aimed to explore horizontal scales of variability, such as regions with steep gradients and urban plumes.
The water depth and temperature data were collected in he water depth and temperature data were collected in Gulf of Mexico as part of Louisiana-Texas (LATEX part C) Gulf of Mexico Eddy Circulation Study from aircraft between August 7, 1992 and October 11, 1992. The originator's bathythermograph aerial (AXBT) data containing 67 drops were submitted by Dr. Thomas Berger, Science Applications, Inc. Raleigh NC. The study was supported by grant no MMS 14-35-0001-30633.
LATEX is a three-part, $16.2 million federal initiative funded by the U.S. Minerals Management Service (MMS) of the Department of the Interior. The study was conducted to aid MMS in reducing risks associated with oil and gas operations on the continental shelf along the Texas and Louisiana coasts from the mouth of the Mississippi River to the Rio Grande.
Begun in September 1991, it was the largest physical oceanography program ever undertaken in the Gulf. The program consists of three major parts: LATEX A, B, and C, conducted by the Texas A&M University System (TAMUS), Louisiana State University (LSU), and Science Applications International Corp. (SAIC), respectively.
LATEX C was carried out by researchers at SAIC and the University of Colorado. Loop Current eddies, slope eddies, and squirts and jets within the Gulf of Mexico were located and tracked by air-deployed temperature profiling instruments and drifting buoys. Using these data, scientists assessed the impact of these Gulf-wide, circulation features on shelf circulation and identified the processes that interact with the shelf.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The National Aeronautics and Space Administration (NASA) Aircraft Scanners data set contains digital imagery acquired from several multispectral scanners, including Daedalus thematic mapper simulator scanners and the thermal infrared multispectral scanner. Data are collected from selected areas over the conterminous United States, Alaska, and Hawaii by NASA ER-2 and NASA C-130B aircraft, operating from the NASA Ames Research Center in Moffett Field, California, and by NASA Learjet aircraft, operating from Stennis Space Center in Bay St. Louis, Mississippi. Limited international acquisitions also are available. In cooperation with the Jet Propulsion Laboratory and Daedalus Enterprises,Inc., NASA developed several multispectral sensors. The data acquired from these sensors supports NASA's Airborne Science and Applications Program and have been identified as precursors to the instruments scheduled to fly on Earth Observing System platforms. THEMATIC MAPPER SIMULATOR The Thematic Mapper Simulator (TMS) sensor is a line scanning device designed for a variety of Earth science applications. Flown aboard NASA ER-2 aircraft, the TMS sensor has a nominal Instantaneous Field of View of 1.25 milliradians with a ground resolution of 81 feet (25 meters) at 65,000 feet. The TMS sensor scans at a rate of 12.5 scans per second with 716 pixels per scan line. Swath width is 8.3 nautical miles (15.4 kilometers) at 65,000 feet while the scanner's Field of View is 42.5 degrees. NS-001 MULTISPECTRAL SCANNER The NS-001multispectral scanner is a line scanning device designed to simulate Landsat thematic mapper (TM) sensor performance, including a near infrared/short-wave infrared band used in applications similar to those of the TM sensor (e.g., Earth resources mapping, vegetation/land cover mapping, geologic studies). Flown aboard NASA C-130B aircraft, the NS-001 sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a variable scan rate (10 to 100 scans per second) with 699 pixels per scan line, but the available motor drive supply restricts the maximum stable scan speed to approximately 85 revolutions per second. A scan rate of 100 revolutions per second is possible, but not probable, for short scan lines; therefore, a combination of factors, including aircraft flight requirements and maximum scan speed, prevent scanner operation below 1,500 feet. Swath width is 3.9 nautical miles (7.26 kilometers) at 10,000 feet, and the total scan angle or field of regard for the sensor is 100 degrees, plus or minus 15 degrees for roll compensation. THERMAL INFRARED MULTISPECTRAL SCANNER The Thermal Infrared Multispectral Scanner (TIMS) sensor is a line scanning device originally designed for geologic applications. Flown aboard NASA C-130B, NASA ER-2, and NASA Learjet aircraft, the TIMS sensor has a nominal Instantaneous Field of View of 2.5 milliradians with a ground resolution of 25 feet (7.6 meters) at 10,000 feet. The sensor has a selectable scan rate (7.3, 8.7, 12, or 25 scans per second) with 698 pixels per scan line. Swath width is 2.6 nautical miles (4.8 kilometers) at 10,000 feet while the scanner's Field of View is 76.56 degrees.