99 datasets found
  1. Cancer Rates by U.S. State

    • kaggle.com
    zip
    Updated Dec 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heemali Chaudhari (2022). Cancer Rates by U.S. State [Dataset]. https://www.kaggle.com/datasets/heemalichaudhari/cancer-rates-by-us-state
    Explore at:
    zip(219237 bytes)Available download formats
    Dataset updated
    Dec 26, 2022
    Authors
    Heemali Chaudhari
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

    The rates are the numbers out of 100,000 people who developed or died from cancer each year.

    Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

    *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    ‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

    †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Death Rates by State Rates of dying from cancer also vary from state to state.

    *Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

    †Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

    Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

  2. CDC WONDER: Cancer Statistics

    • catalog.data.gov
    • healthdata.gov
    • +4more
    Updated Jul 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention, Department of Health & Human Services (2025). CDC WONDER: Cancer Statistics [Dataset]. https://catalog.data.gov/dataset/cdc-wonder-cancer-statistics
    Explore at:
    Dataset updated
    Jul 29, 2025
    Description

    The United States Cancer Statistics (USCS) online databases in WONDER provide cancer incidence and mortality data for the United States for the years since 1999, by year, state and metropolitan areas (MSA), age group, race, ethnicity, sex, childhood cancer classifications and cancer site. Report case counts, deaths, crude and age-adjusted incidence and death rates, and 95% confidence intervals for rates. The USCS data are the official federal statistics on cancer incidence from registries having high-quality data and cancer mortality statistics for 50 states and the District of Columbia. USCS are produced by the Centers for Disease Control and Prevention (CDC) and the National Cancer Institute (NCI), in collaboration with the North American Association of Central Cancer Registries (NAACCR). Mortality data are provided by the Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), National Vital Statistics System (NVSS).

  3. Cancer County-Level

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cancer County-Level [Dataset]. https://www.kaggle.com/datasets/thedevastator/exploring-county-level-correlations-in-cancer-ra
    Explore at:
    zip(146998 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    The Devastator
    Description

    Exploring County-Level Correlations in Cancer Rates and Trends

    A Multivariate Ordinary Least Squares Regression Model

    By Noah Rippner [source]

    About this dataset

    This dataset offers a unique opportunity to examine the pattern and trends of county-level cancer rates in the United States at the individual county level. Using data from cancer.gov and the US Census American Community Survey, this dataset allows us to gain insight into how age-adjusted death rate, average deaths per year, and recent trends vary between counties – along with other key metrics like average annual counts, met objectives of 45.5?, recent trends (2) in death rates, etc., captured within our deep multi-dimensional dataset. We are able to build linear regression models based on our data to determine correlations between variables that can help us better understand cancers prevalence levels across different counties over time - making it easier to target health initiatives and resources accurately when necessary or desired

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This kaggle dataset provides county-level datasets from the US Census American Community Survey and cancer.gov for exploring correlations between county-level cancer rates, trends, and mortality statistics. This dataset contains records from all U.S counties concerning the age-adjusted death rate, average deaths per year, recent trend (2) in death rates, average annual count of cases detected within 5 years, and whether or not an objective of 45.5 (1) was met in the county associated with each row in the table.

    To use this dataset to its fullest potential you need to understand how to perform simple descriptive analytics which includes calculating summary statistics such as mean, median or other numerical values; summarizing categorical variables using frequency tables; creating data visualizations such as charts and histograms; applying linear regression or other machine learning techniques such as support vector machines (SVMs), random forests or neural networks etc.; differentiating between supervised vs unsupervised learning techniques etc.; reviewing diagnostics tests to evaluate your models; interpreting your findings; hypothesizing possible reasons and patterns discovered during exploration made through data visualizations ; Communicating and conveying results found via effective presentation slides/documents etc.. Having this understanding will enable you apply different methods of analysis on this data set accurately ad effectively.

    Once these concepts are understood you are ready start exploring this data set by first importing it into your visualization software either tableau public/ desktop version/Qlikview / SAS Analytical suite/Python notebooks for building predictive models by loading specified packages based on usage like Scikit Learn if Python is used among others depending on what tool is used . Secondly a brief description of the entire table's column structure has been provided above . Statistical operations can be carried out with simple queries after proper knowledge of basic SQL commands is attained just like queries using sub sets can also be performed with good command over selecting columns while specifying conditions applicable along with sorting operations being done based on specific attributes as required leading up towards writing python codes needed when parsing specific portion of data desired grouping / aggregating different categories before performing any kind of predictions / models can also activated create post joining few tables possible , when ever necessary once again varying across tools being used Thereby diving deep into analyzing available features determined randomly thus creating correlation matrices figures showing distribution relationships using correlation & covariance matrixes , thus making evaluations deducing informative facts since revealing trends identified through corresponding scatter plots from a given metric gathered from appropriate fields!

    Research Ideas

    • Building a predictive cancer incidence model based on county-level demographic data to identify high-risk areas and target public health interventions.
    • Analyzing correlations between age-adjusted death rate, average annual count, and recent trends in order to develop more effective policy initiatives for cancer prevention and healthcare access.
    • Utilizing the dataset to construct a machine learning algorithm that can predict county-level mortality rates based on socio-economic factors such as poverty levels and educational attainment rates

    Acknowledgements

    If you use this dataset i...

  4. p

    Cervical Cancer Risk Classification - Dataset - CKAN

    • data.poltekkes-smg.ac.id
    Updated Oct 7, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Cervical Cancer Risk Classification - Dataset - CKAN [Dataset]. https://data.poltekkes-smg.ac.id/dataset/cervical-cancer-risk-classification
    Explore at:
    Dataset updated
    Oct 7, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cervical Cancer Risk Factors for Biopsy: This Dataset is Obtained from UCI Repository and kindly acknowledged! This file contains a List of Risk Factors for Cervical Cancer leading to a Biopsy Examination! About 11,000 new cases of invasive cervical cancer are diagnosed each year in the U.S. However, the number of new cervical cancer cases has been declining steadily over the past decades. Although it is the most preventable type of cancer, each year cervical cancer kills about 4,000 women in the U.S. and about 300,000 women worldwide. In the United States, cervical cancer mortality rates plunged by 74% from 1955 - 1992 thanks to increased screening and early detection with the Pap test. AGE Fifty percent of cervical cancer diagnoses occur in women ages 35 - 54, and about 20% occur in women over 65 years of age. The median age of diagnosis is 48 years. About 15% of women develop cervical cancer between the ages of 20 - 30. Cervical cancer is extremely rare in women younger than age 20. However, many young women become infected with multiple types of human papilloma virus, which then can increase their risk of getting cervical cancer in the future. Young women with early abnormal changes who do not have regular examinations are at high risk for localized cancer by the time they are age 40, and for invasive cancer by age 50. SOCIOECONOMIC AND ETHNIC FACTORS Although the rate of cervical cancer has declined among both Caucasian and African-American women over the past decades, it remains much more prevalent in African-Americans -- whose death rates are twice as high as Caucasian women. Hispanic American women have more than twice the risk of invasive cervical cancer as Caucasian women, also due to a lower rate of screening. These differences, however, are almost certainly due to social and economic differences. Numerous studies report that high poverty levels are linked with low screening rates. In addition, lack of health insurance, limited transportation, and language difficulties hinder a poor woman’s access to screening services. HIGH SEXUAL ACTIVITY Human papilloma virus (HPV) is the main risk factor for cervical cancer. In adults, the most important risk factor for HPV is sexual activity with an infected person. Women most at risk for cervical cancer are those with a history of multiple sexual partners, sexual intercourse at age 17 years or younger, or both. A woman who has never been sexually active has a very low risk for developing cervical cancer. Sexual activity with multiple partners increases the likelihood of many other sexually transmitted infections (chlamydia, gonorrhea, syphilis).Studies have found an association between chlamydia and cervical cancer risk, including the possibility that chlamydia may prolong HPV infection. FAMILY HISTORY Women have a higher risk of cervical cancer if they have a first-degree relative (mother, sister) who has had cervical cancer. USE OF ORAL CONTRACEPTIVES Studies have reported a strong association between cervical cancer and long-term use of oral contraception (OC). Women who take birth control pills for more than 5 - 10 years appear to have a much higher risk HPV infection (up to four times higher) than those who do not use OCs. (Women taking OCs for fewer than 5 years do not have a significantly higher risk.) The reasons for this risk from OC use are not entirely clear. Women who use OCs may be less likely to use a diaphragm, condoms, or other methods that offer some protection against sexual transmitted diseases, including HPV. Some research also suggests that the hormones in OCs might help the virus enter the genetic material of cervical cells. HAVING MANY CHILDREN Studies indicate that having many children increases the risk for developing cervical cancer, particularly in women infected with HPV. SMOKING Smoking is associated with a higher risk for precancerous changes (dysplasia) in the cervix and for progression to invasive cervical cancer, especially for women infected with HPV. IMMUNOSUPPRESSION Women with weak immune systems, (such as those with HIV / AIDS), are more susceptible to acquiring HPV. Immunocompromised patients are also at higher risk for having cervical precancer develop rapidly into invasive cancer. DIETHYLSTILBESTROL (DES) From 1938 - 1971, diethylstilbestrol (DES), an estrogen-related drug, was widely prescribed to pregnant women to help prevent miscarriages. The daughters of these women face a higher risk for cervical cancer. DES is no longer prsecribed.

  5. Data from: County-level cumulative environmental quality associated with...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). County-level cumulative environmental quality associated with cancer incidence. [Dataset]. https://catalog.data.gov/dataset/county-level-cumulative-environmental-quality-associated-with-cancer-incidence
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Population based cancer incidence rates were abstracted from National Cancer Institute, State Cancer Profiles for all available counties in the United States for which data were available. This is a national county-level database of cancer data that are collected by state public health surveillance systems. All-site cancer is defined as any type of cancer that is captured in the state registry data, though non-melanoma skin cancer is not included. All-site age-adjusted cancer incidence rates were abstracted separately for males and females. County-level annual age-adjusted all-site cancer incidence rates for years 2006–2010 were available for 2687 of 3142 (85.5%) counties in the U.S. Counties for which there are fewer than 16 reported cases in a specific area-sex-race category are suppressed to ensure confidentiality and stability of rate estimates; this accounted for 14 counties in our study. Two states, Kansas and Virginia, do not provide data because of state legislation and regulations which prohibit the release of county level data to outside entities. Data from Michigan does not include cases diagnosed in other states because data exchange agreements prohibit the release of data to third parties. Finally, state data is not available for three states, Minnesota, Ohio, and Washington. The age-adjusted average annual incidence rate for all counties was 453.7 per 100,000 persons. We selected 2006–2010 as it is subsequent in time to the EQI exposure data which was constructed to represent the years 2000–2005. We also gathered data for the three leading causes of cancer for males (lung, prostate, and colorectal) and females (lung, breast, and colorectal). The EQI was used as an exposure metric as an indicator of cumulative environmental exposures at the county-level representing the period 2000 to 2005. A complete description of the datasets used in the EQI are provided in Lobdell et al. and methods used for index construction are described by Messer et al. The EQI was developed for the period 2000– 2005 because it was the time period for which the most recent data were available when index construction was initiated. The EQI includes variables representing each of the environmental domains. The air domain includes 87 variables representing criteria and hazardous air pollutants. The water domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jagai, J., L. Messer, K. Rappazzo , C. Gray, S. Grabich , and D. Lobdell. County-level environmental quality and associations with cancer incidence#. Cancer. John Wiley & Sons Incorporated, New York, NY, USA, 123(15): 2901-2908, (2017).

  6. Cancer Mortality & Incidence Rates: (Country LVL)

    • kaggle.com
    zip
    Updated Dec 3, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Cancer Mortality & Incidence Rates: (Country LVL) [Dataset]. https://www.kaggle.com/datasets/thedevastator/us-county-level-cancer-mortality-and-incidence-r
    Explore at:
    zip(146998 bytes)Available download formats
    Dataset updated
    Dec 3, 2022
    Authors
    The Devastator
    Description

    Cancer Mortality & Incidence Rates: (Country LVL)

    Investigating Cancer Trends over time

    By Data Exercises [source]

    About this dataset

    This dataset is a comprehensive collection of data from county-level cancer mortality and incidence rates in the United States between 2000-2014. This data provides an unprecedented level of detail into cancer cases, deaths, and trends at a local level. The included columns include County, FIPS, age-adjusted death rate, average death rate per year, recent trend (2) in death rates, recent 5-year trend (2) in death rates and average annual count for each county. This dataset can be used to provide deep insight into the patterns and effects of cancer on communities as well as help inform policy decisions related to mitigating risk factors or increasing preventive measures such as screenings. With this comprehensive set of records from across the United States over 15 years, you will be able to make informed decisions regarding individual patient care or policy development within your own community!

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    This dataset provides comprehensive US county-level cancer mortality and incidence rates from 2000 to 2014. It includes the mortality and incidence rate for each county, as well as whether the county met the objective of 45.5 deaths per 100,000 people. It also provides information on recent trends in death rates and average annual counts of cases over the five year period studied.

    This dataset can be extremely useful to researchers looking to study trends in cancer death rates across counties. By using this data, researchers will be able to gain valuable insight into how different counties are performing in terms of providing treatment and prevention services for cancer patients and whether preventative measures and healthcare access are having an effect on reducing cancer mortality rates over time. This data can also be used to inform policy makers about counties needing more target prevention efforts or additional resources for providing better healthcare access within at risk communities.

    When using this dataset, it is important to pay close attention to any qualitative columns such as “Recent Trend” or “Recent 5-Year Trend (2)” that may provide insights into long term changes that may not be readily apparent when using quantitative variables such as age-adjusted death rate or average deaths per year over shorter periods of time like one year or five years respectively. Additionally, when studying differences between different counties it is important to take note of any standard FIPS code differences that may indicate that data was collected by a different source with a difference methodology than what was used in other areas studied

    Research Ideas

    • Using this dataset, we can identify patterns in cancer mortality and incidence rates that are statistically significant to create treatment regimens or preventive measures specifically targeting those areas.
    • This data can be useful for policymakers to target areas with elevated cancer mortality and incidence rates so they can allocate financial resources to these areas more efficiently.
    • This dataset can be used to investigate which factors (such as pollution levels, access to medical care, genetic make up) may have an influence on the cancer mortality and incidence rates in different US counties

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.

    Columns

    File: death .csv | Column name | Description | |:-------------------------------------------|:-------------------------------------------------------------------...

  7. u

    Cancer death rates by county, 2019-2023 - Dataset - Healthy Communities Data...

    • midb.uspatial.umn.edu
    Updated Oct 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Cancer death rates by county, 2019-2023 - Dataset - Healthy Communities Data Portal [Dataset]. https://midb.uspatial.umn.edu/hcdp/dataset/cancer-death-rates-by-county-2019-2023
    Explore at:
    Dataset updated
    Oct 24, 2025
    Description

    Cancer death rates by county, all races (includes Hispanic/Latino), all sexes, all ages, 2019-2023. Death data were provided by the National Vital Statistics System. Death rates (deaths per 100,000 population per year) are age-adjusted to the 2000 US standard population (20 age groups: <1, 1-4, 5-9, ... , 80-84, 85-89, 90+). Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by the National Cancer Institute. The US Population Data File is used for mortality data. The Average Annual Percent Change is based onthe APCs calculated by the Joinpoint Regression Program (Version 4.9.0.0). Due to data availability issues, the time period used in the calculation of the joinpoint regression model may differ for selected counties. Counties with a (3) after their name may have their joinpoint regresssion model calculated using a different time period due to data availability issues.

  8. c

    National Lung Screening Trial

    • cancerimagingarchive.net
    • stage.cancerimagingarchive.net
    dicom, docx, n/a +2
    Updated Sep 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2021). National Lung Screening Trial [Dataset]. http://doi.org/10.7937/TCIA.HMQ8-J677
    Explore at:
    docx, svs, dicom, n/a, sas, zip, and docAvailable download formats
    Dataset updated
    Sep 24, 2021
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    Sep 24, 2021
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    https://www.cancerimagingarchive.net/wp-content/uploads/nctn-logo-300x108.png" alt="" width="300" height="108" />

    Demographic Summary of Available Imaging

    CharacteristicValue (N = 26254)
    Age (years)Mean Âą SD: 61.4Âą 5
    Median (IQR): 60 (57-65)
    Range: 43-75
    SexMale: 15512 (59%)
    Female: 10742 (41%)
    Race

    White: 23969 (91.3%)
    Black: 1135 (4.3%)
    Asian: 547 (2.1%)
    American Indian/Alaska Native: 88 (0.3%)
    Native Hawaiian/Other Pacific Islander: 87 (0.3%)
    Unknown: 428 (1.6%)

    Ethnicity

    Not Available

    Background: The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer.

    Methods: From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. This dataset includes the low-dose CT scans from 26,254 of these subjects, as well as digitized histopathology images from 451 subjects.

    Results: The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02).

    Conclusions: Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385).

    Data Availability: A summary of the National Lung Screening Trial and its available datasets are provided on the Cancer Data Access System (CDAS). CDAS is maintained by Information Management System (IMS), contracted by the National Cancer Institute (NCI) as keepers and statistical analyzers of the NLST trial data. The full clinical data set from NLST is available through CDAS. Users of TCIA can download without restriction a publicly distributable subset of that clinical data, along with the CT and Histopathology images collected during the trial. (These previously were restricted.)

  9. Association of Arsenic Exposure with Lung Cancer Incidence Rates in the...

    • plos.figshare.com
    txt
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph J. Putila; Nancy Lan Guo (2023). Association of Arsenic Exposure with Lung Cancer Incidence Rates in the United States [Dataset]. http://doi.org/10.1371/journal.pone.0025886
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Joseph J. Putila; Nancy Lan Guo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    BackgroundAlthough strong exposure to arsenic has been shown to be carcinogenic, its contribution to lung cancer incidence in the United States is not well characterized. We sought to determine if the low-level exposures to arsenic seen in the U.S. are associated with lung cancer incidence after controlling for possible confounders, and to assess the interaction with smoking behavior. MethodologyMeasurements of arsenic stream sediment and soil concentration obtained from the USGS National Geochemical Survey were combined, respectively, with 2008 BRFSS estimates on smoking prevalence and 2000 U.S. Census county level income to determine the effects of these factors on lung cancer incidence, as estimated from respective state-wide cancer registries and the SEER database. Poisson regression was used to determine the association between each variable and age-adjusted county-level lung cancer incidence. ANOVA was used to assess interaction effects between covariates. Principal FindingsSediment levels of arsenic were significantly associated with an increase in incident cases of lung cancer (P

  10. Cancer Regression

    • kaggle.com
    Updated Apr 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Varun Raskar (2024). Cancer Regression [Dataset]. https://www.kaggle.com/datasets/varunraskar/cancer-regression
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 14, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Varun Raskar
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The dataset contains 2 .csv files

    This file contains various demographic and health-related data for different regions. Here's a brief description of each column:

    File 1st

    avganncount: Average number of cancer cases diagnosed annually.

    avgdeathsperyear: Average number of deaths due to cancer per year.

    target_deathrate: Target death rate due to cancer.

    incidencerate: Incidence rate of cancer.

    medincome: Median income in the region.

    popest2015: Estimated population in 2015.

    povertypercent: Percentage of population below the poverty line.

    studypercap: Per capita number of cancer-related clinical trials conducted.

    binnedinc: Binned median income.

    medianage: Median age in the region.

    pctprivatecoveragealone: Percentage of population covered by private health insurance alone.

    pctempprivcoverage: Percentage of population covered by employee-provided private health insurance.

    pctpubliccoverage: Percentage of population covered by public health insurance.

    pctpubliccoveragealone: Percentage of population covered by public health insurance only.

    pctwhite: Percentage of White population.

    pctblack: Percentage of Black population.

    pctasian: Percentage of Asian population.

    pctotherrace: Percentage of population belonging to other races.

    pctmarriedhouseholds: Percentage of married households. birthrate: Birth rate in the region.

    File 2nd

    This file contains demographic information about different regions, including details about household size and geographical location. Here's a description of each column:

    statefips: The FIPS code representing the state.

    countyfips: The FIPS code representing the county or census area within the state.

    avghouseholdsize: The average household size in the region.

    geography: The geographical location, typically represented as the county or census area name followed by the state name.

    Each row in the file represents a specific region, providing details about household size and geographical location. This information can be used for various demographic analyses and studies.

  11. p

    American Cancer Society Locations Data for New York, United States

    • poidata.io
    csv, json
    Updated Oct 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business Data Provider (2025). American Cancer Society Locations Data for New York, United States [Dataset]. https://poidata.io/brand-report/american-cancer-society/united-states/new-york
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Oct 29, 2025
    Dataset authored and provided by
    Business Data Provider
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    New York
    Variables measured
    Website URL, Phone Number, Review Count, Business Name, Email Address, Business Hours, Customer Rating, Business Address, Brand Affiliation, Geographic Coordinates
    Description

    Comprehensive dataset containing 22 verified American Cancer Society locations in New York, United States with complete contact information, ratings, reviews, and location data.

  12. NCI State Breast Cancer Incidence Rates

    • hub.arcgis.com
    Updated Jan 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Cancer Institute (2020). NCI State Breast Cancer Incidence Rates [Dataset]. https://hub.arcgis.com/datasets/NCI::nci-state-breast-cancer-incidence-rates
    Explore at:
    Dataset updated
    Jan 2, 2020
    Dataset authored and provided by
    National Cancer Institutehttp://www.cancer.gov/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    This dataset contains Cancer Incidence data for Breast Cancer (All Stages^) including: Age-Adjusted Rate, Confidence Interval, Average Annual Count, and Trend field information for US States for the average 5 year span from 2016 to 2020.Data are for females segmented by age (All Ages, Ages Under 50, Ages 50 & Over, Ages Under 65, and Ages 65 & Over), with field names and aliases describing the sex and age group tabulated.For more information, visit statecancerprofiles.cancer.govData NotationsState Cancer Registries may provide more current or more local data.TrendRising when 95% confidence interval of average annual percent change is above 0.Stable when 95% confidence interval of average annual percent change includes 0.Falling when 95% confidence interval of average annual percent change is below 0.† Incidence rates (cases per 100,000 population per year) are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84, 85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Rates calculated using SEER*Stat. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used for SEER and NPCR incidence rates.‡ Incidence Trend data come from different sources. Due to different years of data availability, most of the trends are AAPCs based on APCs but some are APCs calculated in SEER*Stat. Please refer to the source for each area for additional information.Rates and trends are computed using different standards for malignancy. For more information see malignant.^ All Stages refers to any stage in the Surveillance, Epidemiology, and End Results (SEER) summary stage.Data Source Field Key(1) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(5) Source: National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Based on the 2022 submission.(6) Source: National Program of Cancer Registries SEER*Stat Database - United States Department of Health and Human Services, Centers for Disease Control and Prevention (based on the 2022 submission).(7) Source: SEER November 2022 submission.(8) Source: Incidence data provided by the SEER Program. AAPCs are calculated by the Joinpoint Regression Program and are based on APCs. Data are age-adjusted to the 2000 US standard population (19 age groups: <1, 1-4, 5-9, ... , 80-84,85+). Rates are for invasive cancer only (except for bladder cancer which is invasive and in situ) or unless otherwise specified. Population counts for denominators are based on Census populations as modified by NCI. The US Population Data File is used with SEER November 2022 data.Some data are not available, see Data Not Available for combinations of geography, cancer site, age, and race/ethnicity.Data for the United States does not include data from Nevada.Data for the United States does not include Puerto Rico.

  13. h

    Subtypes of Native American ancestry and leading causes of death: Mapuche...

    • heidata.uni-heidelberg.de
    txt
    Updated Oct 24, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Justo Lorenzo Bermejo; Felix Boekstegers; Rosa GonzĂĄlez Silos; Katherine Marcelain; Pablo Baez Benavides; Carol Barahona Ponce; Bettina MĂźller; Catterina Ferreccio; Jill Koshiol; Christine Fischer; Barbara Peil; Janet Sinsheimer; Macarena Fuentes Guajardo; Olga Barajas; Rolando Gonzalez-Jose; Gabriel Bedoya; Maria CĂĄtira Bortolini; Samuel Canizales-Quinteros; Carla Gallo; Andres Ruiz Linares; Francisco Rothhammer; Justo Lorenzo Bermejo; Felix Boekstegers; Rosa GonzĂĄlez Silos; Katherine Marcelain; Pablo Baez Benavides; Carol Barahona Ponce; Bettina MĂźller; Catterina Ferreccio; Jill Koshiol; Christine Fischer; Barbara Peil; Janet Sinsheimer; Macarena Fuentes Guajardo; Olga Barajas; Rolando Gonzalez-Jose; Gabriel Bedoya; Maria CĂĄtira Bortolini; Samuel Canizales-Quinteros; Carla Gallo; Andres Ruiz Linares; Francisco Rothhammer (2018). Subtypes of Native American ancestry and leading causes of death: Mapuche ancestry-specific associations with gallbladder cancer risk in Chile [Dataset] [Dataset]. http://doi.org/10.11588/DATA/IDSI88
    Explore at:
    txt(263073), txt(36100)Available download formats
    Dataset updated
    Oct 24, 2018
    Dataset provided by
    heiDATA
    Authors
    Justo Lorenzo Bermejo; Felix Boekstegers; Rosa GonzĂĄlez Silos; Katherine Marcelain; Pablo Baez Benavides; Carol Barahona Ponce; Bettina MĂźller; Catterina Ferreccio; Jill Koshiol; Christine Fischer; Barbara Peil; Janet Sinsheimer; Macarena Fuentes Guajardo; Olga Barajas; Rolando Gonzalez-Jose; Gabriel Bedoya; Maria CĂĄtira Bortolini; Samuel Canizales-Quinteros; Carla Gallo; Andres Ruiz Linares; Francisco Rothhammer; Justo Lorenzo Bermejo; Felix Boekstegers; Rosa GonzĂĄlez Silos; Katherine Marcelain; Pablo Baez Benavides; Carol Barahona Ponce; Bettina MĂźller; Catterina Ferreccio; Jill Koshiol; Christine Fischer; Barbara Peil; Janet Sinsheimer; Macarena Fuentes Guajardo; Olga Barajas; Rolando Gonzalez-Jose; Gabriel Bedoya; Maria CĂĄtira Bortolini; Samuel Canizales-Quinteros; Carla Gallo; Andres Ruiz Linares; Francisco Rothhammer
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/IDSI88https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/1.1/customlicense?persistentId=doi:10.11588/DATA/IDSI88

    Area covered
    Chile
    Description

    Latin Americans are highly heterogeneous regarding the type of Native American ancestry. Consideration of specific associations with common diseases may lead to substantial advances in unraveling of disease etiology and disease prevention. Here we investigate possible associations between the type of Native American ancestry and leading causes of death. After an aggregate-data study based on genome-wide genotype data from 1805 admixed Chileans and 639,789 deaths, we validate an identified association with gallbladder cancer relying on individual data from 64 gallbladder cancer patients, with and without a family history, and 170 healthy controls. Native American proportions were markedly underestimated when the two main types of Native American ancestry in Chile, originated from the Mapuche and Aymara indigenous peoples, were combined together. Consideration of the type of Native American ancestry was crucial to identify disease associations. Native American ancestry showed no association with gallbladder cancer mortality (P = 0.26). By contrast, each 1% increase in the Mapuche proportion represented a 3.7% increased mortality risk by gallbladder cancer (95%CI 3.1–4.3%, P = 6×10−27). Individual-data results and extensive sensitivity analyses confirmed the association between Mapuche ancestry and gallbladder cancer. Increasing Mapuche proportions were also associated with an increased mortality due to asthma and, interestingly, with a decreased mortality by diabetes. The mortality due to skin, bladder, larynx, bronchus and lung cancers increased with increasing Aymara proportions. Described methods should be considered in future studies on human population genetics and human health. Complementary individual-based studies are needed to apportion the genetic and non-genetic components of associations identified relying on aggregate-data.

  14. c

    Prostate MRI and Ultrasound With Pathology and Coordinates of Tracked Biopsy...

    • cancerimagingarchive.net
    • stage.cancerimagingarchive.net
    dicom, n/a, xlsx, zip
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2020). Prostate MRI and Ultrasound With Pathology and Coordinates of Tracked Biopsy [Dataset]. http://doi.org/10.7937/TCIA.2020.A61IOC1A
    Explore at:
    zip, xlsx, dicom, n/aAvailable download formats
    Dataset updated
    Sep 17, 2020
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    Oct 20, 2023
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    This dataset was derived from tracked biopsy sessions using the Artemis biopsy system, many of which included image fusion with MRI targets. Patients received a 3D transrectal ultrasound scan, after which nonrigid registration (e.g. “fusion”) was performed between real-time ultrasound and preoperative MRI, enabling biopsy cores to be sampled from MR regions of interest. Most cases also included sampling of systematic biopsy cores using a 12-core digital template. The Artemis system tracked targeted and systematic core locations using encoder kinematics of a mechanical arm, and recorded locations relative to the Ultrasound scan. MRI biopsy coordinates were also recorded for most cases. STL files and biopsy overlays are available and can be visualized in 3D Slicer with the SlicerHeart extension. Spreadsheets summarizing biopsy and MR target data are also available. See the Detailed Description tab below for more information.

    MRI targets were defined using multiparametric MRI, e.g. t2-weighted, diffusion-weighted, and perfusion-weighted sequences, and scored on a Likert-like scale with close correspondence to PIRADS version 2. t2-weighted MRI was used to trace ROI contours, and is the only sequence provided in this dataset. MR imaging was performed on a 3 Tesla Trio, Verio or Skyra scanner (Siemens, Erlangen, Germany). A transabdominal phased array was used in all cases, and an endorectal coil was used in a subset of cases. The majority of pulse sequences are 3D T2:SPC, with TR/TE 2200/203, Matrix/FOV 256 × 205/14 × 14 cm, and 1.5mm slice spacing. Some cases were instead 3D T2:TSE with TR/TE 3800–5040/101, and a small minority were imported from other institutions (various T2 protocols.)

    Ultrasound scans were performed with Hitachi Hi-Vision 5500 7.5 MHz or the Noblus C41V 2-10 MHz end-fire probe. 3D scans were acquired by rotation of the end-fire probe 200 degrees about its axis, and interpolating to resample the volume with isotropic resolution.

    Patients with suspicion of prostate cancer due to elevated PSA and/or suspicious imaging findings were consecutively accrued. Any consented patient who underwent or had planned to receive a routine, standard-of-care prostate biopsy at the UCLA Clark Urology Center was included.

    Note: Some Private Tags in this collection are critical to properly displaying the STL surface and the Prostate anatomy. Private Tag (1129,"Eigen, Inc",1016) DS VoxelSize is especially important for multi-frame US cases.

  15. w

    Dataset of book subjects that contain The dread disease : cancer and modern...

    • workwithdata.com
    Updated Nov 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2024). Dataset of book subjects that contain The dread disease : cancer and modern American culture [Dataset]. https://www.workwithdata.com/datasets/book-subjects?f=1&fcol0=j0-book&fop0=%3D&fval0=The+dread+disease+:+cancer+and+modern+American+culture&j=1&j0=books
    Explore at:
    Dataset updated
    Nov 7, 2024
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about book subjects. It has 2 rows and is filtered where the books is The dread disease : cancer and modern American culture. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.

  16. d

    Data from: Fat, fibre and cancer risk in African Americans and rural...

    • datadryad.org
    • data.niaid.nih.gov
    • +1more
    zip
    Updated Jan 23, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephen J. D. O’Keefe; Jia V. Li; Leo Lahti; Junhai Ou; Franck Carbonero; Mohammed Khaled; Joram M. Posma; James Kinross; Elaine Wahl; Elizabeth Ruder; Kishore Vipperla; Vasudevan Naidoo; Lungile Mtshali; Sebastian Tims; Philippe G. B. Puylaert; James DeLany; Alyssa Krasinskas; Ann C. Benefiel; Hatem O. Kaseb; Keith Newton; Jeremy K. Nicholson; Willem M. de Vos; H. Rex Gaskins; Erwin G. Zoetendal (2016). Fat, fibre and cancer risk in African Americans and rural Africans [Dataset]. http://doi.org/10.5061/dryad.1mn1n
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 23, 2016
    Dataset provided by
    Dryad
    Authors
    Stephen J. D. O’Keefe; Jia V. Li; Leo Lahti; Junhai Ou; Franck Carbonero; Mohammed Khaled; Joram M. Posma; James Kinross; Elaine Wahl; Elizabeth Ruder; Kishore Vipperla; Vasudevan Naidoo; Lungile Mtshali; Sebastian Tims; Philippe G. B. Puylaert; James DeLany; Alyssa Krasinskas; Ann C. Benefiel; Hatem O. Kaseb; Keith Newton; Jeremy K. Nicholson; Willem M. de Vos; H. Rex Gaskins; Erwin G. Zoetendal
    Time period covered
    Jan 21, 2015
    Area covered
    Africa, South Africa, USA
    Description

    HITChip data matrixA csv file containing HITChip phylogenetic microarray data matrix for the study samples. The data provides the absolute HITChip phylogenetic microarray signal estimate for 130 genus-like groups, preprocessed as described in the main article.HITChip.csvMetadataCSV file containing the sample metadata in the HITChip data matrix. The variables are rounded or aggregated to ensure subject anonymity. 'NA' refers to missing values. The variable units and other information are as follows: - SampleID: unique sample identified corresponding to samples in the HITChip data matrix - subject: Subject identifier (some subjects have multiple time points) - bmi: Standard body-mass classification (underweight: <18.5; lean: 18.5-25; overweight: 25-30; obese: 30-35; severe obese: 35-40; morbid obese 40-45; superobese >45). - sex (male/female) - nationality: African American (AAM); Native African (AFR) - timepoint.group: Time point (1/2) within the group (ED/HE/DI) - ti...

  17. r

    A geospatiotemporal and causal inference epidemiological exploration of...

    • researchdata.edu.au
    • data.mendeley.com
    Updated Aug 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Psychiatry; Albert Stuart Reece (2021). A geospatiotemporal and causal inference epidemiological exploration of substance and cannabinoid exposure as drivers of rising US pediatric cancer rates [Dataset] [Dataset]. http://doi.org/10.17632/CNWV9HDSPD.1
    Explore at:
    Dataset updated
    Aug 12, 2021
    Dataset provided by
    Edith Cowan University
    Authors
    Psychiatry; Albert Stuart Reece
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Background. Age-adjusted US total pediatric cancer incidence rates (TPCIR) rose 49% 1975-2015 for unknown reasons. Prenatal cannabis exposure has been linked with several pediatric cancers which together comprise the majority of pediatric cancer types. We investigated whether cannabis use was related spatiotemporally and causally to TPCIR.

    Methods. State-based age-adjusted TPCIR data was taken from the CDC Surveillance, Epidemiology and End Results cancer database 2003-2017. Drug exposure was taken from the nationally-representative National Survey of Drug Use and Health, response rate 74.1%. Drugs included were: tobacco, alcohol, cannabis, opioid analgesics and cocaine. This was supplemented by cannabinoid concentration data from the Drug Enforcement Agency and ethnicity and median household income data from US Census.

    Results. TPCIR rose while all drug use nationally fell, except for cannabis which rose. TPCIR in the highest cannabis use quintile was greater than in the lowest (β-estimate=1.31 (95%C.I. 0.82, 1.80), P=1.80x10-7) and the time:highest two quintiles interaction was significant (β-estimate=0.1395 (0.82, 1.80), P=1.00x10-14). In robust inverse probability weighted additive regression models cannabis was independently associated with TPCIR (β-estimate=9.55 (3.95, 15.15), P=0.0016). In interactive geospatiotemporal models including all drug, ethnic and income variables cannabis use was independently significant (β-estimate=45.67 (18.77, 72.56), P=0.0009). In geospatial models temporally lagged to 1,2,4 and 6 years interactive terms including cannabis were significant. Cannabis interactive terms at one and two degrees of spatial lagging were significant (from β-estimate=3954.04 (1565.01, 6343.09), P=0.0012). The interaction between the cannabinoids THC and cannabigerol was significant at zero, 2 and 6 years lag (from β-estimate=46.22 (30.06, 62.38), P=2.10x10-8). Cannabis legalization was associated with higher TPCIR (β-estimate=1.51 (0.68, 2.35), P=0.0004) and cannabis-liberal regimes were associated with higher time:TPCIR interaction (β-estimate=1.87x10-4, (2.9x10-5, 2.45x10-4), P=0.0208). 33/56 minimum e-Values were >5 and 6 were infinite.

    Conclusion. Data confirm a close relationship across space and lagged time between cannabis and TPCIR which was robust to adjustment, supported by inverse probability weighting procedures and accompanied by high e-Values making confounding unlikely and establishing the causal relationship. Cannabis-liberal jurisdictions were associated with higher rates of TPCIR and a faster rate of TPCIR increase. Data inform the broader general consideration of cannabinoid-induced genotoxicity.

  18. h

    PICO-breast-cancer

    • huggingface.co
    Updated Feb 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Cuevas Villarmin (2024). PICO-breast-cancer [Dataset]. https://huggingface.co/datasets/cuevascarlos/PICO-breast-cancer
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 12, 2024
    Authors
    Carlos Cuevas Villarmin
    Description

    PICO breast cancer dataset

    This dataset has been extracted from PICO-Corpus. The corpus consists of 1,011 abstracts of breast cancer randomized controlled trials extracted from PubMed. The PICO breast cancer dataset contains a total of 26 entities, compared to the usual 4 found in PICO corpora. Specifically, the following image extracted by the dataset's authors shows the hierarchy of the entities. The preprocessed dataset, ready to serve as inputs for MLMs such as BERT-like… See the full description on the dataset page: https://huggingface.co/datasets/cuevascarlos/PICO-breast-cancer.

  19. h

    brain-cancer-dataset

    • huggingface.co
    Updated Sep 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Unidata (2024). brain-cancer-dataset [Dataset]. https://huggingface.co/datasets/UniDataPro/brain-cancer-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 19, 2024
    Authors
    Unidata
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Brain Tumors MRI Images - 2,000,000+ MRI studies

    The dataset consists of MRI scans of human brains with medical reports and is designed to detection, classification, and segmentation of tumors in cancer patients. The data includes a variety of brain tumors such as gliomas, benign tumors, malignant tumors, and brain metastasis, along with clinical information for each patient - Get the data The MRI scans provide detailed medical imaging of different tissues and tumor regions… See the full description on the dataset page: https://huggingface.co/datasets/UniDataPro/brain-cancer-dataset.

  20. d

    Data from: Korean women: breast cancer knowledge, attitudes and behaviors

    • catalog.data.gov
    • data.virginia.gov
    Updated Sep 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Institutes of Health (2025). Korean women: breast cancer knowledge, attitudes and behaviors [Dataset]. https://catalog.data.gov/dataset/korean-women-breast-cancer-knowledge-attitudes-and-behaviors
    Explore at:
    Dataset updated
    Sep 6, 2025
    Dataset provided by
    National Institutes of Health
    Description

    Introduction Clustered within the nomenclature of Asian American are numerous subgroups, each with their own ethnic heritage, cultural, and linguistic characteristics. An understanding of the prevailing health knowledge, attitudes, and screening behaviors of these subgroups is essential for creating population-specific health promotion programs. Methods Korean American women (123) completed baseline surveys of breast cancer knowledge, attitudes, and screening behaviors as part of an Asian grocery store-based breast cancer education program evaluation. Follow-up telephone surveys, initiated two weeks later, were completed by 93 women. Results Low adherence to the American Cancer Society's breast cancer screening guidelines and insufficient breast cancer knowledge were reported. Participants' receptiveness to the grocery store-based breast cancer education program underscores the importance of finding ways to reach Korean women with breast cancer early detection information and repeated cues for screening. The data also suggest that the Asian grocery store-based cancer education program being tested may have been effective in motivating a proportion of the women to schedule a breast cancer screening between the baseline and follow-up surveys. Conclusion The program offers a viable strategy to reach Korean women that addresses the language, cultural, transportation, and time barriers they face in accessing breast cancer early detection information.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Heemali Chaudhari (2022). Cancer Rates by U.S. State [Dataset]. https://www.kaggle.com/datasets/heemalichaudhari/cancer-rates-by-us-state
Organization logo

Cancer Rates by U.S. State

Cancer Rates by U.S. State

Explore at:
6 scholarly articles cite this dataset (View in Google Scholar)
zip(219237 bytes)Available download formats
Dataset updated
Dec 26, 2022
Authors
Heemali Chaudhari
License

https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

Area covered
United States
Description

In the following maps, the U.S. states are divided into groups based on the rates at which people developed or died from cancer in 2013, the most recent year for which incidence data are available.

The rates are the numbers out of 100,000 people who developed or died from cancer each year.

Incidence Rates by State The number of people who get cancer is called cancer incidence. In the United States, the rate of getting cancer varies from state to state.

*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

‡Rates are not shown if the state did not meet USCS publication criteria or if the state did not submit data to CDC.

†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

Death Rates by State Rates of dying from cancer also vary from state to state.

*Rates are per 100,000 and are age-adjusted to the 2000 U.S. standard population.

†Source: U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2013 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control and Prevention, and National Cancer Institute; 2016. Available at: http://www.cdc.gov/uscs.

Source: https://www.cdc.gov/cancer/dcpc/data/state.htm

Search
Clear search
Close search
Google apps
Main menu