Facebook
TwitterThis study was undertaken to obtain information on the characteristics of gun ownership, gun-carrying practices, and weapons-related incidents in the United States -- specifically, gun use and other weapons used in self-defense against humans and animals. Data were gathered using a national random-digit-dial telephone survey. The respondents were comprised of 1,905 randomly-selected adults aged 18 and older living in the 50 United States. All interviews were completed between May 28 and July 2, 1996. The sample was designed to be a representative sample of households, not of individuals, so researchers did not interview more than one adult from each household. To start the interview, six qualifying questions were asked, dealing with (1) gun ownership, (2) gun-carrying practices, (3) gun display against the respondent, (4) gun use in self-defense against animals, (5) gun use in self-defense against people, and (6) other weapons used in self-defense. A "yes" response to a qualifying question led to a series of additional questions on the same topic as the qualifying question. Part 1, Survey Data, contains the coded data obtained during the interviews, and Part 2, Open-Ended-Verbatim Responses, consists of the answers to open-ended questions provided by the respondents. Information collected for Part 1 covers how many firearms were owned by household members, types of firearms owned (handguns, revolvers, pistols, fully automatic weapons, and assault weapons), whether the respondent personally owned a gun, reasons for owning a gun, type of gun carried, whether the gun was ever kept loaded, kept concealed, used for personal protection, or used for work, and whether the respondent had a permit to carry the gun. Additional questions focused on incidents in which a gun was displayed in a hostile manner against the respondent, including the number of times such an incident took place, the location of the event in which the gun was displayed against the respondent, whether the police were contacted, whether the individual displaying the gun was known to the respondent, whether the incident was a burglary, robbery, or other planned assault, and the number of shots fired during the incident. Variables concerning gun use by the respondent in self-defense against an animal include the number of times the respondent used a gun in this manner and whether the respondent was hunting at the time of the incident. Other variables in Part 1 deal with gun use in self-defense against people, such as the location of the event, if the other individual knew the respondent had a gun, the type of gun used, any injuries to the respondent or to the individual that required medical attention or hospitalization, whether the incident was reported to the police, whether there were any arrests, whether other weapons were used in self-defense, the type of other weapon used, location of the incident in which the other weapon was used, and whether the respondent was working as a police officer or security guard or was in the military at the time of the event. Demographic variables in Part 1 include the gender, race, age, household income, and type of community (city, suburb, or rural) in which the respondent lived. Open-ended questions asked during the interview comprise the variables in Part 2. Responses include descriptions of where the respondent was when he or she displayed a gun (in self-defense or otherwise), specific reasons why the respondent displayed a gun, how the other individual reacted when the respondent displayed the gun, how the individual knew the respondent had a gun, whether the police were contacted for specific self-defense events, and if not, why not.
Facebook
TwitterThe share of American households owning at least one firearm has remained relatively steady since 1972, hovering between ** percent and ** percent. In 2024, about ** percent of U.S. households had at least one gun in their possession. Additional information on firearms in the United States Firearms command a higher degree of cultural significance in the United States than any other country in the world. Since the inclusion of the right to bear arms in the Second Amendment to the Constitution of the United States, firearms have held symbolic power beyond their already obvious material power. Despite many Americans being proud gun-owners, a large movement exists within the country in opposition to the freedom afforded to those in possession of these potentially deadly weapons. Those opposed to current gun regulation have sourced their anger from the large number of deaths due to firearms in the country, as well as the high frequency of gun violence apparent in comparison to other developed countries. Furthermore, the United States has fallen victim to a number of mass shootings in the last two decades, most of which have raised questions over the ease at which a person can obtain a firearm. Although this movement holds a significant position in the public political discourse of the United States, meaningful change regarding the legislation dictating the ownership of firearms has not occurred. Critics have pointed to the influence possessed by the National Rifle Association through their lobbying of public officials. The National Rifle Association also lobbies for the interests of firearm manufacturing in the United States, which has continued to rise since a fall in the early 2000s.
Facebook
Twitterhttps://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Gun Violence Dataset in US is a tabularized data set for gun violence analysis that includes the date, location, victim and suspect information, and geographic coordinates of major 2024 shootings across the U.S.
2) Data Utilization (1) Gun Violence Dataset in US has characteristics that: • Each row contains key information about the shooting, including incident-specific ID, date of occurrence, state and city/county, number of deaths and injuries, suspects (death, injury, arrest), latitude, and longitude. • Data is designed to analyze the distribution of gun incidents and the extent of damage by month and region, and spatial analysis through geographic coordinates is also possible. (2) Gun Violence Dataset in US can be used to: • Analysis of shooting trends by region: Use data by location, magnitude of damage, and time to visualize and analyze the regional and temporal distribution and risk areas of gun violence. • Establishing public safety policies and prevention strategies: Based on victim and suspect information and incident characteristics, it can be used to establish effective gun control, prevention policies, resource allocation strategies, and more.
Facebook
TwitterThe dataset is sourced and edited from
data.world
Description is given as below:
Centers for Disease Control and Prevention, National Center for Health Statistics. Multiple Cause of Death with U.S. - Mexico Border Regions 1999-2019 on CDC WONDER Online Database, released in 2020. Data are from the Multiple Cause of Death Files, 1999-2019, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. U.S. - Mexico border counties has been demarcated as the 44 counties that are located within 100 kilometers (62 miles) defined under the 1983 La Paz Agreement. Accessed at http://wonder.cdc.gov/ucd-border.html on Nov 6, 2021 12:22:30 AM
Query Parameters: Title: Gun Deaths by County MCD - ICD-10 Codes: W32 (Handgun discharge); W33 (Rifle, shotgun and larger firearm discharge); W34 (Discharge from other and unspecified firearms); X72 (Intentional self-harm by handgun discharge); X73 (Intentional self-harm by rifle, shotgun and larger firearm discharge); X74 (Intentional self-harm by other and unspecified firearm discharge); X93 (Assault by handgun discharge); X94 (Assault by rifle, shotgun and larger firearm discharge); X95 (Assault by other and unspecified firearm discharge); Y22 (Handgun discharge, undetermined intent); Y23 (Rifle, shotgun and larger firearm discharge, undetermined intent); Y24 (Other and unspecified firearm discharge, undetermined intent); Y35.0 (Legal intervention involving firearm discharge)
Group By: Year; County Show Totals: True Show Zero Values: False Show Suppressed: False Standard Population: 2000 U.S. Std. Population Calculate Rates Per: 100,000 Rate Options: Default intercensal populations for years 2001-2009 (except Infant Age Groups)
picture sourced from peterplit
Facebook
TwitterThis nationally representative, anonymous, household telephone survey was conducted to explore the distribution of privately owned firearms in the United States, as well as firearm acquisition, disposal, and storage in households with guns. The study updates an earlier (1994) study by Cook and Ludwig that examined household firearm ownership in the United States (Cook P.J., Ludwig J. Guns in America: Results of a comprehensive national survey of firearms ownership and use. Washington DC: Police Foundation 1997.) Other domains of the survey included (1) past year firearm use both by respondents with firearms in their households and those without (e.g., "In the past 12 months, have you handled any gun"); (2) guns and youth (e.g., "In the last 12 months, have you ever asked another parent whether their home contains guns?"); (3) awareness of and opinions regarding state and federal firearm laws (e.g., "To the best of your knowledge, does your state have a law that holds adults liable for misuse of their guns by children or minors"; "Do you favor or oppose the sale of military style firearms?"); (4) depression and suicide (e.g., "If the Golden Gate Bridge had a barrier to prevent suicide, about how many of the 1,000 jumpers (who have committed suicide by jumping off the bridge since 1937) do you think would have found some other way to kill themselves?") and (5) aggressive driving (e.g., "In the past 12 months, have you made obscene or rude gestures at another motorist"). The survey also included extensive demographic information about the respondent and his or her family. The demographic information that was collected includes respondents' sex, age, race, education level, household income, criminal arrest history, armed forces membership status, type of residential area (e.g., urban or rural), and political philosophy.
Facebook
TwitterNumber and percentage of homicide victims, by type of firearm used to commit the homicide (total firearms; handgun; rifle or shotgun; fully automatic firearm; sawed-off rifle or shotgun; firearm-like weapons; other firearms, type unknown), Canada, 1974 to 2018.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Gun Barrel City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Gun Barrel City. The dataset can be utilized to understand the population distribution of Gun Barrel City by age. For example, using this dataset, we can identify the largest age group in Gun Barrel City.
Key observations
The largest age group in Gun Barrel City, TX was for the group of age 60-64 years with a population of 734 (11.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in Gun Barrel City, TX was the 85+ years with a population of 153 (2.49%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gun Barrel City Population by Age. You can refer the same here
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Gun ownership is a highly a consequential political behavior. It often signifies a belief about the inadequacy of state-provided security and leads to membership in a powerful political constituency. As a result, it is important to understand why people buy guns and how shifting purchasing patterns affect the composition of the broader gun owning community. We address these topics by exploring the dynamics of the gun-buying spike that took place during the COVID-19 pandemic, which was one of the largest in American history. We find that feelings of diffuse threat prompted many individuals to buy guns. Moreover, we show that new gun owners, even more than buyers who already owned guns, exhibit strong conspiracy and anti-system beliefs. These findings have substantial consequences for the subsequent population of gun owners and provide insight into how social disruptions can alter the nature of political groups.
Facebook
TwitterODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Firearms background checks for the USA for 2012 (Jan-Nov) and since 1999.These statistics represent the number of firearm background checks initiated through the NICS. They do not represent the number of firearms sold. NICS is used by Federal Firearms Licensees (FFLs) to instantly determine whether a prospective buyer is eligible to buy firearms or explosives. Before ringing up the sale, cashiers call in a check to the FBI or to other designated agencies to ensure that each customer does not have a criminal record or isn't otherwise ineligible to make a purchase. More than 100 million such checks have been made in the last decade, leading to more than 700,000 denials. More information on NICS - http://www.fbi.gov/about-us/cjis/nics Some really useful informations such as the rate of checks per 1000 people. All data is provided by state. Downloaded from the Guardian Datablog - http://www.guardian.co.uk/news/datablog/2012/dec/17/how-many-guns-us and then joined to USA States data http://geocommons.com/overlays/21424. Gun data originally from FBI http://www.fbi.gov/about-us/cjis/nics. GIS vector data. This dataset was first accessioned in the EDINA ShareGeo Open repository on 2012-12-17 and migrated to Edinburgh DataShare on 2017-02-21.
Facebook
TwitterTHIS DATASET WAS LAST UPDATED AT 7:11 AM EASTERN ON DEC. 1
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Gun Plain township. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Gun Plain township. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Gun Plain township, the median household income stands at $126,667 for householders within the 25 to 44 years age group, followed by $99,718 for the 45 to 64 years age group. Notably, householders within the 65 years and over age group, had the lowest median household income at $41,492.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gun Plain township median household income by age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the distribution of median household income among distinct age brackets of householders in Gun Barrel City. Based on the latest 2019-2023 5-Year Estimates from the American Community Survey, it displays how income varies among householders of different ages in Gun Barrel City. It showcases how household incomes typically rise as the head of the household gets older. The dataset can be utilized to gain insights into age-based household income trends and explore the variations in incomes across households.
Key observations: Insights from 2023
In terms of income distribution across age cohorts, in Gun Barrel City, the median household income stands at $84,878 for householders within the 45 to 64 years age group, followed by $73,449 for the 65 years and over age group. Notably, householders within the 25 to 44 years age group, had the lowest median household income at $60,393.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2023-inflation-adjusted dollars.
Age groups classifications include:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gun Barrel City median household income by age. You can refer the same here
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book is The second : race and guns in a fatally unequal America. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterThis dataset was created by Aman Gupta
Facebook
TwitterInformation from Bloomington Police Department regarding guns reported stolen.
Key code for Race:
A- Asian/Pacific Island, Non-Hispanic B- African American, Non-Hispanic C- Hawaiian/Other Pacific Island, Hispanic H- Hawaiian/Other Pacific Island, Non-Hispanic I- Indian/Alaskan Native, Non-Hispanic K- African American, Hispanic L- Caucasian, Hispanic N- Indian/Alaskan Native, Hispanic P- Asian/Pacific Island, Hispanic S- Asian, Non-Hispanic T- Asian, Hispanic U- Unknown W- Caucasian, Non-Hispanic
Key Code for Reading Districts:
Example: LB519
L for Law call or incident B stands for Bloomington 5 is the district or beat where incident occurred All numbers following represents a grid sector.
Disclaimer: The Bloomington Police Department takes great effort in making open data as accurate as possible, but there is no avoiding the introduction of errors in this process, which relies on data provided by many people and that cannot always be verified. Information contained in this dataset may change over a period of time. The Bloomington Police Department is not responsible for any error or omission from this data, or for the use or interpretation of the results of any research conducted.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Cleaned and Consolidated Weapon Detection Dataset
This dataset is a cleaned, consolidated, and training-ready version of the Subh775/WeaponDetection dataset. The original 29 ambiguous and redundant classes have been merged into 3 distinct, high-level categories: GUN, KNIFE, and PERSON. This cleaning process makes the dataset significantly more effective for training robust object detection models by removing label ambiguity and creating stronger class definitions. Images that… See the full description on the dataset page: https://huggingface.co/datasets/Subh775/WeaponDetection_Grouped.
Facebook
TwitterIntroduction: Firearm legality and ownership have been contentious topics in American culture, due to the well-documented, yet preventable, health and safety risks. States vary in the amount of firearm ownership, as well as firearm mortality and injury rates. Objectives: The primary aim of this project is to compare two states, New Jersey and Texas, on the likelihood of firearm violence occurring to each state's citizens. The variables of gun ownership, firearm mortalities, and firearm injuries are compared and visualized to understand if living in one state is safer than living in the other. Methods: Data analysis focused on connecting and comparing the two states with variables pointing to firearm safety/danger. Line graphs compare the two states and firearm injuries and mortalities over a sixteen-year period as well as number of firearms per state. Scatterplots show a correlation, if any, between number of firearms and injuries/mortalities in the two states. Results: Texas had a consistently higher mortality rate by firearms (excluding suicides) for each year of the seventeen years. Texas also led in firearm injuries from the years 2000-2010, 2012, and 2014-2016, but not in 2011 and 2013. New Jersey consistently has a lower mortality rate (3.5 and under per 100,000) and lower gun ownership (.11 and under per household). Texas’ data has both a higher mortality rate (between 3.8 and 4.8 per 100,000) and a higher gun ownership rate (.34 to .40 per household). With a few exceptions from the years 2011 and 2013, the state data points are clustered to show the relationship between gun ownership and firearm injuries to be high/high for Texas and low/low for New Jersey. Conclusions: From the years 2000-2016 it is, on average, 20% less likely that one will be injured by a firearm and 30% less likely that one will be killed by a firearm if one were to live in New Jersey instead of Texas, causing the conclusion that it is safer to live in New Jersey than in Texas.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Gun Plain township population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Gun Plain township. The dataset can be utilized to understand the population distribution of Gun Plain township by age. For example, using this dataset, we can identify the largest age group in Gun Plain township.
Key observations
The largest age group in Gun Plain Township, Michigan was for the group of age 50-54 years with a population of 519 (8.48%), according to the 2021 American Community Survey. At the same time, the smallest age group in Gun Plain Township, Michigan was the 85+ years with a population of 45 (0.74%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Gun Plain township Population by Age. You can refer the same here
Facebook
Twitterhttps://www.icpsr.umich.edu/web/ICPSR/studies/37363/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37363/terms
The State Firearm Database catalogs the presence or absence of 134 firearm safety laws in 14 categories covering the 26-year period from 1991 to 2019. The classification system categorizes state firearm provisions using a methodology that both captures differences and maintains a level of comparability between states. Because of this, the database is not the most detailed nor the most comprehensive record of all state firearm policies. Other resources may provide users with a deeper understanding of individual provisions, while this database serves as an efficient way to compare the broad scope of state firearm laws across the country. These provisions covered 14 aspects of state policies, including regulation of the process by which firearm transfers take place, ammunition, firearm possession, firearm storage, firearm trafficking, and liability of firearm manufacturers. In addition, descriptions of the criteria used to code each provision have been provided so that there is transparency in how various law exemptions, exceptions, and other nuances were addressed.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
1 in 4 mass shooting victims were children and teens. In the years between 2009 and 2020, the horrific scenes of mass shootings have haunted the nation’s collective conscience.US states with weaker gun laws and higher gun ownership rates have higher rates of mass shootings. Mass shooting is defined as any incident in which four or more people are shot and killed, excluding the shooter. The number of mass shootings that plague this country is far too high, and the counts are just a small fraction of the lives left forever changed after the tragedy of a mass shooting. So here is the data for list of mass shootings in United States from 2018 - 2022.
This dataset has five csv files of years 2018 - 2022. Each data contains following attributes
- Date : The date on which the mass shooting incident happened
- State : The state where the incident took place
- Dead : total number of people died in mass shooting
- Injured: total number of people who got injured in mass shooting-
- Total : total of dead and injured people
- Description : description/short report of the incident which may include information like gender/place etc.
Data for 2022 Mass shootings will be updated every 15 days!
This data was scraped from https://en.wikipedia.org/wiki/List_of_mass_shootings_in_the_United_States using BeautifulSoup.
Image banner by Wall Street Journal
Facebook
TwitterThis study was undertaken to obtain information on the characteristics of gun ownership, gun-carrying practices, and weapons-related incidents in the United States -- specifically, gun use and other weapons used in self-defense against humans and animals. Data were gathered using a national random-digit-dial telephone survey. The respondents were comprised of 1,905 randomly-selected adults aged 18 and older living in the 50 United States. All interviews were completed between May 28 and July 2, 1996. The sample was designed to be a representative sample of households, not of individuals, so researchers did not interview more than one adult from each household. To start the interview, six qualifying questions were asked, dealing with (1) gun ownership, (2) gun-carrying practices, (3) gun display against the respondent, (4) gun use in self-defense against animals, (5) gun use in self-defense against people, and (6) other weapons used in self-defense. A "yes" response to a qualifying question led to a series of additional questions on the same topic as the qualifying question. Part 1, Survey Data, contains the coded data obtained during the interviews, and Part 2, Open-Ended-Verbatim Responses, consists of the answers to open-ended questions provided by the respondents. Information collected for Part 1 covers how many firearms were owned by household members, types of firearms owned (handguns, revolvers, pistols, fully automatic weapons, and assault weapons), whether the respondent personally owned a gun, reasons for owning a gun, type of gun carried, whether the gun was ever kept loaded, kept concealed, used for personal protection, or used for work, and whether the respondent had a permit to carry the gun. Additional questions focused on incidents in which a gun was displayed in a hostile manner against the respondent, including the number of times such an incident took place, the location of the event in which the gun was displayed against the respondent, whether the police were contacted, whether the individual displaying the gun was known to the respondent, whether the incident was a burglary, robbery, or other planned assault, and the number of shots fired during the incident. Variables concerning gun use by the respondent in self-defense against an animal include the number of times the respondent used a gun in this manner and whether the respondent was hunting at the time of the incident. Other variables in Part 1 deal with gun use in self-defense against people, such as the location of the event, if the other individual knew the respondent had a gun, the type of gun used, any injuries to the respondent or to the individual that required medical attention or hospitalization, whether the incident was reported to the police, whether there were any arrests, whether other weapons were used in self-defense, the type of other weapon used, location of the incident in which the other weapon was used, and whether the respondent was working as a police officer or security guard or was in the military at the time of the event. Demographic variables in Part 1 include the gender, race, age, household income, and type of community (city, suburb, or rural) in which the respondent lived. Open-ended questions asked during the interview comprise the variables in Part 2. Responses include descriptions of where the respondent was when he or she displayed a gun (in self-defense or otherwise), specific reasons why the respondent displayed a gun, how the other individual reacted when the respondent displayed the gun, how the individual knew the respondent had a gun, whether the police were contacted for specific self-defense events, and if not, why not.