13 datasets found
  1. a

    Catholics as Percentage of Population 2012 to Present Vacant Sees

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 26, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholics as Percentage of Population 2012 to Present Vacant Sees [Dataset]. https://hub.arcgis.com/content/64c0da682d2a4275bf617f6174835218
    Explore at:
    Dataset updated
    Oct 26, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholics to Population {title at top of page}Data Developers: Burhans, Molly A., Cheney, David M., Emege, Thomas, Gerlt, R.. . “Catholics to Population {title at top of page}”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Catholic Hierarchy, Environmental Systems Research Institute, Inc., 2019.Web map developer: Molly Burhans, October 2019Web app developer: Molly Burhans, October 2019GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/The Catholic Leadership global maps information is derived from the Annuario Pontificio, which is curated and published by the Vatican Statistics Office annually, and digitized by David Cheney at Catholic-Hierarchy.org -- updated are supplemented with diocesan and news announcements. GoodLands maps this into global ecclesiastical boundaries. Admin 3 Ecclesiastical Territories:Burhans, Molly A., Cheney, David M., Gerlt, R.. . “Admin 3 Ecclesiastical Territories For Web”. Scale not given. Version 1.2. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Derived from:Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.

  2. a

    Top 10 Dioceses CCF

    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Top 10 Dioceses CCF [Dataset]. https://catholic-geo-hub-cgisc.hub.arcgis.com/items/6f42562cfc57427abe9b132dc05cfeb4
    Explore at:
    Dataset updated
    Oct 26, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  3. a

    Catholic Carbon Footprint Dashboard

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Dashboard [Dataset]. https://hub.arcgis.com/datasets/dba43eb6dd5e4879973b57095c386c5b
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Description

    PerCapita_CO2_Footprint_InDioceses_FULLBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.MethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  4. w

    Dataset of books called A saint of our own : how the quest for a holy hero...

    • workwithdata.com
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Dataset of books called A saint of our own : how the quest for a holy hero helped Catholics become American [Dataset]. https://www.workwithdata.com/datasets/books?f=1&fcol0=book&fop0=%3D&fval0=A+saint+of+our+own+%3A+how+the+quest+for+a+holy+hero+helped+Catholics+become+American
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is about books. It has 1 row and is filtered where the book is A saint of our own : how the quest for a holy hero helped Catholics become American. It features 7 columns including author, publication date, language, and book publisher.

  5. Popes Over The Years

    • kaggle.com
    zip
    Updated Nov 19, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2022). Popes Over The Years [Dataset]. https://www.kaggle.com/datasets/thedevastator/popes-and-antipopes-a-chronological-list
    Explore at:
    zip(50133 bytes)Available download formats
    Dataset updated
    Nov 19, 2022
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Popes Over The Years

    Popes over the years dataset

    About this dataset

    This dataset contains a list of popes and antipopes from the Catholic Church. It includes information on their respective pontiff number, pontificate, name, date and place of birth, and age at the start and end of their papacy. This dataset is perfect for those interested in the history of the Catholic Church or in studying the papacy!

    How to use the dataset

    This dataset contains a list of popes and antipopes from the Catholic Church. The columns include the pontiff number, pontificate, name, date and place of birth, and age at the start and end of their papacy

    Research Ideas

    • This dataset can be used to create a timeline of all the popes throughout history.
    • This dataset can be used to create a family tree of all the popes.
    • This dataset can be used to study the history of the Catholic Church

    Acknowledgements

    License

    License: CC0 1.0 Universal (CC0 1.0) - Public Domain Dedication No Copyright - You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission. See Other Information.

    Columns

    File: df_16.csv | Column name | Description | |:-------------------------------|:-----------------------------------------------------------------------| | Pontiffnumber | The number of the pontiff. (Integer) | | Pontificate | The pontificate of the pontiff. (String) | | Portrait | A portrait of the pontiff. (String) | | Name | The name of the pontiff in English and Latin. (String) | | Personal name | The personal name of the pontiff. (String) | | Date and Place of birth | The date and place of birth of the pontiff. (String) | | Age at start/end of papacy | The age of the pontiff at the start and end of their papacy. (Integer) | | Notes | Notes about the pontiff. (String) |

    File: df_26.csv | Column name | Description | |:--------------|:--------------| | 0 | | | 1 | |

    File: df_20.csv | Column name | Description | |:-------------------------------|:-----------------------------------------------------------------------| | Pontiffnumber | The number of the pontiff. (Integer) | | Pontificate | The pontificate of the pontiff. (String) | | Portrait | A portrait of the pontiff. (String) | | Name | The name of the pontiff in English and Latin. (String) | | Personal name | The personal name of the pontiff. (String) | | Date and Place of birth | The date and place of birth of the pontiff. (String) | | Age at start/end of papacy | The age of the pontiff at the start and end of their papacy. (Integer) | | Notes | Notes about the pontiff. (String) |

    File: df_18.csv | Column name | Description | |:-------------------------------|:-----------------------------------------------------------------------| | Pontiffnumber | The number of the pontiff. (Integer) | | Pontificate | The pontificate of the pontiff. (String) | | Portrait | A portrait of the pontiff. (String) | | Name | The name of the pontiff in English and Latin. (String) | | Personal name | The personal name of the pontiff. (String) | | Date and Place of birth | The date and place of birth of the pontiff. (String) | | Age at start/end of papacy | The age of the pontiff at the start and end of their papacy. (Integer) | | Notes | Notes about the pontiff. (String) |

    File: df_25.csv

    File: df_27.csv | Column...

  6. a

    Catholics and Parishes in Dioceses 2012b4 data

    • hub.arcgis.com
    Updated Sep 21, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholics and Parishes in Dioceses 2012b4 data [Dataset]. https://hub.arcgis.com/content/497e824051f6497384986d3a7486d3fb
    Explore at:
    Dataset updated
    Sep 21, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    [Map, App, or Layer Name]Burhans, Molly A., Cheney, David M., Gerlt, R.. . “[Name]”. Scale not given. Version 1.2. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Derived from:Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/

  7. a

    Catholic Carbon Footprint Story Map Map

    • hub.arcgis.com
    • catholic-geo-hub-cgisc.hub.arcgis.com
    Updated Oct 7, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic Carbon Footprint Story Map Map [Dataset]. https://hub.arcgis.com/maps/8c3112552bdd4bd3962ab8b94bcf6ee5
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholic Carbon Footprint Story Map Map:DataBurhans, Molly A., Cheney, David M., Gerlt, R.. . “PerCapita_CO2_Footprint_InDioceses_FULL”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Map Development: Molly BurhansMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  8. Americans Belief in Spiritual Concepts

    • kaggle.com
    zip
    Updated Nov 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick L Ford (2024). Americans Belief in Spiritual Concepts [Dataset]. https://www.kaggle.com/datasets/patricklford/americans-belief-in-spiritual-concepts/discussion
    Explore at:
    zip(1350 bytes)Available download formats
    Dataset updated
    Nov 17, 2024
    Authors
    Patrick L Ford
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Introduction

    The interplay between Americans belief in spiritual concepts and the prevalence of exorcisms is a fascinating topic that bridges sociology, psychology, and religious studies.

    Trends in Spiritual Belief: - Over recent decades, surveys (e.g., Pew Research and GALLUP) have shown a decline in traditional religious beliefs and affiliation in the U.S., with more Americans identifying as "nones" (atheist, agnostic, or unaffiliated). - Belief in core spiritual concepts like God, angels, demons, and the afterlife has declined, particularly among younger generations.

    Rise of Secularism and Non-Traditional Spirituality: - While belief in organised religion is waning, many Americans still engage with non-traditional spirituality, including astrology, energy healing, or mindfulness practices.

    The Sociological Perspective: - The rising interest in exorcisms may be a reaction to cultural and existential uncertainty in a rapidly changing world. As traditional religious frameworks fade, some people seek ritual or spiritual intervention to make sense of unexplained phenomena or emotional struggles. - Simultaneously, for sceptics or secular individuals, exorcisms may hold an appeal as a "last resort" when other avenues, like therapy, have failed. This paradox underscores how spiritual rituals can persist even in secular or non-religious societies.

    "The greatest trick the devil ever pulled was convincing the world he did not exist". - The Usual Suspects (1995).

    Data Visualisation:

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2F2e7d7a0f2dbd35c0902b892ba955b92f%2FScreenshot%202024-11-16%2012.11.28.png?generation=1731849057053558&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2Fa41fd283b0af7a1e230e29d380019631%2FScreenshot%202024-11-16%2012.12.28.png?generation=1731849086990535&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2Fbd1c59f3ea9133ca991a74ba65796824%2FScreenshot%202024-11-15%2013.01.23.png.jpg?generation=1731849101433416&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F13231939%2Fdfdcc7911be100c0745405b8a4d0b407%2FScreenshot%202024-11-16%2013.31.25.png?generation=1731849119989844&alt=media" alt="">

    A Markdown document with the R code for the above three plots. link

    Exorcism

    Face-to-face encounters with the devil are all in a days work for an exorcist; followed by dinner, prayers, and a good night’s sleep. They walk amid evil on angels wings with unwavering confidence in the power of God. link

    In the biblical material the motif of exorcism—expelling an unwanted spiritual entity from a person or place—is dominated by stories related to Jesus. link

    There is an increasing global demand for exorcisms and the Catholic Church’s response: - Rising Demand for Exorcisms: - The number of Catholic exorcists in the U.S. has risen from 12 in 2005 to an estimated 125–150 today. - Contributing factors include cultural preoccupation with the paranormal and the decline of traditional religious practices, which some believe leaves people vulnerable to spiritual forces. - Explanations for the Increase: - Dr. Richard Gallagher, a psychiatrist who collaborates with Catholic dioceses, attributes the trend to media influences and the rise of alternative spiritual beliefs. - Many exorcists argue that engaging in occult practices can open individuals to malevolent forces. - Vatican's Response: - In 2014, Pope Francis formally recognised the International Association of Exorcists to educate clergy and provide training in exorcism rites. - The association’s 400 members, including Catholic, Orthodox, and Protestant exorcists, will host a biannual training next month, addressing what they call a “pastoral emergency.” - Scepticism and Rare Cases: - Most cases reviewed by exorcists involve mental health issues rather than genuine demonic possession. - Genuine cases are extremely rare, with Fr. Vincent Lampert estimating only 1 in 5,000 claims involve authentic possession. - Cultural Depictions: - Interest in exorcism is further fuelled by the media, including a forthcoming film on famed exorcist Fr. Gabriele Amorth and a 2017 documentary by "The Exorcist" director William Friedkin. - The film "Possessed" (2000) is based on a true story, though it takes some creative liberties. The film is inspired by the 1949 exorcism of a young boy, pseudonymously known as "Roland Doe" or "Robbie Mannheim," which was the inspirati...

  9. a

    Catholic CO2 Footprint Beta FullSees Top10

    • hub.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Oct 7, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    burhansm2 (2019). Catholic CO2 Footprint Beta FullSees Top10 [Dataset]. https://hub.arcgis.com/datasets/614605db0e354f7c968899eb32950dd1
    Explore at:
    Dataset updated
    Oct 7, 2019
    Dataset authored and provided by
    burhansm2
    License

    Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
    License information was derived automatically

    Area covered
    Description

    Catholic_CO2_Footprint_Beta_FullSees_Top10Burhans, Molly A., Cheney, David M., Gerlt, R.. . “Catholic_CO2_Footprint_Beta_FullSees_Top10”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.DEVELOPED AS A POPUP LAYERMethodologyThis is the first global Carbon footprint of the Catholic population. We will continue to improve and develop these data with our research partners over the coming years. While it is helpful, it should also be viewed and used as a "beta" prototype that we and our research partners will build from and improve. The years of carbon data are (2010) and (2015 - SHOWN). The year of Catholic data is 2018. The year of population data is 2016. Care should be taken during future developments to harmonize the years used for catholic, population, and CO2 data.1. Zonal Statistics: Esri Population Data and Dioceses --> Population per dioceses, non Vatican based numbers2. Zonal Statistics: FFDAS and Dioceses and Population dataset --> Mean CO2 per Diocese3. Field Calculation: Population per Diocese and Mean CO2 per diocese --> CO2 per Capita4. Field Calculation: CO2 per Capita * Catholic Population --> Catholic Carbon FootprintAssumption: PerCapita CO2Deriving per-capita CO2 from mean CO2 in a geography assumes that people's footprint accounts for their personal lifestyle and involvement in local business and industries that are contribute CO2. Catholic CO2Assumes that Catholics and non-Catholic have similar CO2 footprints from their lifestyles.Derived from:A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of resultshttp://ffdas.rc.nau.edu/About.htmlRayner et al., JGR, 2010 - The is the first FFDAS paper describing the version 1.0 methods and results published in the Journal of Geophysical Research.Asefi et al., 2014 - This is the paper describing the methods and results of the FFDAS version 2.0 published in the Journal of Geophysical Research.Readme version 2.2 - A simple readme file to assist in using the 10 km x 10 km, hourly gridded Vulcan version 2.2 results.Liu et al., 2017 - A paper exploring the carbon cycle response to the 2015-2016 El Nino through the use of carbon cycle data assimilation with FFDAS as the boundary condition for FFCO2."S. Asefi‐Najafabady P. J. Rayner K. R. Gurney A. McRobert Y. Song K. Coltin J. Huang C. Elvidge K. BaughFirst published: 10 September 2014 https://doi.org/10.1002/2013JD021296 Cited by: 30Link to FFDAS data retrieval and visualization: http://hpcg.purdue.edu/FFDAS/index.phpAbstractHigh‐resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high‐resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long‐term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long‐term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter‐term variations reveals the impact of the 2008–2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set."Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/Esri Gridded Population Data 2016DescriptionThis layer is a global estimate of human population for 2016. Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: http://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones. https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/data-management/2016-world-population-estimate-services-are-now-available/

  10. England and Wales Census 2021 - Religion by age and sex in England and Wales...

    • statistics.ukdataservice.ac.uk
    xlsx
    Updated Feb 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service. (2023). England and Wales Census 2021 - Religion by age and sex in England and Wales [Dataset]. https://statistics.ukdataservice.ac.uk/dataset/england-and-wales-census-2021-religion-by-age-and-sex-in-england-and-wales
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Feb 10, 2023
    Dataset provided by
    Office for National Statisticshttp://www.ons.gov.uk/
    Northern Ireland Statistics and Research Agency
    UK Data Servicehttps://ukdataservice.ac.uk/
    Authors
    Office for National Statistics; National Records of Scotland; Northern Ireland Statistics and Research Agency; UK Data Service.
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    England, Wales
    Description

    These datasets provide datasets on the religion people connect or identify with (their religious affiliation), whether or not they practise or have belief in it, by age and sex using Census 2021 data.

    Religious groups in the detailed religion classification

    The counts for religious groups identified in the Religion (detailed) in England and Wales dataset are a representation of those who chose to write in their religion. Some people may have chosen to describe a denomination of one of the tick-box responses (for example, Catholic as a denomination of Christian or Orthodox as a denomination of Jewish) through the "Any other religion" write-in response option.

    2011 Religion data

    In 2011, an error in the processing of census data led to the number of usual residents in the “Religion not stated” category being overestimated by a total of 62,000 for the following three local authorities combined: Camden, Islington, and Tower Hamlets.

    In February 2015, the ONS published corrected figures for estimates based on the tick-box classification. However, it could not be corrected for the detailed religion classification because the processing and relationships with other output variables are so complex.

    For this reason, only apply comparisons for these three local authorities to the tick-box classification, using the corrected figures set out in the ONS 2011 Census products: Issues and corrections notice.

    For this publication, where corrected figures for the tick-box classification from the 2011 Census are available, they have been used. Where they are not (for single year of age by sex), the ONS has used data from the CT0291_2011 commissioned table.

  11. Proportion column tests (Brazilian Catholics and non-Catholics).

    • plos.figshare.com
    bin
    Updated Jun 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Graciela da Silva Oliveira; Giuseppe Pellegrini; Leonardo Augusto Luvison Araújo; Nelio Bizzo (2023). Proportion column tests (Brazilian Catholics and non-Catholics). [Dataset]. http://doi.org/10.1371/journal.pone.0273929.t004
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 13, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Graciela da Silva Oliveira; Giuseppe Pellegrini; Leonardo Augusto Luvison Araújo; Nelio Bizzo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Proportion column tests (Brazilian Catholics and non-Catholics).

  12. Religion by Indigenous identity: Canada, provinces and territories

    • www150.statcan.gc.ca
    • datasets.ai
    • +1more
    Updated Oct 26, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2022). Religion by Indigenous identity: Canada, provinces and territories [Dataset]. http://doi.org/10.25318/9810028801-eng
    Explore at:
    Dataset updated
    Oct 26, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Religion by Indigenous identity, age and gender for the population in private households.

  13. g

    Orthodoxy Scale (CAPS-ORTHODOX module)

    • datasearch.gesis.org
    • dataverse-staging.rdmc.unc.edu
    Updated Jan 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    N/A (2020). Orthodoxy Scale (CAPS-ORTHODOX module) [Dataset]. https://datasearch.gesis.org/dataset/httpsdataverse.unc.eduoai--hdl1902.29CAPS-ORTHODOX
    Explore at:
    Dataset updated
    Jan 22, 2020
    Dataset provided by
    Odum Institute Dataverse Network
    Authors
    N/A
    Description

    This is patterned after an orthodoxy scale developed by Glock and Stark (1966) and was designed to measure belief in traditional religious doctrines. The authors assumed that such beliefs were an important component of the intrinsic, end orientation. Traditional religious doctrines be viewed from the perspective of some specific religious tradition. They chose the Christian tradition because of its relative predominance in Western society. More precisely, the belief statements on the Orthodox y scale come from American Protestantism. Although there is reason to believe that the scale is appropriate for use with Catholics as well, at least American Catholics, it is clearly inappropriate for use with people who religious tradition is not Christian. As would be expected, highly orthodox Jews, Moslems, and Buddhists score quite low. There are 12 items on the Orthodoxy scale.

    All items are responded to on a nine-point scale from strongly disagree to strongly agree. All items are scored in the positive direction. Items are then summed for a total score.

    Scoring information: Retain original scoring on all individual items. Create summary score, ORTHODOX, as follows: ORTHODOX=OTH1+OTH2+OTH3+OTH4+OTH5+OTH6+OTH7+OTH8+OTH9+OTH10+OTH11 +OTH12.

  14. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
burhansm2 (2019). Catholics as Percentage of Population 2012 to Present Vacant Sees [Dataset]. https://hub.arcgis.com/content/64c0da682d2a4275bf617f6174835218

Catholics as Percentage of Population 2012 to Present Vacant Sees

Explore at:
Dataset updated
Oct 26, 2019
Dataset authored and provided by
burhansm2
License

Attribution-NoDerivs 4.0 (CC BY-ND 4.0)https://creativecommons.org/licenses/by-nd/4.0/
License information was derived automatically

Area covered
Description

Catholics to Population {title at top of page}Data Developers: Burhans, Molly A., Cheney, David M., Emege, Thomas, Gerlt, R.. . “Catholics to Population {title at top of page}”. Scale not given. Version 1.0. MO and CT, USA: GoodLands Inc., Catholic Hierarchy, Environmental Systems Research Institute, Inc., 2019.Web map developer: Molly Burhans, October 2019Web app developer: Molly Burhans, October 2019GoodLands’ polygon data layers, version 2.0 for global ecclesiastical boundaries of the Roman Catholic Church:Although care has been taken to ensure the accuracy, completeness and reliability of the information provided, due to this being the first developed dataset of global ecclesiastical boundaries curated from many sources it may have a higher margin of error than established geopolitical administrative boundary maps. Boundaries need to be verified with appropriate Ecclesiastical Leadership. The current information is subject to change without notice. No parties involved with the creation of this data are liable for indirect, special or incidental damage resulting from, arising out of or in connection with the use of the information. We referenced 1960 sources to build our global datasets of ecclesiastical jurisdictions. Often, they were isolated images of dioceses, historical documents and information about parishes that were cross checked. These sources can be viewed here:https://docs.google.com/spreadsheets/d/11ANlH1S_aYJOyz4TtG0HHgz0OLxnOvXLHMt4FVOS85Q/edit#gid=0To learn more or contact us please visit: https://good-lands.org/The Catholic Leadership global maps information is derived from the Annuario Pontificio, which is curated and published by the Vatican Statistics Office annually, and digitized by David Cheney at Catholic-Hierarchy.org -- updated are supplemented with diocesan and news announcements. GoodLands maps this into global ecclesiastical boundaries. Admin 3 Ecclesiastical Territories:Burhans, Molly A., Cheney, David M., Gerlt, R.. . “Admin 3 Ecclesiastical Territories For Web”. Scale not given. Version 1.2. MO and CT, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2019.Derived from:Global Diocesan Boundaries:Burhans, M., Bell, J., Burhans, D., Carmichael, R., Cheney, D., Deaton, M., Emge, T. Gerlt, B., Grayson, J., Herries, J., Keegan, H., Skinner, A., Smith, M., Sousa, C., Trubetskoy, S. “Diocesean Boundaries of the Catholic Church” [Feature Layer]. Scale not given. Version 1.2. Redlands, CA, USA: GoodLands Inc., Environmental Systems Research Institute, Inc., 2016.Using: ArcGIS. 10.4. Version 10.0. Redlands, CA: Environmental Systems Research Institute, Inc., 2016.Boundary ProvenanceStatistics and Leadership DataCheney, D.M. “Catholic Hierarchy of the World” [Database]. Date Updated: August 2019. Catholic Hierarchy. Using: Paradox. Retrieved from Original Source.Catholic HierarchyAnnuario Pontificio per l’Anno .. Città del Vaticano :Tipografia Poliglotta Vaticana, Multiple Years.The data for these maps was extracted from the gold standard of Church data, the Annuario Pontificio, published yearly by the Vatican. The collection and data development of the Vatican Statistics Office are unknown. GoodLands is not responsible for errors within this data. We encourage people to document and report errant information to us at data@good-lands.org or directly to the Vatican.Additional information about regular changes in bishops and sees comes from a variety of public diocesan and news announcements.

Search
Clear search
Close search
Google apps
Main menu