Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in the United States increased to 4.40 percent in September from 4.30 percent in August of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Employment Rate in the United States increased to 59.70 percent in September from 59.60 percent in August of 2025. This dataset provides - United States Employment Rate- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThis layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: August 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor force Data obtained from the U.S. Bureau of Labor Statistics. Data downloaded: October 1, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and CountyNation Data Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova.As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:
Facebook
TwitterThis layer contains the latest 14 months of unemployment statistics from the U.S. Bureau of Labor Statistics (BLS). The data is offered at the nationwide, state, and county geography levels. Puerto Rico is included. These are not seasonally adjusted values. The layer is updated monthly with the newest unemployment statistics available from BLS. There are attributes in the layer that specify which month is associated to each statistic. Most current month: August 2025 (preliminary values at the state and county level) The attributes included for each month are:Unemployment rate (%)Count of unemployed populationCount of employed population in the labor forceCount of people in the labor force Data obtained from the U.S. Bureau of Labor Statistics. Data downloaded: October 1, 2025Local Area Unemployment Statistics table download: https://www.bls.gov/lau/#tablesLocal Area Unemployment FTP downloads:State and CountyNation Data Notes:This layer is updated automatically when the BLS releases their most current monthly statistics. The layer always contains the most recent estimates. It is updated within days of the BLS"s county release schedule. BLS releases their county statistics roughly 2 months after-the-fact. The data is joined to 2023 TIGER boundaries from the U.S. Census Bureau.Monthly values are subject to revision over time.For national values, employed plus unemployed may not sum to total labor force due to rounding.As of the January 2022 estimates released on March 18th, 2022, BLS is reporting new data for the two new census areas in Alaska - Copper River and Chugach - and historical data for the previous census area - Valdez Cordova.As of the March 17th, 2025 release, BLS now reports data for 9 planning regions in Connecticut rather than the 8 previous counties. To better understand the different labor force statistics included in this map, see the diagram below from BLS:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Initial Jobless Claims in the United States decreased to 216 thousand in the week ending November 22 of 2025 from 222 thousand in the previous week. This dataset provides the latest reported value for - United States Initial Jobless Claims - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAbstract copyright UK Data Service and data collection copyright owner.
Background
The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.
Longitudinal data
The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.
New reweighting policy
Following the new reweighting policy ONS has reviewed the latest population estimates made available during 2019 and have decided not to carry out a 2019 LFS and APS reweighting exercise. Therefore, the next reweighting exercise will take place in 2020. These will incorporate the 2019 Sub-National Population Projection data (published in May 2020) and 2019 Mid-Year Estimates (published in June 2020). It is expected that reweighted Labour Market aggregates and microdata will be published towards the end of 2020/early 2021.
LFS Documentation
The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.
Additional data derived from the QLFS
The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.
Variables DISEA and LNGLST
Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The number of unemployed persons in The United States increased to 7603 Thousand in September of 2025 from 7384 Thousand in August of 2025. This dataset provides - United States Unemployed Persons - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterThe cleaned and harmonized version of the survey data produced and published by the Economic Research Forum represents 100% of the original survey data collected by the Central Agency for Public Mobilization and Statistics (CAPMAS)
In any society, the human element represents the basis of the work force which exercises all the service and production activities. Therefore, it is a mandate to produce labor force statistics and studies, that is related to the growth and distribution of manpower and labor force distribution by different types and characteristics.
In this context, the Central Agency for Public Mobilization and Statistics conducts "Quarterly Labor Force Survey" which includes data on the size of manpower and labor force (employed and unemployed) and their geographical distribution by their characteristics.
By the end of each year, CAPMAS issues the annual aggregated labor force bulletin publication that includes the results of the quarterly survey rounds that represent the manpower and labor force characteristics during the year.
----> Historical Review of the Labor Force Survey:
1- The First Labor Force survey was undertaken in 1957. The first round was conducted in November of that year, the survey continued to be conducted in successive rounds (quarterly, bi-annually, or annually) till now.
2- Starting the October 2006 round, the fieldwork of the labor force survey was developed to focus on the following two points: a. The importance of using the panel sample that is part of the survey sample, to monitor the dynamic changes of the labor market. b. Improving the used questionnaire to include more questions, that help in better defining of relationship to labor force of each household member (employed, unemployed, out of labor force ...etc.). In addition to re-order of some of the already existing questions in much logical way.
3- Starting the January 2008 round, the used methodology was developed to collect more representative sample during the survey year. this is done through distributing the sample of each governorate into five groups, the questionnaires are collected from each of them separately every 15 days for 3 months (in the middle and the end of the month)
----> The survey aims at covering the following topics:
1- Measuring the size of the Egyptian labor force among civilians (for all governorates of the republic) by their different characteristics. 2- Measuring the employment rate at national level and different geographical areas. 3- Measuring the distribution of employed people by the following characteristics: gender, age, educational status, occupation, economic activity, and sector. 4- Measuring unemployment rate at different geographic areas. 5- Measuring the distribution of unemployed people by the following characteristics: gender, age, educational status, unemployment type "ever employed/never employed", occupation, economic activity, and sector for people who have ever worked.
The raw survey data provided by the Statistical Agency were cleaned and harmonized by the Economic Research Forum, in the context of a major project that started in 2009. During which extensive efforts have been exerted to acquire, clean, harmonize, preserve and disseminate micro data of existing labor force surveys in several Arab countries.
Covering a sample of urban and rural areas in all the governorates.
1- Household/family. 2- Individual/person.
The survey covered a national sample of households and all individuals permanently residing in surveyed households.
Sample survey data [ssd]
The cleaned and harmonized version of the survey data produced and published by the Economic Research Forum represents 100% of the original survey data collected by the Central Agency for Public Mobilization and Statistics (CAPMAS)
Sample Design and Selection
The sample of the LFS 2006 survey is a simple systematic random sample.
Sample Size
The sample size varied in each quarter (it is Q1=19429, Q2=19419, Q3=19119 and Q4=18835) households with a total number of 76802 households annually. These households are distributed on the governorate level (urban/rural).
A more detailed description of the different sampling stages and allocation of sample across governorates is provided in the Methodology document available among external resources in Arabic.
Face-to-face [f2f]
The questionnaire design follows the latest International Labor Organization (ILO) concepts and definitions of labor force, employment, and unemployment.
The questionnaire comprises 3 tables in addition to the identification and geographic data of household on the cover page.
----> Table 1- Demographic and employment characteristics and basic data for all household individuals
Including: gender, age, educational status, marital status, residence mobility and current work status
----> Table 2- Employment characteristics table
This table is filled by employed individuals at the time of the survey or those who were engaged to work during the reference week, and provided information on: - Relationship to employer: employer, self-employed, waged worker, and unpaid family worker - Economic activity - Sector - Occupation - Effective working hours - Work place - Average monthly wage
----> Table 3- Unemployment characteristics table
This table is filled by all unemployed individuals who satisfied the unemployment criteria, and provided information on: - Type of unemployment (unemployed, unemployed ever worked) - Economic activity and occupation in the last held job before being unemployed - Last unemployment duration in months - Main reason for unemployment
----> Raw Data
Office editing is one of the main stages of the survey. It started once the questionnaires were received from the field and accomplished by the selected work groups. It includes: a-Editing of coverage and completeness b-Editing of consistency
----> Harmonized Data
Facebook
TwitterThis study was deposited in 2008, as a result of the move from seasonal to calendar quarters for the QLFS, and the reweighting process to 2007-2008 population figures. It combines data from previously-available QLFS seasonal five-quarter longitudinal datasets. The depositor has advised that small revisions to the data may have been made during this process, but they should not be significant.
Background
The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.
Longitudinal data
The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.
LFS Documentation
The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.
Additional data derived from the QLFS
The Archive also holds further QLFS series: End User Licence (EUL) quarterly data; Secure Access datasets; household datasets; quarterly, annual and ad hoc module datasets compiled for Eurostat; and some additional annual Northern Ireland datasets.
Variables DISEA and LNGLST
Dataset A08 (Labour market status of disabled people) which ONS suspended due to an apparent discontinuity between April to June 2017 and July to September 2017 is now available. As a result of this apparent discontinuity and the inconclusive investigations at this stage, comparisons should be made with caution between April to June 2017 and subsequent time periods. However users should note that the estimates are not seasonally adjusted, so some of the change between quarters could be due to seasonality. Further recommendations on historical comparisons of the estimates will be given in November 2018 when ONS are due to publish estimates for July to September 2018.
An article explaining the quality assurance investigations that have been conducted so far is available on the ONS Methodology webpage. For any queries about Dataset A08 please email Labour.Market@ons.gov.uk.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Attribute 1: (qualitative)
Status of existing checking account
A11 : ... < 0 DM
A12 : 0 <= ... < 200 DM
A13 : ... >= 200 DM / salary assignments for at least 1 year
A14 : no checking account
Attribute 2: (numerical) Duration in month
Attribute 3: (qualitative) Credit history A30 : no credits taken/ all credits paid back duly A31 : all credits at this bank paid back duly A32 : existing credits paid back duly till now A33 : delay in paying off in the past A34 : critical account/ other credits existing (not at this bank)
Attribute 4: (qualitative) Purpose A40 : car (new) A41 : car (used) A42 : furniture/equipment A43 : radio/television A44 : domestic appliances A45 : repairs A46 : education A47 : (vacation - does not exist?) A48 : retraining A49 : business A410 : others
Attribute 5: (numerical) Credit amount
Attibute 6: (qualitative) Savings account/bonds A61 : ... < 100 DM A62 : 100 <= ... < 500 DM A63 : 500 <= ... < 1000 DM A64 : .. >= 1000 DM A65 : unknown/ no savings account
Attribute 7: (qualitative)
Present employment since
A71 : unemployed
A72 : ... < 1 year
A73 : 1 <= ... < 4 years
A74 : 4 <= ... < 7 years
A75 : .. >= 7 years
Attribute 8: (numerical) Installment rate in percentage of disposable income
Attribute 9: (qualitative) Personal status and sex A91 : male : divorced/separated A92 : female : divorced/separated/married A93 : male : single A94 : male : married/widowed A95 : female : single
Attribute 10: (qualitative) Other debtors / guarantors A101 : none A102 : co-applicant A103 : guarantor
Attribute 11: (numerical) Present residence since
Attribute 12: (qualitative) Property A121 : real estate A122 : if not A121 : building society savings agreement/ life insurance A123 : if not A121/A122 : car or other, not in attribute 6 A124 : unknown / no property
Attribute 13: (numerical) Age in years
Attribute 14: (qualitative) Other installment plans A141 : bank A142 : stores A143 : none
Attribute 15: (qualitative) Housing A151 : rent A152 : own A153 : for free
Attribute 16: (numerical) Number of existing credits at this bank
Attribute 17: (qualitative) Job A171 : unemployed/ unskilled - non-resident A172 : unskilled - resident A173 : skilled employee / official A174 : management/ self-employed/ highly qualified employee/ officer
Attribute 18: (numerical) Number of people being liable to provide maintenance for
Attribute 19: (qualitative) Telephone A191 : none A192 : yes, registered under the customers name
Attribute 20: (qualitative) foreign worker A201 : yes A202 : no
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Non Farm Payrolls in the United States increased by 119 thousand in September of 2025. This dataset provides the latest reported value for - United States Non Farm Payrolls - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Labor Force Participation Rate in the United States increased to 62.40 percent in September from 62.30 percent in August of 2025. This dataset provides the latest reported value for - United States Labor Force Participation Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterDescription of the German credit dataset.
Title: German Credit data
Source Information
Professor Dr. Hans Hofmann
Institut f"ur Statistik und "Okonometrie
Universit"at Hamburg
FB Wirtschaftswissenschaften
Von-Melle-Park 5
2000 Hamburg 13
Two datasets are provided. the original dataset, in the form provided by Prof. Hofmann, contains categorical/symbolic attributes and is in the file "german.data".
For algorithms that need numerical attributes, Strathclyde University produced the file "german.data-numeric". This file has been edited and several indicator variables added to make it suitable for algorithms which cannot cope with categorical variables. Several attributes that are ordered categorical (such as attribute 17) have been coded as integer. This was the form used by StatLog.
Number of Attributes german: 20 (7 numerical, 13 categorical) Number of Attributes german.numer: 24 (24 numerical)
Attribute description for german
Attribute 1: (qualitative) Status of existing checking account A11 : ... < 0 DM A12 : 0 <= ... < 200 DM A13 : ... >= 200 DM / salary assignments for at least 1 year A14 : no checking account
Attribute 2: (numerical) Duration in month
Attribute 3: (qualitative) Credit history A30 : no credits taken/ all credits paid back duly A31 : all credits at this bank paid back duly A32 : existing credits paid back duly till now A33 : delay in paying off in the past A34 : critical account/ other credits existing (not at this bank)
Attribute 4: (qualitative) Purpose A40 : car (new) A41 : car (used) A42 : furniture/equipment A43 : radio/television A44 : domestic appliances A45 : repairs A46 : education A47 : (vacation - does not exist?) A48 : retraining A49 : business A410 : others
Attribute 5: (numerical) Credit amount
Attibute 6: (qualitative) Savings account/bonds A61 : ... < 100 DM A62 : 100 <= ... < 500 DM A63 : 500 <= ... < 1000 DM A64 : .. >= 1000 DM A65 : unknown/ no savings account
Attribute 7: (qualitative)
Present employment since
A71 : unemployed
A72 : ... < 1 year
A73 : 1 <= ... < 4 years
A74 : 4 <= ... < 7 years
A75 : .. >= 7 years
Attribute 8: (numerical) Installment rate in percentage of disposable income
Attribute 9: (qualitative) Personal status and sex A91 : male : divorced/separated A92 : female : divorced/separated/married A93 : male : single A94 : male : married/widowed A95 : female : single
Attribute 10: (qualitative) Other debtors / guarantors A101 : none A102 : co-applicant A103 : guarantor
Attribute 11: (numerical) Present residence since
Attribute 12: (qualitative) Property A121 : real estate A122 : if not A121 : building society savings agreement/ life insurance A123 : if not A121/A122 : car or other, not in attribute 6 A124 : unknown / no property
Attribute 13: (numerical) Age in years
Attribute 14: (qualitative) Other installment plans A141 : bank A142 : stores A143 : none
Attribute 15: (qualitative) Housing A151 : rent A152 : own A153 : for free
Attribute 16: (numerical) Number of existing credits at this bank
Attribute 17: (qualitative) Job A171 : unemployed/ unskilled - non-resident A172 : unskilled - resident A173 : skilled employee / official A174 : management/ self-employed/ highly qualified employee/ officer
Attribute 18: (numerical) Number of people being liable to provide maintenance for
Attribute 19: (qualitative) Telephone A191 : none A192 : yes, registered under the customers name
Attribute 20: (qualitative) foreign worker A201 : yes A202 : no
This dataset requires use of a cost matrix (see below)
1 2
2 5 0
(1 = Good, 2 = Bad)
the rows represent the actual classification and the columns the predicted classification.
It is worse to class a customer as good when they are bad (5), than it is to class a customer as bad when they are good (1).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in India remained unchanged at 5.20 percent in October. This dataset provides - India Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Jobless Claims 4-week Average in the United States decreased to 223.75 Thousand in November 22 from 224.75 Thousand in the previous week. This dataset provides - United States Jobless Claims 4-week Average- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Continuing Jobless Claims in the United States increased to 1960 thousand in the week ending November 15 of 2025 from 1953 thousand in the previous week. This dataset provides the latest reported value for - United States Continuing Jobless Claims - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in China decreased to 5.10 percent in October from 5.20 percent in September of 2025. This dataset provides - China Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in Canada decreased to 6.90 percent in October from 7.10 percent in September of 2025. This dataset provides - Canada Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in Germany remained unchanged at 6.30 percent in November. This dataset provides the latest reported value for - Germany Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in France increased to 7.70 percent in the third quarter of 2025 from 7.60 percent in the second quarter of 2025. This dataset provides the latest reported value for - France Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Unemployment Rate in the United States increased to 4.40 percent in September from 4.30 percent in August of 2025. This dataset provides the latest reported value for - United States Unemployment Rate - plus previous releases, historical high and low, short-term forecast and long-term prediction, economic calendar, survey consensus and news.